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Absolute Electrical Impedance Tomography (aEIT)
Guided Ventilation Therapy in Critical Care Patients:

Simulations and Future Trends
Mouloud A. Denaı̈, Mahdi Mahfouf, Suzani Mohamad-Samuri, George Panoutsos,

Brian H. Brown, and Gary H. Mills

Abstract—Thoracic electrical impedance tomography (EIT) is a
noninvasive, radiation-free monitoring technique whose aim is to
reconstruct a cross-sectional image of the internal spatial distribu-
tion of conductivity from electrical measurements made by inject-
ing small alternating currents via an electrode array placed on the
surface of the thorax. The purpose of this paper is to discuss the
fundamentals of EIT and demonstrate the principles of mechanical
ventilation, lung recruitment, and EIT imaging on a comprehen-
sive physiological model, which combines a model of respiratory
mechanics, a model of the human lung absolute resistivity as a
function of air content, and a 2-D finite-element mesh of the thorax
to simulate EIT image reconstruction during mechanical ventila-
tion. The overall model gives a good understanding of respiratory
physiology and EIT monitoring techniques in mechanically ven-
tilated patients. The model proposed here was able to reproduce
consistent images of ventilation distribution in simulated acutely
injured and collapsed lung conditions. A new advisory system ar-
chitecture integrating a previously developed data-driven physio-
logical model for continuous and noninvasive predictions of blood
gas parameters with the regional lung function data/information
generated from absolute EIT (aEIT) is proposed for monitoring
and ventilator therapy management of critical care patients.

Index Terms—Biomedical imaging, blood gas, electrical
impedance tomography (EIT), mechanical ventilation, respiratory
system.

I. INTRODUCTION

M
ECHANICAL ventilation (MV) is an essential compo-

nent in supportive therapy of critical care patients and

patients with respiratory disorders. MV aims to improve pul-

monary gas exchange via an adequate tidal volume (VT ) deliv-

ered at a suitable ventilatory/respiratory rate (RR). Oxygena-

tion is improved by either raising the fraction of inspired oxy-

gen (FiO2) or increasing the positive end-expiratory pressure

(PEEP) that helps to prevent recruited lung units collapsing at
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end-expiration. Another strategy, which aids the opening of po-

tentially collapsing airways, is to prolong the inspiratory time by

increasing the ventilator’s inspiration-to-expiration (I:R) ratio.

CO2 elimination is improved by increasing the minute volume

either via an appropriate setting of VT or RR.

Although MV can be a lifesaving intervention for many in-

tensive care (ICU) patients, it has been associated with po-

tential complications known as ventilator-induced lung injury

(VILI) [1], [2]. The choice of appropriate ventilator mode and

settings can improve the benefit-to-risk ratio of MV by providing

adequate gas exchange while reducing the risk of VILI [3], [4].

However, known bedside measures to guide the clinician in ad-

justing MV settings are limited in that they tend to give global

information regarding the performance of the lungs. Arterial

blood gas analysis and airway pressure–volume (PV) graphical

waveforms have been the gold standard clinical practices for

assessing the acid–base balance, lung function, and guiding the

titration of MV in critically ill patients. These are combined

with measurements derived from pressure, flow, and volume,

which give information about the mechanical properties of the

lungs and chest wall. However, these methods are only able to

provide an indication on the overall lung function, and thus fail

to provide full information about the regional lung behavior.

To date, chest imaging has relied on bedside X-ray radiogra-

phy and the gold standard computed tomography (CT), which

provides comprehensive images of the morphologic structures

of the lungs and shows ventilation distribution with high spatial

resolution. However, during these procedures, the patient is ex-

posed to a substantial dose of radiation, and in the case of CT,

the patient needs to be transported to the radiology department,

which is a high risk process in the unstable critically ill. Indeed,

the risks may be so high that the investigation is not carried out at

all. Even if possible, the practical considerations mean that CT

is an occasional investigation usually only repeated every few

days at most. It is costly and both time and labor intensive. The

process will require waiting for the scanning time to be available

and will usually take up an hour or two of medical, nursing, and

technician time (potentially depleting staff resources on the ICU

itself), as well as radiology staff time, portering involvement,

and occupying transfer equipment and ventilators. The last point

is particularly important, as changing from the ICU ventilator

to a transport ventilator will result in a brief period of loss of

PEEP, with the potential for lung derecruitment or more subtle

changes in ventilator pressures or flows, which may be deleteri-

ous for the patient. Absolute electrical impedance tomography

1089-7771/$26.00 © 2009 IEEE
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(aEIT) provides a cheap, potentially continuous form of moni-

