Journal of Experimental Botany doi:10.1093/jxb/erw451 This paper is available online free of all access charges (see http://jxb.oxfordjournals.org/open_access.html for further details)

Despite phylogenetic effects, C_3 - C_4 lineages bridge the ecological gap to C_4 photosynthesis

Marjorie R. Lundgren* and Pascal-Antoine Christin

Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK

* Correspondence: marjorie.lundgren@sheffield.ac.uk

Received 22 September 2016; Editorial decision 2 November 2016; Accepted 9 November 2016

Editor: Susanne von Caemmerer, Australian National University

Abstract

 C_4 photosynthesis is a physiological innovation involving several anatomical and biochemical components that emerged recurrently in flowering plants. This complex trait evolved via a series of physiological intermediates, broadly termed 'C₃-C₄', which have been widely studied to understand C₄ origins. While this research program has focused on biochemistry, physiology, and anatomy, the ecology of these intermediates remains largely unexplored. Here, we use global occurrence data and local habitat descriptions to characterize the niches of multiple C₃-C₄ lineages, as well as their close C₃ and C₄ relatives. While C₃-C₄ taxa tend to occur in warm climates, their abiotic niches are spread along other dimensions, making it impossible to define a universal C₃-C₄ niche. Phylogeny-based comparisons suggest that, despite shifts associated with photosynthetic types, the precipitation component of the C₃-C₄ niche is particularly lineage specific, being highly correlated with that of closely related C₃ and C₄ taxa. Our large-scale analyses suggest that C₃-C₄ lineages converged toward warm habitats, which may have facilitated the transition to C₄ photosynthesis, effectively bridging the ecological gap between C₃ and C₄ plants. The intermediates retained some precipitation aspects of their C₃ ancestors' habitat, and likely transmitted them to their C₄ descendants, contributing to the diversity among C₄ lineages seen today.

Key words: Biomes, C₃-C₄ intermediate, C₄ photosynthesis, ecology, evolution, phylogeny.

Introduction

The C₄ photosynthetic pathway relies on a coordinated system of anatomical and biochemical traits that function to concentrate CO₂ around Rubisco, which in most C₄ plants is localized to the bundle sheath cells (Hatch, 1987). The enhanced CO₂ concentration substantially suppresses O₂ fixation and subsequent photorespiration, compared with the ancestral C₃ photosynthetic pathway, making C₄ photosynthesis advantageous in conditions that increase photorespiration (Chollet and Ogren, 1975; Hatch and Osmond, 1976). C₄ photosynthesis is consequently prevalent in the open biomes of warm regions where it boosts growth (Sage *et al.*, 1999; Osborne and Freckleton, 2009; Atkinson *et al.*, 2016), to ultimately shape entire ecosystems, such as the emblematic savannas (Sage and Stata, 2015).

It has been widely reported that some plants possess only a subset of the anatomical and/or biochemical components of the C_4 pump. These plants tend to be physiologically somewhere in between typical C_3 and C_4 plants and, as such, are termed C_3 – C_4 intermediates (Kennedy and Laetsch, 1974; Monson and Moore, 1989; Sage, 2004; Schlüter and Weber, 2016).

© The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Abbreviations: CEC, cation exchange capacity; FRI, fire return interval; MAP, mean annual precipitation; MAT, mean annual temperature; OC, organic carbon; TEB, total exchangeable bases; PCA, principal component analysis.

These physiologically intermediate plants use a photorespiratory CO₂ pump, or glycine shuttle, to rescue CO₂ released from mesophyll photorespiratory activity and transport it into the bundle sheath for re-use in the Calvin cycle located there (Hylton *et al.*, 1988). Thus, the C_3 - C_4 system establishes a CO₂ recycling mechanism based on the spatial segregation of metabolic reactions, the migration of the Calvin cycle to the bundle sheath, and the dual-compartment coordination that are characteristic of the C₄ pathway. These modifications improve the physiological performance of C_3-C_4 plants over the C_3 system in conditions that promote photorespiration, as they lessen the total carbon lost via photorespiration to improve net carbon assimilation (Vogan and Sage, 2011; Way et al., 2014). In addition to the glycine shuttle, a number of C_3 - C_4 plants engage a weak C_4 cycle (Ku *et al.*, 1983), which further reduces photorespiration and is predicted to increase biomass accumulation (Mallmann et al., 2014). Thus, this variation in C₄-associated traits forms a continuum between the C_3 condition and a diversity of C_4 phenotypes (Bauwe, 1984; McKown and Dengler, 2007; Lundgren et al., 2014; Bräutigam and Gowik, 2016).

