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Abstract—The complex, multi-modal and dispersive nature
of guided waves makes them extremely effective in the non
destructive evaluation of plate-like structures. Knowledge of the
dispersion relation of a material is a prerequisite to many
guided wave experiments. A frequency-phase velocity map is
by far the most useful representation of dispersion. These
phase velocity curves can be obtained numerically by solving
the Lamb equations, however instabilities and unfamiliarity
with the specimen’s parameters makes experimentally obtained
dispersion relation desirable. Transformations can be applied to
an experimentally obtained frequency-wave number map but it
requires prohibitively high number of sampling points in space
to resolve modes across the full bandwidth of the transducer. The
phase velocity filter described here is able to extract wavelets of a
particular phase velocity irrespective of frequency. When applied
to the acquisition of dispersion relation, the technique exhibits
reduced artefacts and is able to extract modes across the full
bandwidth of the excitation. Results show a bandwidth increase
of approximately 58%.

I. INTRODUCTION

Guided waves which consist of multiple modes of oscilla-

tion, are inherently complex, but are now well understood. At

any given frequency, an infinite number of modes exist [1].

They can be either symmetric or antisymmetric in shape.

Each mode has a unique dispersive relationship between

frequency, group velocity (Cg), phase velocity (Cph), and

attenuation [2]. Some authors have presented techniques for

compensating for the dispersion [3]. This relationship and

physical structure makes their interaction with defects unique

[1]. Higher order modes can couple into corrosion and can

be used for the evaluation of texture versus low order modes

which are useful in the evaluation of larger defects. Recently,

lamb waves have been applied to the measurement of bone

thickness [4].

The measured frequency-phase velocity representation of

this dispersion is useful as high order modes are particularly

prone to velocity changes [5] and measured velocity can also

indicate the thickness of a material [6]. It is also the most

useful representation in experimental design [7]: the phase

velocity can be directly obtained for time of flight experiments

[8] as can its corresponding wavelength (λ) using Cph = fλ.

This property is critical in many experiments where mode

control is required.

These dispersion curves can be generated by solving the

Lamb equations. All the parameters for calculation may not be

available to the engineer, and solutions become more complex

when composite materials are used. Additionally, numerical

instabilities around high frequency-thicknesses (fd) make ex-

perimental validation of dispersion curves highly desirable.

In anisotropic solids, a π shift [10] or zero crossing [11] in

time can be introduced through displacement for the measure-

ment of phase velocity . This is difficult to achieve reliably

at high frequencies [10] and is particularly inappropriate for

lamb waves as they are multi-modal. The amplitude spectrum

method is more appropriate for solids with close proximity

boundaries but is still not applicable to multi modal waves

[12]. When dealing with only low order modes, a wavelet

transform can be used to separate modes [13]. Singular value

decomposition can also be utilised but gives coarse results with

better contrast however [7]. When possible, laser vibrometetry

can be used in conjunction with Snell’s law to generate

dispersion plots [14]. This however is time consuming. For

measurement of group velocity, from which phase velocity

can be derived [9], spectral decomposition can be used [15].

Experimentally, the two dimensional Fourier transform is

most commonly used for the separation of modes from

time domain signals [16], [17]. Fourier analysis can also be

performed on smaller segments of the recorded signals to

produce time-frequency maps [18]. By measuring the surface

displacement at many points along the surface of a wave guide,

a matrix of time-space dimensionality can be obtained. When

the Fourier transform is applied a wavenumber-frequency

map can be obtained. Since k = 1/λ = f/Cph, elements

can be re-arranged to form a phase velocity dispersion map

[7], [19]. This works well, but requires prohibitively high

sampling frequencies and spatial measurement intervals to

produce convincing results.

Here, a phase velocity filter is presented as a solution to

this problem. The filter is able to extract waves of particular

phase velocities irrespective of the frequency content. Using

less measurement points with experimentally feasible time and

space sampling intervals, phase velocity maps with improved

definition and reduced error can be produced.



II. METHOD

In this section the concept behind the phase velocity filter is

given. This can be implemented digitally, and will be described

in the section following. This filter is used for the generation

of a phase velocity dispersion map. Simulation parameters for

the generation of such an map will be given.

A. Concept

When the temporal frequency of guided waves are known,

delays can be applied to each element when an array is in

receive of guided waves to temporally align particular modes,

such that when they are summed, constructive interference

takes place. Thus, when the engineer has knowledge of a

specimen’s dispersion curve and excitation frequency, delays

can be chosen as to assess the existence of a particular mode

[20]. This relationship is described in Equation 1.

λ =
L

β + (t0/T )
(1)

Here, λ is wavelength, L is pitch, β is an arbitrary integer

and t0 is the delay increment to be applied to each element.

T is simply 1/f .