toring the behavior of the lungs, which may reveal changes and

trends in regional ventilation. For example, progressive loss of

ventilation in one lung may lead to the early detection of an

endotracheal tube that has slipped down either the right or left

main bronchus, leading to obstruction and underventilation of

the opposite lung, or may suggest the development of some other

pathology in the deteriorating lung, such as a developing pleural

effusion compressing the lung or worsening atelectasis due to

a disease process such as a pneumonia. Long-term electrode

application can be irritant for the skin (although not more than

ECG monitoring, which is almost invariably in place). There are

practical problems with maintaining good electrical contact and

coping with the wires. However, practice and timely application

when patients are being rolled as part of routine patient care can

go a long way to reduce these problems.

EIT is a promising noninvasive monitoring tool that allows

real-time imaging of regional ventilation of the lungs at the

bedside. The first clinical EIT images were obtained from the

Sheffield Group [5] who used a simple backprojection algorithm

to reconstruct cross-section images of the thorax. The equipment

used 16 electrodes and produced an image resolution of 104 pix-

els. A filtered backprojection method, similar to the one used in

CT imaging, was later implemented by the same group in order

to improve the spatial resolution of the reconstructed images.

Among the clinical applications of EIT being investigated

by other groups are the monitoring of internal bleeding, the

measurement of gastric emptying, the measurement of cardiac

output, and imaging of the brain [6]. However, the monitoring

of the pulmonary function is arguably the most promising ap-

plication of EIT [7], [8]. Many current ongoing research studies

are being directed at demonstrating the ability of EIT to image

regional lung ventilation in a clinical setting [9]–[11]. A soft-

ware package EIDORS/GREIT (electrical impedance tomog-

raphy and diffusion based optical tomography reconstruction

software/Graz consensus reconstruction algorithm for electrical

impedance tomography) implementing different methods for

the solution of the forward and inverse problems in EIT us-

ing finite-elements modeling techniques is available for public

use [12].

The purpose of this paper is to demonstrate the potential

usage and ability of EIT to assess regional ventilation distribu-

tion in the lungs using a comprehensive physiological model.

This combines a model of respiratory mechanics, a model of

lung absolute resistivity as a function of air content, and a 2-D

finite-element model (FEM) of the thorax with 16 electrodes to

simulate EIT current injection and voltage measurements. The

resulting physiological model can simulate different scenarios

of acute respiratory distress syndrome (ARDS) lungs and re-

produce consistent images of lung ventilation distribution in

response to different PEEP levels. Finally, a new advisory sys-

tem using multisource data fusion architecture is proposed for

monitoring and ventilator therapy management of critical care

patients.

The remainder of the paper is organized as follows. Section

II covers the basics of EIT. Section III focuses on the descrip-

tion of the physiological model and its principal components.

Fig. 1. Typical EIT system with 16 electrodes for current injection and voltage
acquisition.

Fig. 2. Adjacent measurement configuration with 16 equally spaced elec-
trodes.

Sections IV and V present simulation studies with different sce-

narios of ARDS lungs. Finally, Section VI presents the prospec-

tive advisory system prototype that is currently being developed

by the authors.

II. PRINCIPLES OF EIT AND IMAGE RECONSTRUCTION

TECHNIQUES

In EIT, current patterns are injected into the body via surface

electrodes, and boundary voltages are measured to reconstruct a

cross-sectional image of internal distribution of the conductivity

or resistivity. A typical EIT system that uses a set of electrodes

attached to the surface of the chest at about 4–5 cm above the

xyphoid process is depicted in Fig. 1.

Most EIT equipments use alternating currents with amplitude

and frequency varying from various amperes and low frequency

for geophysical application to 1–10 mA and 1 kHz–1 MHz for

medical applications.