Because C₃-C₄ plants share many anatomical, biochemical, and physiological traits with C₄ plants, they are often assumed to represent an evolutionary step facilitating C₄ evolution (Hylton et al., 1988; Sage, 2004; Sage et al., 2012; Bräutigam and Gowik, 2016), a hypothesis confirmed by the close relationships between C_3 – C_4 and C_4 taxa in some groups (McKown et al., 2005; Christin et al., 2011b; Khoshravesh et al., 2012; Sage et al., 2012; Fisher et al., 2015). They are consequently widely studied and incorporated into models of C_4 evolution, which show that C_3 - C_4 phenotypes can bridge the gap between C_3 and C_4 states by providing a series of stages that are advantageous over the preceding ones (Heckmann et al., 2013; Williams et al., 2013; Mallmann et al., 2014; Bräutigam and Gowik, 2016). This research program has been extremely successful in tracking the changes in leaf anatomy, organelles, metabolism, genes, and enzymes that likely took place during C₄ evolution, particularly in the eudicot genus Flaveria (e.g. Bauwe and Chollet, 1986; Svensson et al., 2003; McKown and Dengler, 2007, 2009; Sage et al., 2013). However, previous research failed to address the ecological consequences of these intermediate stages. Indeed, while models that predict the carbon gains of the intermediate stages exist (Heckmann et al., 2013; Mallmann et al., 2014), studies of natural distributions of extant C_3 - C_4 taxa are nearly non-existent (but see Sudderth et al., 2009).

The differing geographical and environmental distributions of C_3 and C_4 species have been widely studied (Teeri and Stowe, 1976; Rundel, 1980; Williams *et al.*, 1995; Ehleringer *et al.*, 1997, Epstein *et al.*, 1997; Edwards and Still, 2008), with later incorporation of phylogenetic data providing estimates of the ecological shifts that happened before, during, or after photosynthetic transitions (Osborne and Freckleton, 2009; Edwards and Smith, 2010; Edwards and Ogburn, 2012; Kadereit *et al.*, 2012; Lundgren *et al.*, 2015). However, these efforts focused on comparisons between C_3 and C_4 plants, which are much more frequent and abundant than C_3-C_4 taxa. Previous discussions of C_3-C_4 ecology characterized their distributions in hot, sandy, and disturbed habitats with little competition (Powell 1978; Hedge and Patil, 1980; Prendergast and Hattersley, 1985; Vogan et al., 2007; Feodorova et al., 2010; Christin et al., 2011b; Sage et al., 2011, 2012). However, other groups with C_3 - C_4 intermediates thrive in apparently very different habitats, with C₃-C₄ Flaveria inhabiting a broad range of environments from open fields and scrublands (F. angustifolia) to pine forests (F. anomala), wetlands (F. floridana), and warm mineral springs (F. sonorensis; Powell 1978), yet field data failed to identify differences in the distributions of different photosynthetic types in *Flaveria* (Sudderth et al., 2009). The monocot C_3 - C_4 intermediates of *Eleocharis* and Steinchisma thrive in wetland habitats (USDA/NRCS, 2016), C₃-C₄ Alloteropsis grow in shady, deciduous forests of tropical Africa (Lundgren et al., 2015), and the recently identified intermediates in Homolepis (Khoshravesh et al., 2016) grow at the margins of South American rainforests. These disparate characterizations urge a careful, data based evaluation of the C₃–C₄ niche, its variation among evolutionary lineages, and its relation to that of C_3 and C_4 relatives.