Substituting Cph = fλ and T = 1/f means the time delay

can be expressed as a function of phase velocity and frequency,

as in Equation 2.

t0 =
L

Cph

−
1

f
(2)

Since any time domain signal can be expressed as an infi-

nite sum of its constituent frequency components, frequency

dependent delays can be applied to the incoming signals to

filter a phase velocity irrespective of its frequency.

B. Digital Implementation

Consider x(n,m), a time domain signal of N samples

recorded at interval n from element m of an array transducer.

Its discrete Fourier transform (in time only) is X(k,m), which

is described in Equation 3 and defined in 4.

x(n,m)
F
−→ X(k,m) (3)

X(k,m) =

N−1
∑

n=0

x(n,m)e
−j2πnk

N = Ake
jφk (4)

These complex coefficients represent the amplitude and

phase of an exponential function. When these weighted expo-

nential functions are summed, the original time domain signal

can be obtained. A time delay in the time domain maps to

a phase delay in the frequency domain. Equation 5 describes

this relationship when a delay of D samples is applied to the

original time domain signal.

x(n−D,m)
F
−→ e

−j2πkD
N X(k,m) (5)

D can be replaced by D(k,m,Cph), a function of fre-

quency, element position and phase velocity. Firstly the sub-

stitution

f = k ×
fs
2N

is applied to Equation 1 yielding Equation 6.

L

Cph

−
2N

kfs
(6)

Here, fs is the sampling frequency and the assumption is

made that when k = N , f = fs/2, the Nyquist limit. Since

Equation 6 describes the real time delay applied in seconds

per element, D(k,m,Cph) can be derived by multiplying each

instance of m by mfs to obtain a value in samples for each

element:

D(k,m,Cph) =

{

m× Lfs
Cph

− 2N
k
, for k > 0,

0, for k = 0
(7)

When k = 0 (DC), D = −∞, so conditions are applied to

prevent this. This is not problematic, since phase velocity is

zero at DC.

This forms the basis of the digital implementation of the

phase velocity filter. When D in Equation 5 is replaced with

D(k,m,Cph). It’s possible to temporally align all frequency

components across the transducer array.

C. Application: Phase Velocity Image Generation

The derivation of Equation 7 makes it possible to temporally

align all frequency components across the array for a given

phase velocity. There are many potential applications of this.

Here, it will be explained how frequency-velocity dispersion

maps can be obtained using the filter.

Consider the two dimensional matrix, x(n,m) again. In

Equation 8, following Fourier analysis in the time dimension,

a new three dimensional matrix, Y is created by evaluating for

a number of discrete values of Cph. The interval, number and

range is the choice of the designer. As before, the n dimension

represents N points in time and m represents M elements in

space. In essence, time-amplitude signals for each element m
are concatenated together to form the matrix.

Y (k,m, o) = X(k,m)× e
−j2πkD(k,m,Cph)

N ∀o ∈ Cph (8)

Applying the inverse Fourier transform and summing in

dimension m yields the matrix y in Equation 9. This is divided

by M to conserve energy, although is not strictly required.

y(n, o) =

∑M−1

m=0
F−1{Y (k,m, o)}

M
(9)

y is a series of time domain signals for each evaluated

phase velocity, o. Constructive interference will have taken

place at particular frequencies and phase velocities. Finally, the

frequency-velocity matrix S is found by applying the Fourier

transform as in Equation 10.

S(k, o) = F{y(n, o)} (10)
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Fig. 1. High resolution frequency-phase velocity map produced using re-
ordering of the frequency-wave number matrix. The map exhibits excellent
resolution and definition but is computationally expensive and difficult to
achieve experimentally

D. Simulation Parameters

The technique is demonstrated in simulation using an FEA

tool. The specimen is a 5 mm thick Aluminium sheet. At one

end a Blackman-Harris shaped pulse pressure load is applied

with a centre frequency of 1.5 MHz. Matrix x is created from

the shear displacement at each node on the surface.

For comparison, a phase velocity map at full resolution will

be generated using the Cph = f/k transformation applied to

the two dimensional Fourier transform of x which gives a

frequency-wave number map. Then the matrix is decimated

so each waveform is spatially separated by 1 mm, and the

number of elements is reduced to 64; this is to better emulate

the physical properties of an array probe. A velocity map will

again be produced using substitution on the decimated matrix.

Finally, the new filter will be used to generate a map.

In every case 256 values of Cph are tested between 1000

and 8000 m/s. The sampling frequency is 101 MHz.

III. RESULTS AND DISCUSSION

Figure 1 shows a phase velocity map generated with a

high resolution matrix taken from every available node in the

simulation. For each value of Cph and f , the corresponding

element in the frequency-wave number domain is found using

the relationship Cph = f/k. All Lamb modes and S waves,

are visible and well defined; the lines appear thin and are

well contrasted against the noise floor. They are of equal

magnitude, although as expected, there is some loss of energy

as the fringes of the Blackman-Harris window are reached.