There are many ways to apply current and measure the result-

ing voltages. The most popular data collection strategy is the

so-called adjacent or four electrode, where current is applied to

an adjacent pair of electrodes and the resulting voltages between

the remaining 13 pairs of electrodes are measured.

In a 16-electrode system, current is injected through elec-

trode pair (1,2) and the resulting boundary voltages differences

are measured from the electrode pairs (3,4), (4,5), . . ., (14,15),

(15,16), as shown in Fig. 2.

This procedure is repeated 16 times with current injected

between successive pairs of adjacent electrodes until all 16 pos-

sible pairs of adjacent electrodes have been used to apply the

known current. This is called a frame of data and will produce

16 × 13 = 208 measurements.

Mathematically, the problem of recovering the conductiv-

ity or resistivity within a body Ω from the surface mea-

surements of currents and potentials is a nonlinear inverse
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problem and severely ill-conditioned. The following approx-

imation (Laplace’ equation) is often used in EIT as long as

the frequency is in the range of 0–10 kHz in which biolog-

ical tissue exhibits distinct conductivity values [5]. However,

many researchers are investigating potential solutions to the full

Maxwell’s equations [13]

∇ · (σ∇u) = 0. (1)

The Neumann boundary conditions on ∂Ω, the boundary of

Ω are formed by fixing the normal current J�n at every point on

∂Ω

σ
∂u

∂�n
=

{

J�n , under the electrodes

0, elsewhere
(2)

where σ is the conductivity, u is the potential, �J is the density

of the injected current, and �n is the normal vector to the surface.

For the uniqueness of the solution to this problem, a variety of

assumptions has to be made [14].

These equations can be solved either with analytical meth-

ods or via numerical techniques using finite-element or finite-

difference techniques [15], [16]. A systematic approach for solv-

ing the reconstruction problem is to solve the forward problem,

which consists of finding a unique effect (voltages) resulting

from a given cause (currents) via a mathematical or physical

model (conductivity distribution). The process of recovering

the conductivity distribution within the body from the applied

currents and measured boundary potentials is known as the in-

verse problem in EIT. There are two approaches for solving the

image reconstruction problem in EIT. Static reconstruction pro-

duces an image of the absolute conductivity distribution of the

medium based on one set of measurements. Dynamic or differ-

ence imaging attempts to recover the change in resistivity based

on measurements made at two different time periods.

The quality of the reconstructed images depends on: 1) the

number of electrodes and data collection strategy and 2) the

reconstruction algorithm employed. The most popular data col-

lection strategy is the so-called adjacent or four electrode de-

scribed previously. The type of reconstruction algorithm ranges

from the simplest linearized single-step method to a computa-

tionally intensive iterative technique.

III. PHYSIOLOGICAL MODEL OF VENTILATED LUNGS AND EIT

The model structure shown in Fig. 3 includes a model of

the respiratory mechanics, a physiological model describing the

relationship between the assumed lung volume (V) and the left

(σL ) and right (σR ) lung conductivities, and a finite-element

cross-section model of the thorax on which the EIT current

injection and voltage measurements are performed.

A detailed description of these model components is pre-

sented in the following sections, but suffice to say here that the

input(s) and output(s) mappings of Fig. 3 should not be too sen-

sitive to noise and other uncertainties provided that special care

is exercised when eliciting the relevant models that should have

generalizing properties. In this way, the low-frequency proper-

ties of such models may act as low-pass “filters” against the

earlier disturbances/uncertainties.

Fig. 3. Structure and components of the physiological model. PEEP = positive
end-expiratory pressure, Paw = airway pressure, V = lung volume, and σL ,
σR = left and right lung relative conductivities.

A. Model of the Lung Mechanics

A simple physiological model of the lung mechanics has been

proposed by Hickling [17], [18]. The model is based on the hy-

pothesis that lung inflation/deflation is predominantly caused

by recruitment/derecruitment of the lung alveoli. The lung is

modeled as multiple units or alveoli, which are distributed into

compartments characterized by different superimposed pres-

sure (gravitational pressure due to lung weight). In the upright

position, the gravitational pressure increases linearly from the

uppermost (independent region) compartment to the lowermost

(dependant region) compartment. In the supine position, the su-

perimposed pressure increases from the ventral compartment

(independent region) to the dorsal compartment (dependant re-

gion).