In this study, we use available global occurrence data and local habitat descriptions to characterize the niche of C_3-C_4 lineages, along with their close C_3 and C_4 relatives. The ecological data are used to (i) quantitatively and objectively describe the abiotic habits of C_3-C_4 taxa and determine whether they inhabit uniform conditions, (ii) test whether phylogenetic effects partially explain the ecological sorting of C_3-C_4 lineages and whether their sorting explains the diversity in the ecology of C_4 relatives, and (iii) test whether, when controlling for phylogenetic effects, the C_3-C_4 physiology affects the niche, potentially bringing the plants closer to the C_4 niche. Our large-scale analyses, which consider all described C_3-C_4 lineages and their relatives, show that C_3-C_4 plants inhabit a large array of habitats, and that physiology closely interacts with evolutionary history to shape the niches of C_3-C_4 , but also C_4 , taxa.

Methods

Ecological distribution of individual C₃-C₄ species

A list of 56 C_3-C_4 intermediate taxa was assembled from the literature, and included 11 eudicot and two monocot families (Table 1). Occurrence data for each taxon were downloaded from the Global Biodiversity Information Facility (GBIF, http://www.gbif.org) using the RGBIF package in R (Chamberlain *et al.*, 2016; data accessed 1 and 2 July 2016). Occurrence data for the Zambezian C_3-C_4 within *Alloteropsis semialata* were taken from Lundgren *et al.* (2015, 2016). All occurrence data were cleaned by removing any anomalous latitude or longitude points, points falling outside of a landmass, and any points close to GBIF headquarters in Copenhagen, Denmark, which may result from erroneous geolocation. To avoid repeated occurrences, latitude and longitude decimal degree values were rounded to two decimal places, and any duplicates at this resolution were removed. These filters are commonly applied to data extracted from GBIF (Zanne *et al.*, 2014).

Environmental parameters that have been predicted to potentially explain the sorting of C_3 , C_3 – C_4 , and C_4 photosynthetic types were selected (Christin and Osborne, 2014; Supplementary Table S1). Geographic distributions are characterized with latitudinal and altitudinal ranges, and broad climatic distributions are characterized via mean annual precipitation (MAP) and mean annual temperature (MAT) variables. The growing season temperature (i.e. temperature

