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Abstract Tumours require a vascular supply to grow and

can achieve this via the expression of pro-angiogenic

growth factors, including members of the vascular endo-

thelial growth factor (VEGF) family of ligands. Since one

or more of the VEGF ligand family is overexpressed in

most solid cancers, there was great optimism that inhibition

of the VEGF pathway would represent an effective anti-

angiogenic therapy for most tumour types. Encouragingly,

VEGF pathway targeted drugs such as bevacizumab, sun-

itinib and aflibercept have shown activity in certain set-

tings. However, inhibition of VEGF signalling is not

effective in all cancers, prompting the need to further

understand how the vasculature can be effectively targeted

in tumours. Here we present a succinct review of the pro-

gress with VEGF-targeted therapy and the unresolved

questions that exist in the field: including its use in dif-

ferent disease stages (metastatic, adjuvant, neoadjuvant),

interactions with chemotherapy, duration and scheduling of

therapy, potential predictive biomarkers and proposed

mechanisms of resistance, including paradoxical effects

such as enhanced tumour aggressiveness. In terms of future

directions, we discuss the need to delineate further the

complexities of tumour vascularisation if we are to develop

more effective and personalised anti-angiogenic therapies.

Keywords VEGF � Angiogenesis � Metastasis �
Resistance � Microenvironment � Personalised medicine

Introduction

The concept of ‘anti-angiogenic therapy’ arose from the

seminal observations of Judah Folkman and colleagues.

Pre-clinical studies showed that tumours induce the

sprouting of new vessels from the surrounding vasculature

(sprouting angiogenesis) and that this process is vital for

the growth of tumours beyond 2–3 mm in size (Fig. 1). It

was therefore proposed that inhibition of sprouting angio-

genesis could suppress tumour growth in humans [1].

Further studies established that (a) vascular endothelial

growth factor-A (VEGF) is a key driver of sprouting

angiogenesis, (b) VEGF is overexpressed in most solid

cancers, and (c) inhibition of VEGF can suppress tumour

growth in animal models [2–4]. Based on these observa-

tions, numerous therapies have been developed that target

angiogenesis by blocking the VEGF signalling pathway

(Fig. 2). The biology of VEGF signalling, angiogenesis

and the principles upon which anti-angiogenic therapy is

based have been extensively reviewed [2, 5–8]. Here we

review the progress of VEGF-targeted therapies in the

clinic (see also Table 1), discuss the current questions and

controversies that exist in the field and propose routes to

more effective and personalised anti-angiogenic therapy.

Anti-angiogenic therapy in the metastatic setting

Since angiogenesis is deemed necessary for the growth of

metastases in all sites of the body, it is assumed that anti-

angiogenic therapy should be of benefit for patients with
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metastatic disease. However, variable results have been

obtained across different cancer types, suggesting that

whilst the metastases of certain cancers are sensitive to this

form of therapy, the metastases of others are not. Tyrosine

kinase inhibitors (TKIs), designed to inhibit VEGF recep-

tor signalling (Fig. 2), have demonstrated single-agent

activity in several indications. In metastatic renal cell

carcinoma (mRCC) these agents have proven highly suc-

cessful, with four drugs now FDA approved in this setting,

namely sorafenib, sunitinib, pazopanib and axitinib.

Sorafenib was the first TKI to demonstrate activity in

mRCC, in a placebo-controlled phase III randomised trial

of patients who had progressed on previous cytokine

therapy [9]. Progression free survival (PFS) was almost

doubled (5.5 vs. 2.8 months) and an improvement in

overall survival (OS) was observed when placebo-treated

patients crossing over to sorafenib were excluded from

the analysis [10]. A subsequent study comparing single

agent sunitinib with interferon-a in mRCC patients

(that were naı̈ve to treatment) demonstrated a significant
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Fig. 1 The role of sprouting angiogenesis in tumour growth. Early

observations on the growth of tumours supported the following model

for how tumours obtain a vascular supply. a When a tumour mass is

small, it can obtain oxygen and nutrients from existing local blood

vessels. b As the tumour grows beyond the capacity of local blood

vessels, soluble pro-angiogenic factors are released which promote

the sprouting of new vessels from local existing blood vessels

(sprouting angiogenesis). c These vessels provide a blood supply for

the tumour and this is required in order for the tumour to grow beyond

2–3 mm in size
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Fig. 2 VEGF-targeted agents. The VEGF signalling system in

mammals is complex and consists of five related ligands, VEGF-A,

VEGF-B, VEGF-C, VEGF-D and PLGF that bind with different

specificities to three receptor tyrosine kinases, VEGFR1, VEGFR2

and VEGFR3. The biology of these interactions has been extensively

reviewed [231, 233]. Shown is a highly simplified diagram designed

to illustrate the three major classes of agent that target this signalling

system: (a) ligand binding agents that block the binding of VEGF

ligands to receptors (e.g. bevacizumab which binds to VEGF-A alone

and aflibercept which binds to VEGF-A, VEGF-B and PLGF),

(b) antibodies that block signalling through VEGF receptors (e.g.

ramucirumab which binds to VEGFR2) and (c) tyrosine kinase

inhibitors which block the kinase activity of VEGFR1, VEGFR2 and

VEGFR3 (e.g. sorafenib, sunitinib, pazopanib). Note that these

tyrosine kinase inhibitors can also can inhibit the kinase activity of

some other receptor tyrosine kinases, including platelet derived

growth factor receptors (PDGFRs), c-Kit and fms-related tyrosine

kinase (FLT3) [233]
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Table 1 Randomised trials of anti-angiogenic agents cited in this article

Indication Treatment Trial identifier

and citation

Outcome

Breast cancer

Metastatic 1st line Paclitaxel ± bevacizumab E2100 [40] Improvement in PFS not OS

Docetaxel ± bevacizumab (HER-2 negative population) AVADO [41] Improvement in PFS, OS NA

Capecitabine, taxane or anthracycline ± bevacizumab

(HER-2 negative population)

RIBBON-1 [42] Improvement in PFS but not in OS

Docetaxel and trastuzumab ± bevacizumab (HER-2

positive population)

AVEREL [104] No improvement in PFS, OS NA

Docetaxel ± sunitinib (HER-2 negative population) Sun 1064 [45] No improvement in PFS or OS

Paclitaxel ± bevacizumab or sunitinib (HER-2 negative

population)

SUN 1094 [46] Inferior PFS for sunitinib arm

Metastatic 2nd line

and beyond

Capecitabine ± bevacizumab AVF2119 [39] No improvement in PFS or OS

Capecitabine, taxane, gemcitabine, or

vinorelbine ± bevacizumab (HER-2 negative

population)

RIBBON-2 [43] Improvement in PFS but not in OS

Capecitabine ± sunitinib NCT00435409

[44]

No improvement in PFS or OS

Capecitabine vs. sunitinib (HER-2 negative population) SUN 1107 [47] Inferior PFS and OS for sunitinib arm

Adjuvant Anthracycline, taxane or both ± bevacizumab

(triple negative population)

BEATRICE

[58]

No improvement in DFS, OS NA

Neo-adjuvant Doxorubicin/docetaxel/

cyclophosphamide ± bevacizumab

NCT00408408

[63]

Improvement in pathological complete

response rate (primary endpoint)

Epirubicin/docetaxel/Cyclophosphamide ± bevacizumab

(HER-2 negative population)

NCT00567554

[64]

Improvement in pathological complete

response rate (primary endpoint)

Colorectal cancer

Metastatic 1st line FOLFIRI ± bevacizumab AVF2107 [19] Improvement in OS and PFS

FOLFOX or XELOX ± bevacizumab NO16966 [21] Improvement in OS and PFS

Capecitabine ± bevacizumab AVEX [22] Improvement in PFS, OS NA

FOLFIRI ± sunitinib SUN1122 [28] No improvement in PFS

FOLFOX ± vatalanib CONFIRM 1

[29]

No improvement in PFS or OS

Metastatic 2nd line

and beyond

FOLFOX ± bevacizumab E3200 [20] Improvement in OS and PFS

FOLFOX ± vatalanib CONFIRM 2

[30]

Improvement in PFS but not OS

FOLFIRI ± aflibercept VELOUR [27] Improvement in OS and PFS

Regorafenib versus placebo CORRECT [31] Improvement in OS

Continuation

beyond

progression

Chemotherapy ± bevacizumab ML18 147 [92] Improvement in OS

Adjuvant FOLFOX ± bevacizumab NSABP C-08

[56]

No improvement in OS

FOLFOX or XELOX ± bevacizumab AVANT [57] No improvement in OS

Hepatocellular carcinoma

Metastatic 1st line Sorafenib versus placebo NCT00105443

[17]

Improvement in PFS and OS

Brivanib versus sorafenib BRISK-FL

[145]

OS non-inferiority end-point for brivanib

versus sorafenib not met

Metastatic 2nd line Brivanib versus placebo BRISK-PS

[146]

Improvement in PFS but not OS
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improvement in PFS in the sunitinib arm (11 vs.