The lung units are described by their compliance curve, which

gives a nonlinear relationship between the applied pressure and

the lung unit volume. The following equation is used to model

this relationship [19]:

V = V0

(

1 − e−P log(2/h)
)

(3)

where V is the lung volume, V0 is the maximum volume as-

sumed during tidal breathing, P is the pressure, and h is the

half-inflation pressure.

In the model, the lung unit can assume only two possible

states: recruited (or open) and derecruited (or closed) [17], [20].

These two states are governed only by the threshold opening

pressure (TOP), which is the critical pressure above which the

lung unit pops open, and the threshold closing pressure (TCP)

below which the unit collapses. The model uses normally dis-

tributed TOP and TCP pressures with a specific mean and stan-

dard deviation (SD), which may be adjusted to reflect the het-

erogeneous characteristic of alveoli under different abnormal

lung conditions such as ARDS [20], [21]. Fig. 4 illustrates the

mechanics of a single alveolus during inflation and deflation.

During inflation (inspiration), when the applied pressure ex-

ceeds the TOP, the lung unit pops open and assumes a volume

according to (3). During deflation (expiration), the lung unit col-

lapses and its volume becomes zero when the applied pressure

falls below the TCP.
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Fig. 4. Mechanics of inflation (path ABCD) and deflation (path DEFA) of a
single lung unit. TOP and TCP coincide with points B and F, respectively.

TABLE I
BASELINE PARAMETERS OF THE LUNG MECHANICS MODEL [17]

The lung volume at a given pressure can then be calculated

by adding up the contributions of the recruited lung units in

the different compartments at that specific pressure. The model

parameters used throughout are listed in Table I [17].

B. Absolute Resistivity Lung Volume Relationship

Nopp et al. [22] developed a detailed model for human lung

and used it to determine lung tissue resistivity as a function

of frequency. Their model used a cube-shaped alveolus and

included components for blood, cellular membrane, endothelial

and epithelial cells, and extracellular and intracellular fluids.

The overall density of lung tissue is

ρlung =
Wlung

Vair + Vtissue
(4)

where Wlung is the lung weight, and Vair and Vtissue represent

the volumes of air and tissue, respectively. The ratio Vair/Vtissue

is defined as the filling factor (FF). Substituting this in (4) gives

ρlung =
ρtissue

FF + 1
(5)

where ρlung denotes the density of the lungs condensed matter

that has been fixed to 1050 kg·m−3 in the model [23].

If Wlung is known, then the lung density can be calculated as

follows:

ρlung =
ρtissue

(Vair/Wlung) ρtissue + 1
(6)

Fig. 5. Thorax finite-element-based model with 576 elements, 313 nodes, and
16 electrodes (adapted from [12]).

The lung density ρlung as a function of absolute lung resistivity

(AbR) has been obtained by Nopp et al. [22] as follows:

ρlung = 3.12 − 3.24 × [ln(AbR)]0.3 + 0.81 × [ln(AbR)]0.6

(7)

Hence,

AbR = 1.74 + 194.3 × e−24.69ρ l u n g + 40.04 (8)

The left and right lung conductivities are then obtained as

σL = AbR−1WLL and σR = AbR−1WRL , with WLL and WRL

being the respective weights of the left and right lung. These

values have been set to WLL = 633 g and WRL = 583 g [24].

C. Model of EIT

To solve the inverse problem, one needs to solve the for-

ward problem for some assumed conductivity distribution and

compare the generated voltages with those obtained from real

measurements. The finite-element method was employed for the

numerical solution of (1) and (2) by subdividing the 2-D cross

section of the thorax into a finite number of triangular elements.

The electric potential is expressed as a linear combination of

the nodal basis functions. Each element is assumed to be ho-

mogenous and having the same conductivity. The FEM shown

in Fig. 5 was used to simulate the subject’s cross section of the

thorax.

The FEM was divided into four regions of different conduc-

tivities that were fixed to their basal values, except those of the

left and right lungs that were varied according to Nopp’s model.

It is worth noting that using 2-D models in EIT assumes

that the currents injected are confined to a 2-D electrode plane.