Table 1. Details of C_3 - C_4 taxa used in this study and their local habitats

Acernancesene Bignanis B. diversions 42 Decolucius woodand, grasslands, coll sandy and gravely, B. diversion 41, 2016s.c; B. diversion 41, 2017, 2017, 2018, 2017,	Comparison	Species	n	Habitat	Reference ^a
Bipfnaris B. diversignina 42 Deciducus woodand, grasslands, sol sandy and gravaly. Fabre of al., 2015; High of al., 2015; High of al., 2015; High of al., 2016; B. natame-langene Fabre of al., 2015; High of al., 2016; B. natame-langene Fabre of al., 2015; High of al., 2016; B. natame-langene Fabre of al., 2016; High of al., 2016; B. natame-langene Fabre of al., 2016; High of al., 2016; B. natame-langene Fabre of al., 2016; High of al., 2017; High of al., 2016; High of al., 2016; High of al., 2016; High of al., 2017; High	Acanthaceae				
B. gradnise 6 Sardy to tony solie USDANPCS, 2016. B. noti-me-trangere 2 Sandy sol. dy waterourses B. pruince B. pruince 1 Sandy to sony solie Sandy sol. dy waterourses B. pruince 1 Buehland Buehland A. fooldau 285 Sandy sol. dy waterourses Pajerdoudu et al., 1986. Amaranthaceau A. fooldau 285 Sandy sol. dy waterourses Pajerdoudu et al., 1986. Alwranthem A. fooldau 285 Sandy sol. sandy dy or saine sol. sandy sol. sandy sol. sandy sol. sandy dy or saine sol. sandy sol. sandy sol. sandy dy sol. sandy	Blepharis	B. diversispina	42	Deciduous woodland, grasslands, soil sandy and gravelly, disturbed	Fisher <i>et al.</i> , 2015; Hyde <i>et al.</i> , 2016a,b;
B. Relatensis 6 Rodry slopes B. not-matengree 2 Sandy to story solls B. priunces 3 Sandy to story solls B. priunces 4 Buellances Amaranthacces - Beadratures Amaranthacces - Beadratures Amaranthacces - Beadratures At foolder 268 Uplends Satols S. divarcata 3 Satols S. divarcata 3 Satols S. divarcata 3 Rodrind, sandy, saline habitats Elsis and Dis, 2014, elsis and Dis, 2014, elsis and Saline solls, fine textured solls Astoracoo - Foologoosthola Foologoosthola 38 - Foologoothola 38 - Foologoothola 38 - Foologoothola 38 - Foologoothola 38 - Foologina 16 Velands, sandy, saline disturbed USDANNCS, 2016 Forderia 3 Velands, woodlands, sandy, disturbed - Forderia 3 Velands, woodlands, sandy, disturbed - Forderia 3 Velands, woodlands, sandy, disturbed - Forderia 3 Velands, wo		B. gigantea	6	Sandy to stony soils	USDA/NRCS, 2016
B. nol-me-tangere 2 Sandy coli dy watercourses B. pruiosa 10 Sandy to dony solis B. signical 4 Businand A. sepinoca 5 Decidiocus woodland, disturbed, various habitats Anternetis A. fondis 268 A. tenels 466 Satola S. derinantia 32 Satola S. derinantia 32 Satola S. derinantia 32 Satola S. derinantia 32 Satola S. derinantia 42 Atternetis S. selfoldis 36 Poweris F. popositifuitio 36 Paramonis 7 Postures, foldis, roadsidos, disturbed Poweri, 1976; F. anguestifuitio 36 Vettands, saina and gipsocus solis, disturbed Edwards and ku, 1987; F. anguestifuitio 36 Vettands, saina and gipsocus solis, disturbed Edwards and ku, 1987; F. anguestifuitio 36 Vettands, saina and gipsocus solis, disturbed Formatian ku, 1987; F. anguestifuitio 36 Vettands, saina and gipsocus solis, disturbed Vooree al., 1987; Baragi		B. natalensis	6	Rocky slopes	
B. prulnosa 10 Sandy to story polis B. strust 4 Bushand Amaranthaccee		B. noli-me-tangere	2	Sandy soil, dry watercourses	