5 months) [11]. Improvement in OS was observed in the

sunitinib arm (26.4 vs 21.8 months) and in a subset-ana-

lysis of patients who did not receive any post-study

cancer treatment, improvement in OS was even more

marked (28.1 vs. 14.1 months) [12]. Single agent pazop-

anib compared with placebo was subsequently shown to

extend PFS in mRCC in the first-line setting (11.1 vs.

2.8 months), but extensive crossover from placebo to

pazopanib confounded the final OS analysis [13, 14]. A

recent phase III trial comparing sunitinib with pazopanib

has demonstrated that both drugs have similar efficacy

[15] and single agent therapy with either drug is now

recommended as standard of care in the first-line in

mRCC. Axitinib, a more recently developed TKI, has

shown efficacy in the second-line setting in patients that

progressed on first-line TKI therapy [16] and is now

recommended for mRCC in this setting.

Table 1 continued

Indication Treatment Trial identifier

and citation

Outcome

Melanoma

Metastatic 1st line Paclitaxel/carboplatin ± bevacizumab BEAM*** [48] No improvement in PFS or OS

Paclitaxel/carboplatin ± sorafenib NCT00110019

[49]

No improvement in PFS or OS

Metastatic 2nd line Paclitaxel/carboplatin ± sorafenib NCT00111007

[50]

No improvement in PFS or OS

NSCLC*

Metastatic 1st line Paclitaxel/carboplatin ± bevacizumab NCT00021060

[32]

Improvement in PFS and OS

Cisplatin/gemcitabine ± bevacizumab AVAiL [33] Improvement in PFS but not OS

Ovarian cancer

Metastatic 1st line Paclitaxel/carboplatin ± bevacizumab ICON-7 [36] Improvement in PFS, OS NA

Paclitaxel/carboplatin ± bevacizumab GOG218 [37] Improvement in PFS, OS confounded by

cross-over

Metastatic 2nd line Gemcitabine/carboplatin ± bevacizumab OCEANS [38] Improvement in PFS but not OS

Pancreatic cancer

Metastatic 1st line Gemcitabine ± bevacizumab CALGB 80303

[51]

No improvement in PFS or OS

PNET

Metastatic 1st line Sunitinib versus placebo NCT00428597

[18]

Improvement in PFS, OS NA

Prostate cancer**

Metastatic 1st line Docetaxel/prednisone ± bevacizumab CALGB 90401

[52]

Improvement in PFS but not OS

Docetaxel/prednisone ± aflibercept VENICE [53] No improvement in PFS or OS

Renal cancer

Metastatic 1st line Sorafenib versus placebo TARGET [9] Improvement in PFS and OS

Sunitinib versus interferon-alpha NCT00098657

[11]

Improvement in PFS and OS

Pazopanib versus placebo NCT00334282

[13]

Improvement in PFS, OS confounded by

cross-over

Sunitinib versus pazopanib COMPARZ

[15]

PFS and OS were similar

Metastatic 2nd line Axitinib versus sorafenib AXIS [16] Improvement in favour of axitinib for PFS

but not OS

DFS disease-free survival, FOLFIRI 5-FU, leucovorin and irinotecan, FOLFOX 5-FU, leucovorin and oxaliplatin, HER-2 human epidermal

growth factor receptor-2, NA not available (pending, unknown or not reported), NSCLC non-small cell lung cancer, OS overall survival, PNET

pancreatic neuroendocrine tumour, PFS progression-free survival

* Non-squamous NSCLC only; ** castration resistant; *** randomised phase II study
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TKIs have also shown single agent activity in advanced

hepatocellular carcinoma and advanced pancreatic neuroen-

docrine tumours (PNET). In hepatocellular carcinoma, so-

rafenib improved OS from 7.9 to 10.7 months versus placebo

in a randomised phase III study, leading to its FDA approval in

2007 [17]. Sunitinib is FDA-approved for the treatment of

PNET based on the results of a randomised placebo-controlled

study that demonstrated doubling of PFS from 5.5 months in

the control arm to 11.4 months in the sunitinib arm, although

the OS analysis was confounded by cross-over of patients

from the control arm to the sunitinib arm [18].

Bevacizumab, a humanised monoclonal antibody that

binds specifically to VEGF-A alone, has shown efficacy in

several indications in the metastatic setting. The first phase

III trial published demonstrating the efficacy of an anti-

angiogenic agent in the clinic was in metastatic colorectal

cancer (mCRC), where the combination of chemotherapy

with bevacizumab was shown to result in superior PFS (10.6

vs. 6.2 months) and OS (23 vs. 15.3 months) compared to

the chemotherapy only arm [19]. Based on these data, bev-

acizumab was approved for the treatment of mCRC when

given in combination with chemotherapy. Subsequent phase

III studies have also demonstrated a beneficial effect of

adding bevacizumab to chemotherapy in mCRC [20–22].

Additional evidence for the efficacy of anti-angiogenic

therapy in colorectal cancer comes from a study of afliber-

cept, a novel fusion protein that binds to three VEGF family

ligands: VEGF-A, VEGF-B and placental growth factor

(PLGF). By targeting VEGF-B and PLGF, which are also

implicated in angiogenesis and/or the survival of newly

formed vessels, aflibercept may have additional anti-angio-

genic effects beyond targeting VEGF-A alone [23–26].

Adding aflibercept to chemotherapy was shown to extend

PFS and OS compared to chemotherapy alone in metastatic

colorectal cancer [27]. Moreover, a striking separation of the

survival curves was observed in this study, with 2-year sur-

vival significantly increased in the aflibercept arm compared

to the control arm (28.0 vs. 18.7 %) [27]. Based on these

data, aflibercept was recently approved for the treatment of

mCRC when given in combination with chemotherapy.

Curiously, despite the benefit observed when bevacizumab

or aflibercept are combined with chemotherapy in mCRC,

efforts to combine anti-angiogenic TKIs with chemotherapy

in mCRC have so far proven disappointing in terms of

improving OS [28–30]. However, single agent treatment with

the TKI regorafenib was recently reported to extend OS

compared to placebo in mCRC patients who had previously

progressed on standard therapies [31]. Regorafenib is now

approved for the treatment of mCRC in this setting.

In non-squamous non-small cell lung cancer (NSCLC),

two phase III trials have shown an improvement in PFS for

the addition of bevacizumab to chemotherapy [32–34]

although only one study reported an improvement in OS

[32]. A recent meta-analysis, combining data from these

two phase III studies (plus data from two phase II studies)

including [2,000 patients, concluded a small but signifi-

cant improvement in OS of 4 % at 1 year [35].

In the first-line treatment of ovarian cancer, two pivotal

studies (ICON-7 and GOG218) have been reported exam-

ining the addition of bevacizumab to chemotherapy [36,

37]. Both studies reported a significant improvement in

PFS of between 2.4 and 3.8 months. OS data were not

significant in the GOG218 study (but were confounded due

to cross-over) and OS data are still awaited for the ICON7

study. However, in ICON7, an improvement in overall

survival with bevacizumab was observed in the high-risk

group compared to chemotherapy alone (36.6 vs.

28.8 months). In relapsed ovarian cancer, the addition of

bevacizumab to chemotherapy has demonstrated a signifi-

cant improvement in PFS, although this has not translated

into an OS benefit [38].

In contrast to these promising data, there are several

notable examples of metastatic cancers where anti-angio-

genic agents have consistently failed to make a significant

impact on overall survival, including breast, melanoma,

pancreatic and prostate. The history of anti-angiogenic

therapy in the treatment of metastatic breast cancer is of

significant interest. In 2005, the AVF2119 phase III study

demonstrated that the addition of bevacizumab to cape-

citabine did not result in extension of either PFS or OS in

metastatic breast cancer [39]. However, in 2007, the E2100

phase III study demonstrated that the addition of bev-

acizumab to paclitaxel resulted in extension of PFS (11.8

vs. 5.9 months), but not OS, in metastatic breast cancer

[40]. On the basis of these data, the FDA granted the

accelerated approval of bevacizumab in combination with

paclitaxel for the treatment of HER2-negative metastatic

breast cancer. Three further phase III trials of bevacizumab

in combination with chemotherapy in HER2-negative

metastatic breast cancer (AVADO, RIBBON-1 and RIB-

BON-2) demonstrated an extension of PFS, but no effect

on OS, when compared to chemotherapy alone [41–43]. In

2010, the FDA concluded that the results of these studies

failed to provide evidence that bevacizumab could prolong

survival in metastatic breast cancer. As a consequence of

this, in 2010 the FDA withdrew its approval for bev-

acizumab in this indication. In addition to this, disap-

pointing results have also been observed with TKIs in

breast cancer. Three phase III studies examining the

addition of sunitinib to chemotherapy [44–46], and one

comparing single agent sunitinib versus chemotherapy

[47], all failed to demonstrate improvement in PFS or OS.