However, since the EIT problem is inherently 3-D, the potential

profiles resulting from these 2-D assumptions are expected to

be significantly different from those obtained in a 3-D domain.

There are extra computational efforts and complexities involved

when dealing with 3-D models; however, these can be overcome

with the currently available hardware and computational power.

IV. EIT-BASED MONITORING OF VENTILATED ARDS PATIENTS

In ARDS, the lungs become stiffer and present a heteroge-

neous distribution of the lung units even within a same lung

region [25]. Moreover, clinical studies using CT scans have

revealed that the lung units’ threshold pressures (TOP and TCP)

obey a normal (Gaussian) distribution [21]. In the model, mean

and SD of TOP and TCP pressures were given the values shown

in Table II to simulate different intensities of ARDS [26]. The
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TABLE II
THRESHOLD OPENING (TOP) AND CLOSING (TCP) PRESSURES FOR THE

SIMULATED ARDS SCENARIOS [26]

Fig. 6. Gaussian distribution of threshold opening (TOP) and closing (TCP)
pressures of normal and ARDS conditions (mild, moderate, and severe).

mean indicates the pressure at which the maximum of recruit-

ment (TOP) and derecruitment (TCP) of lung units occurs,

whereas SD describes the spread of the lung units’ popula-

tion with respect to the TOP and TCP. Moreover, the functional

residual capacity (FRC), which is the amount of air that stays in

the lungs at the end of a normal expiration during tidal breath-

ing, is also reduced in ARDS-affected lungs. Estimated values

for FRC under the degrees of ARDS conditions considered are

given in Table II.

Since ARDS-affected lungs require a higher pressure to in-

flate to the same volume compared to normal lungs, the mean

values of the threshold pressures tend to shift toward higher

pressures as the intensity of ARDS increases. In terms of lung

mechanics, this shift results in a reduction in lung compliance.

The SD, on the other hand, reflects the recruitment rate and lung

compliance. Fig. 6 shows the plots of the Gaussian distributions

of TOP and TCP pressures for the classes of simulated lung

conditions given in Table II.

A tidal breathing cycle is simulated by traversing up (infla-

tion) and then down (deflation) the airway pressure Paw range

in small steps from PEEP to peak inspiratory pressure (PIP),

and then, from PIP to PEEP, respectively.

PEEP is expected to produce an upward shift in the PV curves,

which physiologically represent the volume contribution from

the recruited lung units. In the model, this has been simulated

Fig. 7. TOP and TCP mean shift against PEEP.

Fig. 8. PV curves for the simulated normal (healthy) and ARDS conditions
(mild, moderate, and severe).

by shifting the mean values of the TOP and TCP distributions

toward lower and higher pressure ranges, respectively [20]. To

reproduce this feature, PEEP values (0, 5, 10, 15 cmH2O) were

fitted to the means of TOP and TCP for the simulated ARDS

lung categories defined in Table II. The resulting equations are

plotted in Fig. 7.

Fig. 8 shows the PV curves obtained for simulated healthy and

ARDS-affected lungs. In ARDS, the PV curves are right-shifted

and characterized by larger hysteresis between the inflation and

deflation limbs, which is reflected by the difference in TOP and

TCP pressures.

The physiological model of the lung mechanics simulating

different degrees of ARDS conditions is incorporated with the

EIT model in the simulation setup of Fig. 9.

EIT numerical solution involves updating the conductivity

distribution until the predicted and measured voltages match

each other within a desired accuracy. The Gauss–Newton it-

erative algorithm implemented in [12] was also used in this

simulation study. The model is cycled through the assigned air-

way pressure, and at each pressure step, the calculated lung
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Fig. 9. Simulation setup of ventilated ARDS lungs and EIT image reconstruc-
tion.

Fig. 10. Reconstructed EIT images at end inspiration for normal and ARDS
(mild, moderate, and severe) lungs.

volume is used to set the new absolute conductivities of the left

and right lungs on the thorax model of Fig. 5. EIT data are then

generated using adjacent drive patterns with an injected cur-

rent of 5 mA. These measured EIT data are compared to those

predicted from another FEM using the same drive and measure-

ment patterns until some desired accuracy has been achieved.