B. signation 4 Bushland A spinosa 5 Deciduous woodand, disturbad, various habitats Ammenthacesee A foolaka 288 Uplands Rejondrudu et al., 1988 Satolu S. divarcata 32 Serri-and rocky zones near coastal areas; sait tolerant Elisé and Dis., 2014; Freisg and Kasteret, 20 Astrances Functescnist areas Bushland Material, sandy, saine habitats Powel, 1978; Freisg and Kasteret, 20 Astrances Functescnist areas B Wetlands, sandy, saine habitats Powel, 1978; Freisg and Kasteret, 20 Functional 7 Wetlands, sandy, saine and saine sois, fine textured soils Powel, 1978; Freisg and Kasteret, 20 Functional 7 Wetlands, saine and gappoous soils, disturbed USDANNECS, 2016 Functional 3 Wetlands, woodlands, sandy, disturbed Functional Functional 6 Sand dure specialist Moore at al., 1987; Moore at al., 1987; Functinal <td< td=""><td></td><td>B. pruinosa</td><td>19</td><td>Sandy to stony soils</td><td></td></td<>		B. pruinosa	19	Sandy to stony soils	
B. espinose 5 Deciduous woodland, disturbed, various habitats Anamathaccae A facialize 268 Uplands Rejenducu et al., 1986 Saloola S. divariata 32 Semi-and nocky zones near coastal areas; salt tolerant Voznesenskaya et al., 20 Sackbassiae S. divariata 32 Semi-and nocky zones near coastal areas; salt tolerant Voznesenskaya et al., 20 Astenscae F Frotag and Kadentz, 20 Frotag and Kadentz, 20 Astenscae F Powel, 1978; Edwards and Ku, 1987; F. anomab 44 F Edwards and Ku, 1987; F. fanomab 44 F F F. fanomab 45 F F F. fanorab 77 Wetands, sondiands, sandy, disturbed F F. fanomab 45		B. sinuata	4	Bushland	
Amaranthoceae At envala 268 Uplands Rejendudu <i>et al.</i> , 1986 Sakola S. dvariotat 32 Semi-arid nocky zones near coastal areas; selt tolerant Upresenskaya <i>et al.</i> , 20 Sakola S. sudvicusa 3 Putanda, sandy, saline habitats Fields and Disk, 2014; Freitag and Kadrent, 20 Asteroceae F F. popositiola 16 Pasturos, fields, nodsides, disturbed Powel, 1978; Edwards and Ku, 1987; F. angustibula 16 Pasturos, fields, nodsides, disturbed Powel, 1978; Edwards and Ku, 1987; F. angustibula 16 Wetlands, saline and gypsecus solis, disturbed Formalismina F. angustibula 16 Wetlands, saline and gypsecus solis, disturbed Formalismina F. invaria 7 Wetlands, saline and gypsecus solis, disturbed Formalismina F. invaria 3 Disturbed, semilarid solis Hedge and Patil, 1980; Moore <i>et al.</i> , 1987 Parthenium F. invaria 10 Disturbed, meninid solis Hedge and Patil, 1990; Moore <i>et al.</i> , 1987; Paraginaceae F D. oranothusceum 164 Sand dure specialist Forhich, 1978; Moore <i>et al.</i> , 2007 Patterotium E. dranotoxia 12		B. espinosa	5	Deciduous woodland, disturbed, various habitats	
Atternanthere A. facolde 268 Uplands Rejendrudu et al., 1986 Salsola S. divaricata 32 Serni-arid rocky zones near coastal areas; sait tolerant Vancesenskays et al., 20 Sadobasia S. advaricata 32 Serni-arid rocky zones near coastal areas; sait tolerant Vancesenskays et al., 20 Acternacea Febrevia F. pubescens 8 Wetands, alkaline and saline soils, fine textured soils Powell, 1976; F. argostificia 36 Patures, fields, noadsides, disturbed Edwards and ku, 1987; F. argostificia 36 Patures, fields, noadsides, disturbed Edwards and ku, 1987; F. argostificia 16 Patures, fields, noadsides, disturbed Edwards and ku, 1987; F. argostificia 3 Wetlands, woodlends, sandy, disturbed Edwards and ku, 1987; F. argostificia 17 Wetlands, woodlends, sandy, disturbed Fields and Patil, 1980; F. argostificia 3 Disturbed, mainy dry or saline soils Hedge and Patil, 1980; Parthenium P. hysterophorus 11 Disturbed, mainy dry or saline soils Hedge and Patil, 1980; Bradiscaeee 5 Sonoravisis 3 Disturbed Lissona Diplotaxis 0 encoldedee Sand dune specialist Frohidan Salonich,	Amaranthaceae				