Studies in melanoma assessing the benefit of adding

either bevacizumab [48] or sorafenib [49, 50] to chemo-

therapy in the first- and/or second-line setting have all

failed to reach their primary efficacy end-point of PFS. In
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adenocarcinoma of the pancreas, the addition of bev-

acizumab to chemotherapy in a phase III randomised trial

failed to improve PFS [51]. In men with castrate-resistant

prostate cancer, the addition of bevacizumab [52], or af-

libercept [53], to chemotherapy have failed to improve OS

in comparison to chemotherapy alone.

The precise explanation as to why conventional anti-

angiogenic agents show efficacy in some metastatic can-

cers, and not others, is currently unknown [54]. Conceiv-

ably, important differences in the biology of these cancers

may underlie the contrasting results seen with this thera-

peutic approach across different cancers.

Anti-angiogenic therapy in the adjuvant setting

The use of anti-angiogenic agents in the adjuvant setting is

based on the principle that, after surgical removal of the

primary tumour, inhibition of angiogenesis may prevent

local relapse or the growth of micrometastatic tumours. Two

phase III trials in the adjuvant setting (NSABP C-08 and

AVANT) were designed to compare overall survival in

colorectal cancer patients treated with chemotherapy alone

for 6 months in one arm and chemotherapy plus bev-

acizumab for 6 months (followed by 6 months bevacizumab

maintenance therapy) in the second arm. In both trials, an

analysis performed after 1 year demonstrated improved PFS

in the bevacizumab arm. However, no significant difference

in OS was observed between treatment arms when assessed

at 3 or 5 years [55–57]. In addition to these data, recently

disclosed findings from the BEATRICE trial show that

adjuvant bevacizumab failed to improve disease free sur-

vival in triple negative breast cancer patients at 3 years [58].

Given the efficacy demonstrated for bevacizumab in

metastatic colorectal cancer, the poor results achieved in

the adjuvant setting are clearly disappointing. The results

suggest that, even in a disease where anti-angiogenic

therapy is shown to be effective in the metastatic setting,

the same may not be true when used in the adjuvant setting.

However, this situation is not unique to bevacizumab,

because it has been reported for other agents in colorectal

cancer. In colorectal cancer, for many years the quest for

successful adjuvant therapies has followed a simple and

reliable path. Drugs such as 5-FU, oxaliplatin and cape-

citabine were first shown to be effective in the metastatic

setting, which was followed by successful trials in the

adjuvant setting [59–61]. However, there are now three

notable exceptions that have not followed this path: irino-

tecan, cetuximab and bevacizumab have all shown efficacy

in the metastatic setting, but failed in the adjuvant setting in

colorectal cancer [56, 57, 59, 62]. The reasons that underlie

these discrepant results are currently unknown. However, it

seems most likely that the biology of micrometastases can

be very different to the biology of established metastatic

disease and that this has important consequences for ther-

apy response.

Anti-angiogenic therapy in the neoadjuvant setting

Theoretically, there may be several advantages to using

anti-angiogenic therapy in the neoadjuvant setting. Firstly,

it might be used to downsize a tumour in order to convert a

non-resectable lesion to one that is potentially resectable.

Secondly, it might be used to downstage the disease to

reduce the chance of local relapse or metastasis. Two large

randomised trials recently reported on the efficacy of

bevacizumab plus chemotherapy as a neoadjuvant therapy

for primary breast cancer compared to neoadjuvant che-

motherapy alone [63, 64]. Both used pathological complete

response (pCR) as the endpoint. Although a significant

increase in the rate of pCR was observed, the absolute

increase in response rate was small (3.5 and 6.3 %,

respectively). Moreover, subgroup analysis revealed con-

tradictory findings, with one study reporting greater benefit

in women with hormone receptor negative (triple negative)

disease [64] and the other study suggesting that women

with hormone receptor positive cancer were more likely to

benefit [63]. It is as yet unclear whether any survival

benefit will be associated with the use of bevacizumab in

this setting because there is currently no mature data.

In CRC, surgical resection of liver metastases is poten-

tially curative and has significantly improved overall sur-

vival in this setting [65]. Although only a fraction of patients

are resectable at presentation the use of neoadjuvant che-

motherapy to convert unresectable metastases to potentially

resectable metastases has lead to improvements in resection

rates and is a recommended practice [66]. Interestingly, there

is evidence to suggest that combination of bevacizumab with

chemotherapy may also be an effective conversion therapy

for CRC liver metastasis [67–69]. However, a randomised

trial directly comparing the efficacy of chemotherapy versus

chemotherapy combined with an anti-angiogenic agent has

not been undertaken in this setting.

Interactions with chemotherapy

In most settings, with the exception of ovarian cancer

where single agent activity for bevacizumab has been

observed [70], anti-angiogenic agents such as bevacizumab

and aflibercept have only shown significant activity when

they are combined with cytotoxic chemotherapy [19, 27].

How can this be explained? For some time, the prevailing

explanation for this effect has been the concept of ‘vascular

normalisation.’ Tumour vessels are known to be leaky and
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dysfunctional, leading to increased interstitial fluid pres-

sure, which may in turn impede the delivery of chemo-

therapy [71, 72]. Preclinical studies showed that

suppression of VEGF signalling can lead to improvements

in tumour vessel function (vascular normalisation), and in

turn, this was proposed to mediate increased delivery of

chemotherapy to tumours [71, 72]. Therefore, a widely

held conception is that bevacizumab ‘works’ in the clinic

because it improves the delivery of co-administered che-

motherapy. However, the clinical relevance of this phe-

nomenon for chemotherapy delivery in patients is still

unclear. For example, the addition of bevacizumab to

chemotherapy would be expected to lead to improvements

across the board in all settings, but this is not the case.

Moreover, a recent study reported the opposite relationship

i.e. bevacizumab led to a sustained decrease in the delivery

of chemotherapy in NSCLC patients [73].

At this point it should be noted that pharmacological

induction of vessel normalisation may have additional

therapeutic effects in cancer beyond control of chemo-

therapy delivery. For example, in glioblastoma patients,

vessel normalisation induced by VEGF-targeted therapy

may prolong survival due to alternative mechanisms

involving oedema control or improved tumour oxygena-

tion [74, 75]. Despite these facts, it is still not clear why

agents like bevacizumab and aflibercept show greater

activity when they are combined with chemotherapy. Any

number of alternative mechanisms could underlie this

activity. For example, an alternative explanation is that

anti-angiogenic drugs prevent the rebound in tumour

growth that may occur during breaks in chemotherapy [76]

or counteract the ability of chemotherapy to promote

tumour invasion [77]. Importantly, in contrast to bev-

acizumab, TKIs generally show single agent activity and

so any mechanistic explanation for the synergy between

VEGF-targeted agents and chemotherapy must account for

this unexplained dichotomy. A recent study, which

examined data from both clinical samples and preclinical

models, provided intriguing evidence that this dichotomy

may stem from intrinsic differences in the stromal com-

ponent of different cancers [78]. They provided evidence

that, in cancers that are more responsive to bevacizumab

when it is combined with chemotherapy (e.g. mCRC,

NSCLC), the vasculature has a stromal-vessel phenotype,

where the vessels are surrounded by a well-developed

stroma. In contrast, cancers that are responsive to single

agent TKIs (e.g. mRCC, PNET) have a tumour-vessel

phenotype, where the vessels sit closer to the tumour cells

without a well-developed intervening stromal component.

Although the molecular mechanisms were not uncovered,

these data do suggest that an interaction between multiple

stromal components influences the response to anti-

angiogenic therapy.

Therefore, our understanding of why TKIs work as

single agents and why VEGF-targeted agents synergise

with chemotherapy in patients is still incomplete. A further

unresolved question is whether certain types of chemo-

therapy may work better with bevacizumab than others.