On convergence, the reconstructed image of the lung conductiv-

ity distribution is displayed. The image sequence is obtained by

calculating conductivity changes from a reference state, which

defines the basal conductivities for the lungs and the surrounding

organs shown in Fig. 5.

Fig. 10 shows the reconstructed EIT images at end-inspiration

during tidal breathing for the simulated normal and ARDS lung

models. Conductivity values were scaled between 0.2 (noncon-

ductive) and 1.0 (conductive) to produce this image contrast

between aerated (dark blue) and nonaerated lung regions (red).

Fig. 11 shows the sequence of lung image slices (progressing

from left to right and top to bottom) reconstructed from a sim-

ulated breath (expiration–inspiration–expiration) related to the

moderate ARDS model with the ventilator PEEP and PIP set

to 0 and 40 cmH2O, respectively. Red lung regions correspond

to expiration at FRC and dark blue lung regions correspond to

inspiration. This image contrast is the result of the simulated

changes in the conductivity of the left and right lungs. Lung

Fig. 11. EIT image slices of a breath (expiration-inspiration-expiration) re-
lated to moderate ARDS model. PEEP = 0 cmH2O and PIP = 40 cmH2O.

Fig. 12. EIT image slices of a breath (expiration–inspiration–expiration) re-
lated to moderate ARDS model. PEEP = 5 cmH2O and PIP = 40 cmH2O.

inflation has begun at slice number 4, confirming the results

obtained with the static PV curves of Fig. 8.

In Fig. 12, PEEP was set to 5 cmH2O with all the other

parameters maintained to their previous values. Those lung units

recruited during lung inflation and having TCP pressures below

the PEEP value selected remain open at end-expiration (slices

1 and 12), thereby improving the overall lung ventilation.

More importantly, these simulation results demonstrate that

EIT is able to continuously track ventilation distribution in the

lungs, and thus can be effectively used to adjust the level of

PEEP that is sufficient to prevent alveolar collapse during lung

deflation.

V. ASSESSMENT OF LUNG COLLAPSE USING EIT

This simulation study aims to illustrate the ability of EIT to

detect collapsed regions of the lungs, which can be assimilated

to the shunt fraction (alveoli that are perfused but not ventilated).

The simplified model shown in Fig. 13 is used here to simulate

inspiration cycles. The backprojection algorithm [5] is used for

image reconstruction.

To simulate different degrees of lung collapse in ARDS, the

bottommost (dorsal) units of the finite-element cross section of
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Fig. 13. Simulation model based on the backprojection [5] image reconstruc-
tion algorithm.

Fig. 14. (Top panel) Simulated right and left lung conductivities changes and
(bottom panel) collapsed lung regions with the reconstructed images.

the lung model were grouped into three layers and assumed to be

a mixture of well-conducting body fluids without any breathing

activity.

Fig. 14 (top panel) shows the finite element mesh with three

different collapsed region (in dark). Fig. 14 (bottom panel) de-

picts the lung model collapse and the reconstructed images at

full inspiration. Dark blue regions in the bottom panel corre-

spond to inflated lung units, whereas the red parts show the

collapsed lung units.

This simulation model illustrates the behavior of EIT when

detecting collapse or fluid shifts in damaged lungs and its poten-

tial to guide the titration of applied pressures during ventilator

therapy. In particular, EIT may allow clinicians to achieve the

best compromise when adjusting airway pressures to reduce

overinflation of nondependent lung units and reinflate collapsed

airways.

Clinical data are frequently affected by noise and will often

need clinical interpretation to understand the cause of the ab-

normality that is seen, and a decision made should be as to how

this should best be treated. There is also often a clinical debate

as to the value of certain monitoring techniques in a practical

situation, such as the value of pressure volume loops and how

these can be interpreted. Inflexion points on pressure volume

loops are an example of this. These occur when the pressure

volume relationship changes, indicating either improved com-

pliance because airways are held open with PEEP. Alternatively,

a fall in the change in volume per unit pressure increase seen

at higher pressures suggests worsening compliance as the lung

becomes overinflated. However, these inflexion points may be

very indistinct or may not be obvious at all. Some of these is-

sues are indeed important when considering the potential of EIT

because measures of pressure and volume provide information

about the whole respiratory system; hence, information on re-

gional changes may be lost in the data originating from both

lungs. EIT has an advantage in that regional change can be an-

alyzed and changes over time are easier and potentially safer

to monitor than formal pressure volume loop assessment. Even

when pressure volume loops are used in the development of EIT,

and in order to help establish either normal values of resistivity

at different levels of lung inflation, the ability to examine re-

gional change adds another dimension to our ability to examine

the lung.