A karalia 446 Sakola S. diviarian 32 Sakola S. sedoides 3 Pateraceae Feliag and Kadent, 20 Reverie F. oposettolia Asteraceae F. oposettolia F. angustificitia 16 Pasturea, fields, nadsides, disturbed Edwards, and Ku, 1997; F. angustificitia 16 Pasturea, fields, roadsides, disturbed USDA/NRCS, 2016 F. interaction 7 Wetlands, saline and gypasous solis, disturbed Edwards and Ku, 1997; F. interaction 7 Partentum Pasturea, fields, modelinds, sandy, disturbed F. interaction 11 Disturbed, seminid solis Paraginaceae 11 Disturbed, seminid solis Proteinia 0. encoides 2328 Disturbed 0. unuralis 4288 Grazed grassiands, disturbed USDA/NRCS, 2016 M. sincica	Alternanthera	A. ficoidea	268	Uplands	Rajendrudu <i>et al.</i> , 1986
Satole S. divaricata 32 Semi-and rocky zones near coastal areas; salt tolerant Vaznesenkaya et al. 22 Sadobassia S. sodoides 3 Ruderal, sandy, saline habitats Fielda and Dite, 2014, Freitag and Kaderet, 20 Asteraceae F. pubescens 8 Wetlands, aikaline and saline soits, fine textured soits Powell, 1975; Edwards and Ku, 1987; F. anomata 44 F. chlorandbila 16 Pastures, fields, roadsides, disturbed Edwards and Ku, 1987; F. fordina 3 Wetlands, saline and gypseous soits, disturbed Edwards and Ku, 1987; F. fordina 3 Wetlands, sandy, alisturbed F. fordina F. fordina 3 Disturbed; semiarid soits Hedge and Patil, 1980; Parthenium P. hysterophorus 11 Disturbed; mainly dry or saline soits Hedge and Patil, 1980; Moore et al., 1887 Haldotropium H. agoarase 5 Vogan at al., 2007 Haliotropium H. agoarase 5 Open site, lay, gravel soits Moore et al., 1987; Brasitacacas Usbar/Micks, et al. 28 Grainfields, orchards, disturbed Usbar/Mick, 1978; Moricandia M. nitres 285 Holday and Chollet, 19 Moricandia M. nitres 281 Grainfields, orchards, disturbed Usbar/Mick, 2016 <td></td> <td>A. tenella</td> <td>446</td> <td></td> <td></td>		A. tenella	446		
Sedobassia S. sedoldes 3 Puderal, sandy, saline habitats Elikä and Dik, 2014; Freitag and Kadrent, 20 Asteraceae F. pubescens 8 Wetlands, alkaline and saline soits, fine textured soits Powell, 1975; F. oppositiolia 16 F. oppositiolia 16 Pastures, fields, roadsides, disturbed USDA/NRCS, 2016 F. anomala 44 4 F. choraenfaia 16 Wetlands, saline and gypseous soils, disturbed Edwards and Ku, 1987; F. financia 77 Wetlands, woodlands, sandy, saline, disturbed F. financia F. innanis 77 Wetlands, woodlands, sandy, disturbed F. sonoransis Parthenium R. hysterophorus 11 Disturbed, mainy dry or saline soils Hedge and Patil, 1980; Moore et al., 1987 Boraginaceae Heidotopium 164 Sand dune specialist Frohich, 1078; Vogen et al., 2007 Paraginaceae D. encoides 2328 Disturbed Apel et al., 1997; Open site, lay, gravel soits Brasaiccaeae D. encoides 2328 Disturbed USDA/NRCS, 2016 Moricandia M. ninans 285 Hedge and Child, 1076; Mainica USDA/NRCS, 2016 Moricandia M. ninans 285 Hedday and Childs, 10 Moricandia M. ninans 286 Hedday, noch	Salsola	S. divaricata	32	Semi-arid rocky zones near coastal areas; salt tolerant	Voznesenskaya <i>et al.</i> , 2013