Several on-going phase III studies in advanced breast

cancer will address the efficacy of bevacizumab when

combined with different chemotherapies or with other

targeted agents [79, 80]. However, further studies that

elaborate on the mechanistic basis for the interaction of

chemotherapy with VEGF-targeted therapies are urgently

needed.

Toxicity

It was assumed that because angiogenesis is a relatively

rare process in the adult, VEGF-targeted therapies would

be toxicity free. However, clinical experience reveals a

number of adverse events associated with these agents,

including hypertension, proteinuria, impaired wound heal-

ing, gastrointestinal perforation, haemorrhage, thrombosis,

reversible posterior leukoencephalopathy, cardiac toxicity

and endocrine dysfunction, which have been extensively

reviewed [81, 82]. Although some of these side effects can

be managed in a routine fashion, excessive toxicity may

necessitate the use of treatment breaks, dose reductions or

even treatment cessation, which may limit therapeutic

efficacy. However, it has also been proposed that certain

side effects could be used as a predictive biomarker for

efficacy. Several studies have demonstrated a link between

the development of hypertension and longer PFS/and or OS

in patients treated with anti-angiogenic agents [83–86]. It

has been suggested that, if this association can be validated

prospectively, then assessment of hypertension early in

treatment might be used to stratify patients likely to benefit

from anti-angiogenic therapy versus those that might be

transferred to an alternative therapy.

Duration and scheduling of therapy

Preclinical and clinical work shows that when VEGF-tar-

geted therapy is discontinued, the tumour vasculature can

become rapidly re-established [87, 88]. Conceivably, this

could lead to tumour re-growth when therapy is withdrawn.

Indeed, there are reports of tumour re-growth during

planned treatment breaks in anti-angiogenic therapy [89,

90]. These data suggest that prolonged use of VEGF-tar-

geted therapy may be necessary to achieve maximal ther-

apeutic benefit. In support of this, an observational study,

which analysed data from 1,445 patients treated with

bevacizumab, showed that continuation of bevacizumab
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treatment beyond progression was indeed associated with

greater benefit in terms of overall survival [91]. This

observation was recently validated prospectively in mCRC

in the ML18 147 trial [92].

Another interesting observation is that acquired resis-

tance to anti-angiogenic therapy may in some cases be a

transient phenomenon. Following the development of

resistance to one VEGF-targeted agent, mRCC patients

have been transferred to a second course of VEGF-targeted

therapy. Surprisingly, a proportion of these re-challenged

patients respond again to therapy [93–95]. Moreover, the

benefit that is achieved upon re-challenge can be propor-

tional to the length of time that elapses between therapy

[96]. These data suggest that resistance to VEGF-targeted

therapy can sometimes be a reversible phenomenon [97].

There are some interesting parallels between these data and

preclinical studies also showing that resistance to VEGF-

targeted therapy can be reversible [98, 99]. Based on these

data, it seems possible that the incorporation of strategic

treatment breaks might help to ‘reset’ tumour resistance

and avoid the onset of acquired resistance. However, this

idea has yet to be formally proved in the clinic.

Predictive biomarkers

Given the variable results obtained with anti-angiogenic

agents in the clinic, there is a need to distinguish which

patients are likely to benefit from this form of therapy from

those patients that will not. This entails the development of

predictive biomarkers that are capable of predicting

response or outcome [100–102]. However, despite inten-

sive efforts, there are currently no validated biomarkers for

selecting these patients. Many types of predictive bio-

markers have been investigated, including hypertension,

circulating markers, germline single nucleotide polymor-

phisms (SNPs), in situ markers in tumour material and

functional imaging. This area has been extensively

reviewed [101, 102] and we will cover here only some

recent developments in circulating markers, SNPs and

imaging.

Circulating markers

Historically speaking, studies examining baseline-circu-

lating levels of angiogenesis-related factors, such as VEGF,

have yielded disappointing and contradictory findings,

often providing prognostic rather than predictive informa-

tion [10, 101–103]. However, recent studies, based on

prospective, robust sample sets collected within clinical

trials are now starting to show more consistent results. For

example, a correlation between high circulating levels of

VEGF-A and survival benefit in metastatic breast and

gastric cancer patients treated with bevacizumab has been

reported [104–106]. A large phase III trial (MERiDIAN)

will prospectively test the utility of high circulating VEGF-

A levels as a potential biomarker of response to bev-

acizumab in HER2-negative metastatic breast cancer [105].

Biomarker signatures, composed of multiple circulating

factors, may also have potential value as predictive bio-

markers. In pazopanib-treated mRCC patients for example,

circulating levels of six serum cytokines and angiogenesis

factors (CAF) (HGF, interleukin 6, interleukin 8, osteo-

pontin, VEGF, and TIMP1) were able to identify a sub-set

of patients that derived significantly greater overall sur-

vival benefit from treatment [107]. Moreover, a serum-

based protein signature composed of mesothelin, FLT4,

AGP and CA125 has recently been shown to identify

patients with ovarian cancer more likely to benefit from

bevacizumab [108].

However, there are several challenges associated with

taking circulating factors forward as a prospective marker.

Firstly, measurement of circulating markers can be difficult

to standardise across centres, due to technical issues asso-

ciated with sample handling [109]. Secondly, deciding on a

predefined cut-off for high versus low levels of circulating

factors is challenging because it may vary with geography

and disease setting [109].

SNPs

Baseline predictive markers that are binary in nature (i.e. a

mutation or gene amplification) are attractive because they

may be easier to measure and apply prospectively than

biomarkers based on the measurement of circulating fac-

tors. A large study that examined data from two phase III

trials of bevacizumab in metastatic pancreatic adenocarci-

noma (AViTA) and mRCC (AVOREN) recently reported

that a SNP in VEGFR1 was significantly associated with

poor outcome in patients treated with bevacizumab [110].

The same SNP has subsequently been associated with poor

outcome in mRCC patients treated with sunitinib [111].

Fine mapping of this SNP to tyrosine 1,213 of VEGFR1

shows that mutation at this site leads to increased expres-

sion and signalling of VEGFR1, providing a plausible

explanation as to why VEGF-targeted therapy is less

effective in patients bearing this SNP [110]. Therefore, this

work identifies a negative biomarker that might be used

prospectively to exclude patients who are less likely to

benefit from VEGF-targeted therapy.

Imaging

Functional imaging of the tumour vasculature, using CT,

MRI or PET, is a potentially attractive approach for pre-

dicting response and outcome, as reviewed in [112].
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Imaging permits inspection of various parameters, such as

tumour morphology and blood flow, which may provide

important predictive information. There are studies show-

ing that baseline features of tumours, such as the level of

vascular perfusion, can predict response or outcome in

patients treated with anti-angiogenic agents. For example,

at least 4 published studies demonstrate that a high level of

vascular perfusion predicts for response or outcome in

mRCC patients treated with TKIs [113–116]. Early chan-

ges in vascular characteristics detected on imaging after the

initiation of therapy have also been shown to correlate with

response or outcome. For example, many studies per-

formed in mRCC patients treated with TKIs show that a

reduction in vascular perfusion on therapy provides extra

predictive information regarding response or outcome than

using criteria based on change in lesion size alone [112,

117–123]. Moreover, in patients with colorectal liver

metastases treated with bevacizumab and chemotherapy,

changes in tumour morphology on CT were shown to

associate more significantly with overall survival than the

use of RECIST criteria [124]. Although these studies

suggest a promising role for imaging as a predictive marker

in certain settings, many challenges remain. For example,

we have an incomplete understanding of how features

detected on imaging correlate with the underlying tumour

biology [112]. Also, methodologies used to assess imaging

biomarkers vary considerably between studies and require

standardisation for their prospective application across

multiple study centres [112].

Therefore, biomarkers that predict response or outcome

for VEGF-targeted therapy are emerging, but they require

further standardisation and validation before they are

incorporated into clinical practice.

Mechanisms of response and resistance to VEGF-

targeted therapy

Resistance to anti-angiogenic therapy is a prominent issue

that likely explains the variable results obtained in the

clinic with this approach. Resistance can broadly be clas-

sified into intrinsic resistance (where tumours fail to

respond from the outset of treatment) and acquired resis-

tance (where tumours initially respond and then progress

whilst still on treatment) [125]. Since anti-angiogenic

therapy targets tumour cells indirectly by acting on tumour

blood vessels, mechanisms that determine response and

resistance are likely to stem from a complex interaction

between tumour cells and stroma.