In practice, imaging with EIT during either an expiratory

pause or an inspiratory pause may allow more information on

lung recruitment to be obtained, and it would be anticipated that

one key use of EIT would be to allow visualization during the

process of formal lung recruitment to see whether additional

pressures actually can open up closed airways and whether ad-

ditional PEEP can keep these airways open. This is potentially

valuable as current methods such as compliance assessment or

changes in PaO2 reflect on the whole lung and may be affected

by changes in cardiac output as intrathoracic pressures increase

during the recruitment process. Continuous measurement during

normal ventilation will provide information on regional atelec-

tasis or overinflation and dynamic changes such as regional air

trapping. Indeed, it could be argued that these are the pres-

sures that the lungs are continually exposed to and so are the

most important guide to adjustment of ventilator pressures. In

this context, absolute EIT is very important, so that compar-

isons can be made against normal values. It may be that in

future studies, aEIT will demonstrate that above a certain level

of overinflation, more severe lung volutrauma can be expected.

The ability to look at regions of the lung in this context may be

very important.

VI. PROSPECTIVE EIT-BASED DECISION SUPPORT SYSTEM FOR

VENTILATED CRITICAL CARE PATIENTS

EIT is gradually gaining acceptance as a valuable tool for con-

tinuous and long-term monitoring of the regional lung function

in critically ill patients. With this information available at the

bedside along with other relevant patient’s physiological param-

eters routinely monitored in ICUs, a computer advisory system

can ultimately enhance the clinician’s expertize with rapid and

precise adjustments of ventilator settings, thus minimizing the

known adverse effects of mechanical ventilation. The authors

propose to use a previously developed data-driven physiologi-

cal model (SOPAVent [27], [28]) for continuous and nonnvasive

blood gas predictions, and the information generated from the

Sheffield Mk3.5 absolute EIT [29] system to design the advisory

system shown in Fig. 15. Key to the success of such a system

will be data/information fusion block whose task will be to re-

solve any conflicts between the multisource nature of inputs of

possible patient therapies prior to providing a unified decision.
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Fig. 15. Structure of the proposed EIT-based advisory system for the manage-
ment of critical care patients.

VII. CONCLUSION

EIT is an established monitoring technique with the potential

to become a valuable bedside tool for the assessment of the

pulmonary function. EIT is capable of tracking local changes

in pulmonary air contents, and thus, can be used to continu-

ously guide the appropriate setting of mechanical ventilation in

critical care patients. A simulation model based on respiratory

physiology has been developed to demonstrate the principles

of EIT in monitoring ARDS-affected lung models under me-

chanical ventilation. The model is not intended to be a complete

representation of the respiratory physiology of ventilated pa-

tients affected by ARDS. However, while relatively simple, it

gives a good understanding of the processes of recruitment and

derecruitment in ARDS-affected lungs, and illustrates how ven-

tilator settings can be optimized with the aid of EIT monitoring

techniques. The model was able to reproduce images of the

ventilated lung under different ARDS conditions, which were

consistent and presented a good agreement with the PV curve

simulation results obtained for the same model of ARDS lungs.

Future extension will include 3-D model representation for com-

pleteness of information. These models will be validated against

clinical data recorded from ICU patients at the Northern General

Hospital, Sheffield, U.K., using the Mk3.5 aEIT system.

The capacity of EIT imaging to pseudocontinuously assess

the lungs’ regional ventilation distribution at the bedside will

undoubtedly offer new prospective opportunities and directions

for the development of computerized decision support systems,

which are expected to significantly improve the benefit-to-risk

ratio of mechanical ventilation and delivery of care to critically

ill patients. The authors also proposed a new advisory system

architecture, integrating a noninvasive, continuously updated

physiological model of blood gases with EIT data/information to

provide advice for adjusting the ventilator parameters in future

real-time clinical settings.
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