The results align extremely well with theoretical results. The

map exhibits excellent resolution in both dimensions.

Figure 2 shows the same technique applied to a reduced

matrix. Here, the time space matrix has been reduced so that

only 64 elements are used, they are spaced by 1 mm. This

emulates a typical NDE transducer’s spatial properties. The

map is not as well defined as in Figure 1. The smaller wave
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Fig. 2. Low resolution frequency-phase velocity map produced using re-
ordering of the frequency-wave number matrix. Before being processed, the
space-time matrix has been decimated to better represent the spatial properties
of a transducer. All lamb modes and S waves are visible, but there is some
loss of information and an increase in artefacts
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Fig. 3. A frequency-phase velocity map produced by iteratively filtering phase
velocities. All lamb waves and S waves are visible. Artefacts are introduced
at low phase velocities but they do not impinge on the modes

number dimension means that there is a loss of phase velocity

information, as such, the modes cannot be resolved across their

whole frequency range. This introduces artefacts into the map

which begin to dominate as the frequency increases. In every

case there is blurring and quantisation errors at higher phase

velocities. A lower contrast contributes to the poor definition

of each mode and ghosting is visible.

Finally, in Figure 3 a frequency-phase velocity map gen-

erated by iteratively performing phase velocity filtering and

then applying a Fourier transform on the decimated array

is presented. The Lamb and S-wave modes can be resolved

across the whole frequency range. Zero padding before filter-

ing has resulted in the introduction of some artefacts at low

phase velocities, this is not problematic however as they do

not interfere with the modes.

Figure 1, which uses matrix re-ordering is the best of



the three results presented. This technique is computationally

inefficient; the wave number matrix used here is obtained

from 5077 positions. This number of measurements is not

feasible experimentally as even the most dense of transducer

array probes are typically limited to 256 elements. When

the matrix is decimated to use a realistic element separation

and only 16 elements it becomes apparent that this technique

is not appropriate for use experimentally. With the reduced

matrix, noise, artefacts and quantisation errors mean that the

modes cannot be resolved across their full frequency range.

Conversely, the proposed technique is able to resolve the

modes across more of the frequency range.

IV. CONCLUSION

Guided waves are complex in nature and consist of many

antisymmetric and symmetric modes. Each mode’s phase ve-

locity has a unique relationship with frequency. This complex

nature can be leveraged in a variety of NDE problems.

Visualising the phase velocity is often the most useful in

experiment design as the wavelength can be easily ascertained

as can the velocity. Phase velocity of modes can be calculated

by numerically solving lamb equations, however, instability at

high frequency-thicknesses and unfamiliarity with a material’s

parameters makes experimental validation expedient.

Experimentally, the frequency-wave number representation

is used to separate modes from spatially separated time domain

signals. However, in this domain it is harder to distinguish each

mode. The matrix can be shuffled into a phase velocity map

but this requires a high number of spatial sampling points to

produce effective results and even if experimentally feasible,

it is computationally expensive.

It is shown that phase velocity filtering could be achieved

with an array probe, from which a space-time matrix can

be formed. A two dimensional filter can be designed in the

space-frequency domain to align wave packets of the supplied

phase velocity irrespective of their frequency. After this filter

is applied the matrix can be summed in the time domain to

find the constructively interfering (across space) content.

Time domain signals filtered for a number of phase veloci-

ties are obtained, these are then transformed into the frequency

domain to produce frequency dependent phase velocity maps.

These maps are not free from artefacts and noise, but are su-

perior in experimental circumstances to array re-ordering. It is

shown that in situations where only a modest or even plentiful

arrays are used, artefacts hinder full frequency resolution of

the modes when using re-ordering.

This research has shown that it is possible to filter an

arbitrary phase velocity in a guided wave experiment. The

applications of this are diverse, but as an example, it has

been applied to the generation of phase velocity dispersion

relation map. These maps are usually generated by re-ordering

a frequency-wave number matrix. It is shown that when using

the phase velocity filter to generate the map, superior results

can be obtained.

The generation of a phase velocity dispersion map is just

one potential application of the phase velocity filter, and serves

well as a proof of concept. However, further research might

involve its application to NDE problems where the velocity

is directly used as a quantifier. The measurement of corrosion

depth is an example.
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[13] D. Waltisberg and R. Raišutis, “Group velocity estimation of lamb waves
based on the wavelet transform,” Ultragarsas (Ultrasound), vol. 63,
no. 4, pp. 35–40, 2008.

[14] M. Harb and F. Yuan, “Non-contact ultrasonic technique for lamb wave
characterization in composite plates,” Ultrasonics, vol. 64, pp. 162 –
169, 2016.
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