Insight into this tumour-stromal relationship in the set-

ting of intrinsic resistance can be gained from studies in

mRCC patients, which examined both change in tumour

blood flow and change in lesion size in clinically detectable

tumours upon treatment with single agent anti-angiogenic

therapy [121–123]. In some cases, a strong vascular

response may be observed, which is accompanied by sig-

nificant tumour shrinkage (Fig. 3a) [121–123]. Tumours

undergoing this type of response probably fulfil two

important conditions: (a) the growth and survival of the

vasculature is very sensitive to the agent, and (b) tumour

cell survival is highly dependent on the vascular supply. In

the second instance, despite a strong vascular response,

tumour growth is only stabilised (Fig. 3b) [121–123]. In

this scenario, tumour cells may be adapted to survive,

despite a reduction in vascular supply. In the third instance,

the targeted agent results in minimal or insignificant sup-

pression of the tumour vascular supply, resulting in stabi-

lisation of disease or tumour progression (Fig. 3c) [121–

123]. In this scenario, the growth and survival of the vas-

culature is apparently poorly sensitive to the agent.

Longitudinal assessment of mRCC patients treated with

these agents demonstrates that acquired resistance to ther-

apy can also arise following a period of initial disease

control [121–123]. Acquired resistance may conceivably

occur because the tumour finds alternative means to drive

tumour vascularisation which are insensitive to the therapy

(Fig 3d) or because tumour cells become adapted so that

they can grow despite the reduced vascular supply (Fig 3e)

[123]. Evidence for specific cellular and molecular mech-

anisms that may underlie intrinsic or acquired resistance to

anti-angiogenic therapy are discussed below.

Heterogeneity of tumour blood vessels

The tumour vasculature is heterogeneous with respect to its

response to anti-angiogenic therapy, with some vessels

being sensitive whilst others are resistant (Fig. 4a). In

preclinical studies, VEGF-targeted therapy suppresses the

growth of newly formed tumour vessels, but is less effec-

tive against more established tumour vasculature [125–

127]. The prevailing explanation is that nascent tumour

blood vessels are dependent on VEGF, but eventually lose

this dependence due to a process of ‘vessel maturation.’

Newly formed tumour vessels may mature via different

routes, leading to the formation of at least six different

types of tumour blood vessel, which vary in their sensi-

tivity to VEGF-targeted therapy [126]. One aspect of vessel

maturation is the recruitment of pericytes to tumour ves-

sels, mediated by platelet-derived growth factors (PDGFs).

It has been demonstrated that inhibition of PDGF-mediated

pericyte recruitment improves the efficacy of VEGF-tar-

geted therapy [128, 129]. Of interest, many clinically

approved anti-angiogenic TKIs are potent inhibitors of

both VEGF and PDGF receptors (e.g. sunitinib, sorafenib,

pazopanib) and may therefore target pericyte recruitment.

However, paradoxically, in xenograft models TKIs have
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been shown to result in either decreased or increased per-

icyte coverage, dependent on the study [130–133]. There-

fore, whilst mature tumour vessels may be resistant to

VEGF-targeted therapy, it is not currently clear how these

tumour vessels can be effectively targeted.

Alternative pro-angiogenic signalling pathways

Other pro-angiogenic signalling pathways can stimulate

blood vessel growth and blood vessel survival even when

the VEGF-pathway is blocked (Fig. 4b). Pre-clinical

studies have identified numerous candidates including

angiopoietins [129], Bv8; Bombina variagata peptide 8

[134], EGF; epidermal growth factor [135], the Delta-

Notch pathway [136], FGF1 and FGF2; fibroblast growth

factors 1 and 2 [137, 138], HGF; hepatocyte growth factor

[139], IL-8; interleukin 8, [140], PDGF-C; platelet derived

growth factor-C [141, 142] and PLGF; placental growth

factor [26]. Most of these studies also show that co-tar-

geting of VEGF and the candidate factor improves thera-

peutic response. Therefore, therapies that target signalling

by multiple pro-angiogenic growth factors may be neces-

sary to achieve efficient and durable suppression of tumour

angiogenesis and tumour growth. There is also clinical
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Fig. 3 Response and resistance

to anti-angiogenic therapy.

Tumours may respond initially

to anti-angiogenic therapy in

different ways. a Therapy

results in a strong vascular

response (a significant reduction

in the amount of perfused

tumour vessels) and significant

tumour shrinkage. b Therapy

results in a strong vascular

response, but only stabilisation

of disease is achieved.

c Therapy results in a poor

vascular response (minimal

reduction in the amount of

perfused tumour vessels) and

tumour stabilises or progresses.

d, e After a period of response,

acquired resistance can occur.

This may be due to the

activation of alternative

angiogenic pathways (d) or

because tumour cells adapt to

the lack of a vascular supply via

various potential mechanisms

(e)
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evidence showing that circulating levels of certain pro-

angiogenic factors, including FGF2, HGF, PLGF and SDF-

1a can become elevated in patients just prior to progression

on anti-angiogenic therapy, providing potential evidence

that these factors are indeed related to the development of

acquired resistance [143, 144].

However, the concept that these alternative growth

factor and cytokine signalling pathways mediate resistance

to anti-angiogenic therapy has yet to be truly validated

clinically. The majority of TKIs used to treat patients

(including brivanib, cediranib, dovitinib, sunitinib, sorafe-

nib, vatalanib and many others) are multitargeted in nature

and can suppress the signalling of multiple pro-angiogenic

signalling pathways, including VEGF, FGF and PDGF.

And yet, despite this, tumours have been shown to progress

through treatment with these agents in many indications,

including metastatic breast cancer [44–47], glioblastoma

[75], hepatocellular carcinoma [145, 146] and mRCC

[147]. This is in contrast to preclinical studies demon-

strating a role for alternative growth factor signalling

pathways and questions the relevance of alternative pro-

angiogenic growth factors in mediating resistance to anti-

angiogenic therapy in patients.

Infiltrating stromal cells

It is now well established that tumours are a community

composed of both transformed tumour cells and distinct

stromal cell types. These stromal cells include fibroblasts

and many different kinds of immune cell (such as lym-

phocytes, granulocytes and macrophages) as well as the

cells that make up the vasculature (endothelial cells and

pericytes). The roles played by these different stromal cell

types in tumour progression have been extensively

reviewed [148–153]. Importantly, the tumour stroma can

promote tumour progression and therapy resistance,

including resistance to anti-angiogenic therapies [154–

157]. Preclinical studies have demonstrated that infiltration

of tumours by various stromal cell types, including

immature myeloid cells [158, 159], endothelial progenitor

cells [160] or fibroblasts [141] can all mediate resistance to

VEGF-targeted agents in preclinical models (Fig. 4c).

Although the precise mechanisms through which these

cells mediate resistance to anti-angiogenic therapy is not

completely clear, they may promote the survival of tumour

vessels and/or tumour cells through the secretion of growth

factors such as BV8, in the case of immature myeloid cells

[134], or PDGF-C, in the case of fibroblasts [141]. Alter-

natively, there is evidence that immature myeloid cells and

endothelial progenitor cells may promote resistance to

therapy by physically incorporating into tumour vessels

[161–163].

Adaptation of tumour cells to conditions of stress

Inhibition of tumour vascularisation should reduce the

supply of oxygen and nutrients to tumours and slow tumour

growth. However, preclinical work shows that tumour cells

can be adapted to survive, even when the vascular supply is

significantly reduced. These survival mechanisms include a

reduced propensity for certain tumour cells to die under

conditions of stress and may be driven by genetic aberra-

tions such as loss of p53 function [164, 165]. Tumours

treated with anti-angiogenic agents may also adapt to sur-

vive under conditions of nutrient withdrawal and hypoxia,

by adapting their metabolism or through autophagy [130,

166–170]. Pre-adaptation or reactive adaptation to stress

may therefore play a key role in determining whether

tumours respond to VEGF-targeted therapies (Fig. 4d)

[169, 171].

Alternative mechanisms of tumour vascularisation

Despite a prevailing dogma that tumours utilise mainly

VEGF-dependent sprouting angiogenesis (Fig. 1), it is now

apparent that tumour vascularisation may occur via diverse

mechanisms, including intussusceptive microvascular

growth (IMG), glomeruloid angiogenesis, vasculogenic

mimicry, looping angiogenesis and vessel co-option [3,

172, 173]. IMG is a process that generates two new vessels

via the fission of an existing vessel (Fig. 4e). It has been

observed in human primary melanoma and glioblastoma

[174, 175]. Glomeruloid angiogenesis results in tight nests

of tumour vessels known as a glomeruloid bodies (Fig. 4e).

Glomeruloid bodies have been reported in a wide range of

malignancies, including glioblastoma, melanoma, breast,

endometrial and prostate cancer [176]. In vasculogenic

mimicry, tumour cells organise into vessel-like structures

that are perfused via connection to the host vasculature

(Fig. 4e). It has been reported in many human cancers,

including melanoma, breast, ovarian, prostate and sarcoma

[177]. Recent pre-clinical studies suggest that tumour stem

cells can directly differentiate into endothelial cells or

pericytes, which may be a mechanism for vasculogenic

mimicry [178–180]. In looping angiogenesis, vessels are

extracted from normal surrounding tissue by the action of

contractile myofibroblasts [181] (Fig. 4e). Although only

well-characterised in wound healing, tumours might con-

ceivably also utilise looping angiogenesis [181]. In vessel

co-option, tumours recruit existing local blood vessels as

they invade into surrounding host tissue (Fig. 4e). Analysis

of human cancers reveals vessel co-option in glioblastoma

[182, 183], adenocarcinoma of the lung [184, 185] cuta-

neous melanoma [186], lung metastases of breast and renal

cancer [187–189], liver metastases of colorectal and breast
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cancer [190, 191] and brain metastases of lung and breast

cancer [192].

Importantly, these alternative mechanisms of angio-

genesis may be VEGF-independent and therefore capable

of mediating tumour vascularisation despite VEGF-inhi-

bition. For example, intussusceptive microvascular growth

was demonstrated as a mechanism via which tumours can

escape the effects of TKIs in a preclinical model of

mammary carcinoma [193]. Moreover, preclinical and

clinical data show that tumours in the brain can become

more infiltrative when the VEGF pathway is inhibited,

which may facilitate vessel co-option [54, 182, 183, 194–

198]. However, despite these data, we have very little

understanding of the molecular mechanisms that control

these alternative mechanisms of tumour vascularisation.

Increased tumour aggressiveness

Some pre-clinical studies report that VEGF-targeted ther-

apy can promote increased tumour invasion and metastasis

(Fig. 3f) [196, 199–201]. Paez-ribes et al. [196] and

Sennino et al. [200] demonstrated in a genetically engi-

neered mouse model (GEMM) of PNET (RIPTag mice),

that pharmacological inhibition of the VEGF pathway

(VEGF receptor inhibitory antibody or sunitinib) sup-

pressed the growth of the primary tumour. However, the

treated tumours became more invasive and showed an

increased incidence of liver and lung metastasis, compared

to vehicle controls. Ebos et al. [202] demonstrated that

sunitinib can suppress tumour growth when breast cancer

or melanoma cells are implanted into the primary site (i.e.

mammary fat pad or skin, respectively). However,

administration of sunitinib either prior to, or after, resection

of the primary tumour increased the incidence of metastasis

and led to a shortening of overall survival, compared to

vehicle controls [202]. In the same study, treatment of mice

with sunitinib prior to, or after, intravenous injection of

tumour cells also promoted the growth of metastases and

shortened overall survival, compared to vehicle controls

[202]. These data imply that VEGF-targeted therapies

could accelerate tumour progression when used in the

metastatic, adjuvant or neoadjuvant setting.

Although these results are alarming, follow-up pre-

clinical studies from other laboratories challenge some of

these findings [130, 203, 204]. Chung et al. [204] treated

four different GEMMs with a VEGF inhibitory antibody

and failed to find any evidence that treatment increased the

incidence of metastasis. However, they did observe

increased invasion and metastasis in a GEMM of PNET

treated with sunitinib [204]. Two further studies examined

more closely the ability of sunitinib to accelerate metastasis

in mice. Both Welti et al. [130] and Singh et al. [203]

showed that administration of sunitinib to mice, prior to

intravenous injection of tumour cells, only promotes

metastasis when sunitinib is administered at very high

doses, but not when lower, clinically relevant doses are

utilised. In addition, Welti et al. [130] showed that

although sunitinib treatment is associated with a worse

prognosis in a model of metastatic breast cancer, sunitinib

treatment was able to prolong survival in a model of

metastatic renal cancer.

Is there evidence that anti-angiogenic therapy can pro-

mote tumour aggressiveness in patients? A retrospective

analysis of mRCC patients treated with sunitinib found no

evidence of accelerated tumour growth, suggesting that

sunitinib does not accelerate tumour growth in advanced

renal cancer [205]. However, there are some reports of

rapid tumour progression in individuals with mRCC after

withdrawing anti-angiogenic therapy, a phenomenon

sometimes referred to as ‘flare-up’ [54, 89, 90, 206]. It has

been shown that, upon withdrawal of anti-angiogenic

therapy, the tumour vasculature can rapidly re-grow [87,

88]. Moreover, a recent neoadjuvant study of sunitinib and

pazopanib in mRCC demonstrated a paradoxical increase

in Ki67 and tumour grade in the primary tumour after

treatment [207]. These findings might provide some clues

to the source of the flare-up phenomenon, but the precise

mechanisms are as yet unclear.

The influence of bevacizumab treatment withdrawal has

also been assessed in patients. A retrospective analysis of

five large studies (which included patients with mRCC,

metastatic pancreatic cancer, metastatic breast cancer and

metastatic colorectal cancer) found no evidence that dis-

continuation of bevacizumab treatment lead to accelerated

b Fig. 4 Potential mechanisms involved in resistance to VEGF-

targeted therapy. a Tumours present with a mixture of therapy-

sensitive and therapy-insensitive vessels. The top vessel is destroyed

by the therapy (depicted in grey), whilst the bottom one remains

(depicted in red). b Alternative signalling pathways can regulate the

sensitivity of vessels to therapy. In the panel, the tumour cells (in

blue) have up-regulated an alternative pro-angiogenic growth factor

in order to drive blood vessel growth and survival. c Stromal cells,

such as immature myeloid cells (black) or fibroblasts (green) infiltrate

the tumour and mediate resistance either by releasing pro-angiogenic

growth factors or by physically incorporating into vessels. d Tumour

cells can survive conditions of stress. Some tumour cells (depicted in

blue) have survived the loss of a vascular supply, because they are

adapted to survive conditions of hypoxia or nutrient shortage.

e Tumours may use alternative mechanisms of vascularisation besides

sprouting angiogenesis. In intussusceptive microvascular growth new

vessels are generated by the fission of existing vessels. Glomeruloid

angiogenesis is characterised by tight nests of vessels that resmemble

the renal glomerulus. In vasculogenic mimicry, tumour cells directly

form vascular channels (blue cells) that are perfused via connection to

the host vasculature (red cells). In looping angiogenesis, contractile

myofibroblasts (green) pull host vessels out of the normal surrounding

tissue (pink region). In vessel co-option tumour cells engulf host

vessels in the normal surrounding tissue (pink region) as the tumour

invades. f Increased tumour aggressiveness i.e. therapy causes tumour

to become more invasive and/or accelerates the growth of metastases
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disease progression compared to placebo controls [208].

Some data examining this question in the adjuvant setting

are also available. Analysis of the NSABP-C08 trial of

adjuvant bevacizumab in colorectal cancer failed to pro-

vide evidence for a detrimental effect of exposure to bev-

acizumab [56]. However, data from the AVANT trial of

adjuvant bevacizumab in colorectal cancer did find evi-

dence that treatment with bevacizumab was associated with

a detrimental effect: a higher incidence of relapses and

deaths due to disease progression was observed in the

bevacizumab treated patients [57]. It has been proposed

that the disappointing results obtained in the adjuvant set-

ting with bevacizumab could be explained by an adverse

effect of bevacizumab on tumour biology: increased

aggressiveness of the cancer [54].

There is one setting in which the induction of a more

invasive tumour phenotype upon treatment with anti-

angiogenic therapy is relatively undisputed. Glioblastomas

have been observed to adopt a more infiltrative tumour

growth pattern upon treatment with VEGF-targeted therapy

[182, 183, 209]. Interestingly, it seems plausible that this

invasive process can contribute to resistance to anti-angio-

genic therapy by allowing vessel co-option to occur [195].

In conclusion, there is conflicting evidence for the rel-

evance of increased tumour aggressiveness in response to

anti-angiogenic therapy and this persists as a controversial

area [54, 210, 211]. However, taken together, the available

data suggest that the ability of VEGF-pathway targeted

agents to promote tumour aggressiveness is influenced by

several factors, including cancer type, the stage of disease

being treated (neoadjuvant, adjuvant or metastatic) the

nature of the anti-angiogenic agent administered, the dose

of agent that the recipient is exposed to and the physiology

of the individual patient.

The mechanisms that underlie the increased invasiveness

and increased metastasis observed in some studies of VEGF-

targeted therapy are the subject of ongoing investigation.

Several studies have demonstrated that VEGF-targeted

therapy can cause tumour cells to undergo an epithelial-to-

mesenchymal transition, which could promote increased

invasion and metastasis [200, 201, 212, 213]. Activation of

the MET receptor has been implicated in the process of

increased invasion and metastasis observed upon VEGF-

targeted therapy in preclinical models, and simultaneous

inhibition of VEGF and MET signalling was shown to sup-

press the increased invasion and metastasis observed in

preclinical models of PNET and glioblastoma [199–201].

Another possible causative factor in the enhanced

metastasis observed in angiogenesis inhibitor treated mice

is a drug-induced change in circulating factors. For

example, it has been shown that TKIs in particular can

induce a significant change in a number of circulating

factors implicated in tumour progression including G-CSF,

SDF-1a and osteopontin [214]. A change in levels of these

factors could potentially contribute to tumour progression

at distant sites. In support of this concept, a recent study

showed that changes in circulating levels of interleukin-

12b were required for the enhanced metastasis observed

upon sorafenib treatment in a preclinical model of hepa-

tocellular carcinoma [215].

It is known that the integrity of the vasculature is

important in controlling metastasis [216, 217]. Therefore,

another possible mechanism could be that VEGF-targeted

therapies damage the vasculature, leading to enhanced

tumour cell extravasation at the primary site or increased

seeding at the metastatic site. There is some direct evidence

in preclinical models that TKIs may promote metastasis by

damaging the integrity of the vasculature [130, 199, 204].

Despite these data, more work is required to understand

in which settings increased aggressiveness may be relevant

and how it occurs at the mechanistic level. It remains to be

seen whether combination strategies designed to inhibit

both angiogenesis and invasion/metastasis will be neces-

sary to achieve a better therapeutic index in patients.

Signalling by VEGF in different cell types

Beyond its role in stimulating angiogenesis in endothelial

cells, it is now apparent that VEGF can play a signalling

role in many other cell types. These include: endothelial

cells of the normal vasculature [218], dendritic cells [219],

myeloid cells [220], neurons [221], pericytes [222] and

tumour cells [201, 212, 223–228]. Identification of these

additional physiological and pathophysiological roles for

VEGF has led to some surprising observations. For

example, inhibition of VEGF in the normal vasculature

may be the cause of certain side effects seen in patients

treated with VEGF-targeted agents, such as hypertension

[81], whilst suppression of VEGF signalling in myeloid

cells was shown to accelerate tumourigenesis in mice

[220]. This latter phenomenon may be another mechanism

leading to increased aggressiveness in cancers treated with

anti-angiogenic therapy.

In addition, there are numerous studies documenting a

role for VEGF signalling in tumour cells, but the data are

conflicting. Several studies have shown that cancer cell

lines can express VEGFR1 or VEGFR2 and that signalling

through these receptors in cancer cells can promote events

associated with tumour progression, including cancer cell

survival, proliferation, invasion or metastasis [224–229].

Based on these data it has been proposed that inhibition of

VEGF signalling in tumour cells may, at least in part, be

mediated by direct activity against tumour cells [4]. In

contrast, more recent preclinical studies have shown that

inhibition of VEGF signalling in CRC and glioblastoma

cells made these cells more invasive [201, 212]. These
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latter data suggest that, in fact, targeting VEGF signalling

in cancer cells may actually be deleterious. Further studies

are warranted to untangle this dichotomy.

Interactions between VEGF receptors and other cell

surface receptors

The VEGF signalling system in mammals is complex and

consists of five related ligands, VEGF-A, VEGF-B, VEGF-

C, VEGF-D and PLGF that bind with different specificities

to three receptor tyrosine kinases, VEGFR1, VEGFR2 and

VEGFR3. In addition, several co-receptors have been

identified, including heparin sulphate proteoglycans, neu-

ropilin 1 (NRP1), neuropilin 2 and CD146. Moreover,

VEGF receptors can cross-talk with additional cell surface

molecules, including integrins and other growth factor

receptors. The biology of this complex signalling system

has been extensively reviewed [8, 230–232]. Here we will

focus on some selected studies that examined the relevance

of these interactions in determining response or resistance

to VEGF-targeted therapies in cancer.

PLGF is overexpressed in many cancers and signals by

binding to VEGFR1 [233]. Combined inhibition of VEGF

and PLGF was shown to be more effective at suppressing

primary tumour growth than VEGF inhibition alone in

several preclinical models [26, 234]. However, these

results were challenged in a publication showing that,

although inhibition of PLGF can suppress metastatic

spread, it had no effect on the growth of primary tumours

[235]. Co-receptors for VEGFR2, including NRP1 and

CD146, may act to amplify signal transduction through

VEGFR2, leading to an increased angiogenic response

[233]. Combined inhibition of NRP1 and VEGF [236], or

CD146 and VEGF [237], were both shown to be more

effective than inhibition of VEGF alone in preclinical

primary tumour models.

VEGFR2 can also form direct complexes with other

receptor tyrosine kinases. For example, stimulation of

vascular smooth muscle cells with VEGF promotes the

formation of a complex between VEGFR2 and the receptor

tyrosine kinase PDGF-Rb [222]. This results in suppression

of PDGF-Rb signalling and decreased pericyte coverage in

tumours [222] and may explain the observation that, in

some experimental systems, inhibition of VEGF signalling

leads to increased pericyte coverage of tumour vessels and

increased maturation/normalisation of the tumour vascu-

lature [238]. Moreover, in glioblastoma cells, VEGF

stimulates the formation of a complex between VEGFR2

and the receptor tyrosine kinase, MET, which results in

suppression of MET signalling and reduced tumour cell

invasion [201]. As a consequence of this, inhibition of

VEGF was shown to release MET from this inhibitory

mechanism and allow for increased tumour invasion [201].

Thus, this paper provides a potentially very elegant

explanation as to why VEGF inhibition can promote an

invasive phenotype in glioblastoma cells.

Therefore, the modulation of cell signalling by VEGF

receptor complexes with other receptors is an emerging

paradigm that may have important consequences for

understanding the clinical responses observed with VEGF-

targeted therapies.

Future directions for anti-angiogenic therapy

Clinical experience provides proof-of-principle that anti-

angiogenic therapy is a valid therapeutic approach. The full

potential of this strategy is, however, yet to be realised. To

achieve this, several key considerations must be addressed,

as outlined below.

Understanding the vascular biology of different primary

cancers and their metastases

We may need to move beyond the belief that all cancers

vascularise via the same mechanism. Whilst certain can-

cers, such as RCC and neuroendocrine tumours, may often

be highly dependent on VEGF-driven angiogenesis, can-

cers that have historically responded less well to VEGF-

targeted therapy, such as breast, pancreatic and melanoma,

probably have a different vascular biology. Exactly why

such diversity should exist between cancers is currently not

clear. Tumour evolution is most likely an important factor.

For example, given that inactivation of the Von Hippel-

Lindau (VHL) gene is a frequent early event in renal cancer

that results in elevated expression of VEGF [239], it is

perhaps not surprising that the aetiology of these tumours is

strongly coupled with a dependence on VEGF-driven

angiogenesis. However, in other cancers where VHL

inactivation is not prevalent, VEGF-driven angiogenesis

may be just one of several tumour vascularisation pathways

that the cancer can evolve to utilise. Moreover, the envi-

ronment in which the primary disease originates most

likely also plays a key role in driving the evolution of

tumour vascularisation. The vasculature is not a homoge-

nous entity: considerable heterogeneity of form and func-

tion is observed between different organs [240]. As

different types of primary tumours evolve in different

organs (e.g. brain, breast, colon, skin, kidney, liver, lung,

pancreas, etc.) it may be that the mechanisms that they

evolve in order to vascularise are also different. In order to

design better anti-angiogenic therapies, we need to gain a

better understanding of the unique vascular biology that

belongs to the different cancers.

The relevance of VEGF for different disease stages is

also a significant issue. For example, whilst efficacy for
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anti-angiogenic therapy in the metastatic setting has been

shown for several indications, efficacy in the adjuvant

setting has yet to be demonstrated. Findings indicating that

bevacizumab is effective in the metastatic setting in colo-

rectal cancer [19], but ineffective in the adjuvant setting for

the same disease [56, 57], may have important conse-

quences. Many trials of anti-angiogenic agents in the

adjuvant setting are currently underway. Although results

of these trials remain to be seen, it is worrying to consider

that these trials may report similar observations to those

observed in the adjuvant setting in colorectal cancer. We

may need to face the possibility that in established, clini-

cally detectable metastases, VEGF-driven angiogenesis

may play a more important role than in micrometastases.

There is very little work in preclinical models examining

the mechanisms that mediate vascularisation in microme-

tastases versus more established metastases, but this needs

to be addressed.

Another unresolved question is whether the vasculature

of a primary tumour is similar or different to the vascula-

ture of its cognate metastasis. If one assumes that the organ

environment has a profound influence on the mechanisms

that a tumour utilises to generate a vasculature, then dif-

ferences must exist. For example, the hurdles that a pri-

mary breast cancer must leap to vascularise in the breast

may be different to those that present in a new environ-

ment, such as the bone, liver, lungs or brain. In support of

this, the colonisation of new organ environments during

metastasis is thought to be inefficient [241]. One reason for

this may be that tumours must ‘re-educate’ in order to

vascularise in the new environment. We therefore need to

understand the vascularisation process in both primary

tumours and their metastases in different organ sites.

It also seems reasonable to assume that acquired resis-

tance to current VEGF-targeted therapies also occurs via

specific mechanisms that are dependent on the type of

cancer. For example, new vessel growth driven by alter-

native pro-angiogenic growth factors, such as FGF2, HGF

or IL-8, may drive acquired resistance to TKIs in RCC or

neuroendocrine tumours [137, 138, 140, 144]. Therefore,

multitargeted agents or combination strategies that effec-

tively target all of these additional pathways may be

required for targeting treatment resistance in these indica-

tions. In contrast, acquired resistance in glioblastoma may

occur due to increased tumour invasion and vessel co-

option [182, 183, 195, 198, 201]. Here, agents that simul-

taneously target VEGF signalling, tumour invasion and

vessel co-option may be more appropriate.

The role of tumour heterogeneity

In patients with multiple metastases, a heterogeneous

response to anti-angiogenic therapy can sometimes be

observed i.e. some lesions may respond whilst other lesions

in the same patient can progress [123]. This is challenging

for optimal patient management and continuation of ther-

apy, and may herald early treatment failure. Although the

source of this heterogeneity is poorly understood, one

explanation could be that diverse tumour vascular biology

can exist in a patient. For example, histopathological

studies on human lung and liver demonstrate that tumours

present in these sites display significant intra- and inter-

tumour heterogeneity, utilising either angiogenesis or

vessel co-option to gain access to a vascular supply [173,

184, 185, 187, 190, 191, 242, 243]. This suggests that,

within the same tumour and between different tumours in

the same patient, more than one mechanism to become

vascularised can be utilised at any particular time. More-

over, comprehensive genomic analysis of tumours reveals

significant genetic intra- and inter-tumour heterogeneity

[244]. Conceivably, this genetic diversity may contribute to

the existence of different tumour vascularisation mecha-

nisms taking place within the same patient. Understanding

how this heterogeneity occurs and how to target it effec-

tively is a key goal, not just for anti-angiogenic therapy, but

for all cancer therapeutics [244, 245].

Preclinical experiments that translate to clinic

There is a prominent disconnect between the types of

preclinical models used to test the efficacy of anti-angio-

genic agents and the clinical scenarios in which these drugs

are utilised [54]. The majority of published preclinical

studies that report the activity of anti-angiogenic agents

have been performed using subcutaneously implanted

tumour cell lines. Generally, suppression of tumour growth

after a relatively short exposure to drug (usually measured

in weeks) is considered a sign of efficacy in these models.

However, it is not clear to what extent these models mimic

the effects of anti-angiogenic agents when they are used

clinically in the metastatic, adjuvant or neoadjuvant setting.

Moreover, very few studies use survival as an endpoint. In

support of the need for refined models, recent preclinical

studies clearly demonstrated that whilst anti-angiogenic

therapies can be effective at controlling tumour growth in

models of the primary disease, the same therapies were not

effective in models of the adjuvant or metastatic treatment

setting [202, 246]. To develop better anti-angiogenic

therapies, it will be vital for new anti-angiogenic strategies

to be tested in models that more accurately reflect different

disease stages.

In addition, there are a growing number of studies dem-

onstrating that resistance to VEGF-targeted agents might be

overcome by targeting a second pathway. This includes

targeting additional pro-angiogenic signalling pathways [26,

137–141, 236, 237, 247, 248] or by targeting compensatory
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metabolic or pro-invasive responses in tumour cells [166,

168, 170, 200, 201]. These studies are vital and should allow

the design of rationale combination strategies that could be

tested in the clinic. However, there are several practical

problems associated with this, including finding targets that

are easily druggable and selecting combinations that have an

acceptable toxicity profile [249]. A consideration of these

practicalities at the preclinical phase may accelerate the

selection of new strategies that can be practically and rapidly

translated to the clinic.

Development of appropriate predictive biomarkers

As we have seen, the biology determining response and

resistance to anti-angiogenic therapy is complex. It is

perhaps therefore unsurprising that predictive biomarkers

for this class of agent remain elusive. To identify which

patients will benefit from these therapies, mechanism-dri-

ven biomarkers are required that can account for the

dynamic and complex underlying biology. Importantly, as

more and more promising biomarkers are uncovered, a

further challenge will be to standardise methods of bio-

marker assessment across centres so that they can be val-

idated prospectively and, eventually, utilised routinely.

It seems unlikely that the use of a single biomarker will

be sufficient to predict efficacy for anti-angiogenic agents,

especially in patients with multiple metastases, where the

interpretation of a single biomarker is unlikely to fully

account for tumour heterogeneity. A logical way forward

for treatment selection would be to use predictive algo-

rithms that incorporate multiple parameters. In the future,

we predict that the decision to utilise a particular anti-

angiogenic agent will be made based on the assessment of

several parameters, including (a) cancer type, (b) stage and

location of disease (including sites of metastases involved),

(c) baseline genetic data e.g. germline SNPs, (d) circulating

markers acquired at baseline and during therapy, and

(e) functional imaging data acquired both at baseline and

during therapy. Moreover, in a world where multiple tar-

geted agents are now potentially available for tailored

treatment, the decision to use anti-angiogenic therapy will

need to be weighed against the use of other potentially

effective treatment options for each patient.

Alternative approaches for targeting the tumour

vasculature

Although the conventional concept of anti-angiogenic

therapy is to inhibit tumour blood vessel formation, there

may be other ways in which the vascular biology of

tumours could be targeted. Of course, one long-standing

hypothesis is that therapies should be designed to

normalise the tumour vasculature in order to improve the

delivery of chemotherapy [71, 72, 238]. This might be

particularly pertinent in poorly vascularised cancers such

as pancreatic adenocarcinoma where improved delivery of

chemotherapy could be beneficial [250]. Moreover, vas-

cular normalisation may have additional beneficial effects

for controlling oedema or tumour oxygenation [74, 75]. In

addition, it is now known that blood vessels are not merely

passive conduits for the delivery of oxygen and nutrients.

Beyond this, they can secrete specific ‘angiocrine factors’

that can control embryonic development, tissue regenera-

tion and tumour growth in a perfusion-independent manner

[251]. Furthermore, two recent studies showed that endo-

thelial cells can secrete specific ligands that induce che-

moresistance in tumour cells [252, 253]. These studies

reflect a growing paradigm that the tumour stroma plays an

important role in therapy resistance [150, 154, 156, 157].

Therefore, there is still a need to further understand how

the tumour vasculature can be effectively targeted in dif-

ferent cancers in order to achieve suppression of tumour

growth, suppression of therapy resistance and prolonged

patient survival.

Conclusions

Here we have reviewed progress in the field of VEGF-

targeted therapy and outlined some of the major unresolved

questions and challenges in this field. Based on these data,

we argue that the successful future development of anti-

angiogenic therapy will require a greater understanding of

how different cancers become vascularised and how they

evade the effects of anti-angiogenic therapy. This will

enable the development of novel anti-angiogenic approa-

ches tailored to individual cancers and disease settings.

Moreover, the development of predictive biomarkers that

fully address the complexities of the biology involved will

be required to tailor therapies to individual patients. It will

also be important to determine the optimal duration and

scheduling of these agents, including how to design

effective therapies for the metastatic, adjuvant and neoad-

juvant settings and how to effectively combine different

agents without incurring significant toxicities. To achieve

these goals, close collaboration between basic researchers

and clinicians in multiple disciplines is absolutely required.
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