Actaraceae Feteraceae Feteraceae Feteraceae Feteraceae Feteraceae Flaveria Fe publicators 8 Wetlands, alkaline and saline soils, fine textured aoils Powell, 1978; Fe oppositifolia 36 Edwards and Ku, 1987; Fe anguestholia 16 Pastures, fields, roadsides, disturbed USDNNRCS, 2016 Fe anomaka 44 Fe chlonaeolia 16 Wetlands, saine and gypseous soils, disturbed Fe fordana 3 Wetlands, saine, disturbed Fe fordana 3 Wetlands, saine, disturbed Fe fordana 3 Disturbed, seniarid soils Fe anomaka 44 Fe chlonaeolia 16 Disturbed, seniarid soils Fe anomaka 5 Fe inearks 77 Wetlands, woodlands, sandy, disturbed Fe anomaka 5 Fe	Sedobassia	S. sedoides	3	Ruderal, sandy, saline habitats	Eliáš and Dítě, 2014;
Figuria F. pubescens 8 Wetlands, alkaline and saline soils, fine textured soils Powell, 1978; Filewria F. oppositivitia 36 Edwards and Ku, 1987; F. angustivitia 16 Pastures, fields, roadsides, disturbed USDANNCS, 2016 F. angustivitia 16 Wetlands, saline, and gypesous soils, disturbed USDANNCS, 2016 F. foncinan 3 Wetlands, woodlands, sandy, alsturbed F. foncinan F. indicana 3 Wetlands, woodlands, sandy, alsturbed F. foncinan F. indicana 3 Wetlands, woodlands, sandy, alsturbed F. foncinan F. annosissima 6 Disturbed, semiarid soils Hedge and Patil, 1980; Parthenium P. hysterophorus 11 Disturbed, mainy dry or saline soils Hedge and Patil, 1980; Boraginaceae H. iogronse 5 Vogen et al., 1987; Vogen et al., 2007 Pholetaris D. erucoides 2328 Disturbed Apel et al., 1997; USDANNCS, 2016 D. terutolia 7226 Wetlands, wet woods, mountain slopes, aandy, disturbed Holeday and Cholet, 19 Moricandia M. arterias 82 Graanfields, orchards, disturbed	Asteraceae				Freitag and Kadereit, 2014
F oppositiolia 36 Edwards and Ku, 1987; F angustifolia 16 Pastures, fields, roadsides, disturbed USDAVNRCS, 2016 F angustifolia 16 Wetlands, woodlands, sandy, salne, disturbed USDAVNRCS, 2016 F invaria 3 Wetlands, woodlands, sandy, salne, disturbed Iteration F invaria 3 Wetlands, woodlands, sandy, disturbed Iteration F invariance 6 Edwards and Ku, 1987; Wetlands, woodlands, sandy, disturbed F ramosissima 6 Edwards and Ku, 1987; Wetlands, woodlands, sandy, disturbed F ramosissima 6 Edwards and Ku, 1987; Wetlands, woodlands, sandy, disturbed Parthenium P. hysterophorus 11 Disturbed, mainly dry or saline solis Hedge and Patil, 1980; Boraginaceae H. convolvulaceum 164 Sand dune specialist Vogen et al., 2007 H. lagoense 5 Dynaralis Assocaeae Vogen et al., 2007 Diplotaxis D. erucoides 2328 Disturbed USDAVNRCS, 2016 Moricandia M. nitres 285 Grazed grasslands, disturbed USDAVNRCS, 2016 Moricandia M. nitres </td <td>Flaveria</td> <td>F. pubescens</td> <td>8</td> <td>Wetlands, alkaline and saline soils. fine textured soils</td> <td>Powell, 1978:</td>	Flaveria	F. pubescens	8	Wetlands, alkaline and saline soils. fine textured soils	Powell, 1978:
F. angustifolia 16 Pastures, fields, roadsides, disturbed USDANNECS, 2016 F. anomala 44 F. chicrafolia 16 Wetlands, saline and gypseous solis, disturbed F. functaria 3 Wetlands, woodlands, sandy, disturbed F. innearis 77 Wetlands, woodlands, sandy, disturbed F. ramosissima 6 F. sonorensis 3 Disturbed, semiarid solis Parthenium P. hysterophorus H. lagoense 5 Heilotrophum 164 Sand dune specialist Vogan et al., 1987 Vogan et al., 2007 H. groggli Partenium P. invarialis Algoense 5 Heilotrophum 164 Sand dune specialist Vogan et al., 2007 Vogan et al., 2007 Vogan et al., 2007 Pressciaceaea D. muralis Diplotaxis D. erucoides D. muralis 4828 M. signica 14 M. signica 12 M. signica 14		E oppositifolia	36		Edwards and Ku. 1987:
F. anomala 44 F. chornalovia 16 Vetlands, voodlands, sandy, saline, disturbed F. floridena 3 Vetlands, woodlands, sandy, disturbed F. inearis 77 Vetlands, wet woodlands, sandy, disturbed Helge and Patil, 1980; Boraginaceae Frohich, 1978; Helge and Patil, 1980; Helge and Patil, 1987; Helge and Patil, 1980; More et al., 1987 Brassicaceae Disturbed Frohich, 1978; Vogan et al., 2007 Moricandia M. nitens M. sinicica 14 M. sinica 14		F. angustifolia	16	Pastures, fields, roadsides, disturbed	USDA/NBCS, 2016
F. chloradolia 16 Wetlands, sainly, sailine, disturbed F. finadrana 3 Wetlands, woodlands, sandy, sailine, disturbed F. linaaris 77 Wetlands, woodlands, sandy, disturbed F. annosissima 6 6 F. sonorensis 3 Disturbed, semiarid soils Parthenium P. tysterophorus 11 Disturbed, semiarid soils Parthenium P. tysterophorus 11 Disturbed, semiarid soils Poraginaceae Heidge and Patil, 1980; Moore et al., 1987 Moore et al., 1987 Heilotropium H. convolvulaceum 164 Sand dune specialist Wogan et al., 2007 H. lagoense 5 Den site, lay, gravel soils Partal, 1997; USDANNCS, 2016 D. erucoides 2328 Disturbed Apel et al., 1997; USDANNCS, 2016 D. terui/bia 7206 Wetlands, vet woods, mountain slopes, sandy, disturbed Holaday and Chollet, 19 Moricandia M. nitens 285 Holaday and Chollet, 19 USDANNCS, 2016 M. suffruiticosa 32 Grainfields, orchards, disturbed Sectorova et al., 2010 Euphorbia E. acuta 7 Arid, ro		F. anomala	44		002/11/100,2010
F. floridana 3 Wetlands, woodlands, sandy, aline, disturbed F. finearis 77 Wetlands, woodlands, sandy, disturbed F. amooissima 6 F. sonorensis 3 Disturbed, semiarid solis Parthenium P. hysterophorus 11 Disturbed, mainly dry or saline solis Hedge and Patil, 1980; Moore et al., 1987 Boraginaceae		F. chloraefolia	16	Wetlands, saline and gypseous soils, disturbed	
F. linearis 77 Wetlands, woodlands, sandy, disturbed F. ramosissima 6 F. sonorensis 3 Disturbed, semiarid soils Hedge and Patil, 1980; Moore et al., 1987 Boraginaceae Heldotropium Heldotropium H. convolvulaceum Heldotropium H. convolvulaceum Heldotropium H. convolvulaceum Heldotropium H. convolvulaceum Maggili 49 Open site, lay, gravel soils Prohilch, 1978; Vogan et al., 2007 Brassicaceae D. erucoides 2328 Disturbed Disturbed Apel et al., 1987; USDANNECS, 2016 USDANNECS, 2016 D. muralis 4828 Grazed grasslands, disturbed Moricandia M. nitens 285 M. sinaica 14 USDANNECS, 2016 M. sinaica 14 Voznesenskaya et al., 2010 Euphorbia C. paradoxa 7 Arid, rocky soils Voznesenskaya et al., 2010 Euphorbia E. acuta 7 Euphorbia E. acuta 7 Elphorbia E. acuta 7 <td></td> <td>F. floridana</td> <td>3</td> <td>Wetlands, woodlands, sandy, saline, disturbed</td> <td></td>		F. floridana	3	Wetlands, woodlands, sandy, saline, disturbed	
F. ramosissima 6 F. sonorensis 3 Disturbed, semiarid soils Parthenium P. hysterophorus The interm P. hysterophorus Boraginaceae Heilotropium H. convolvulaceum Heilotropium H. convolvulaceum H. ageense 5 Dipotaxis D. erucoides Dipotaxis D. erucoides Dipotaxis D. erucoides Moricandia M. sinaica M. sinaica 14 Moricandia M. sinaica Martines 825 Moricandia M. sinaica Martines 821 Grainfields, orchards, disturbed Voznesenskaya et al., 2010 Learnetice USDANRCS, 2016 Moricandia M. sinaica 14 M. spinosa 1 M. synosa 1 M. sinaica 14 M. synosa 1 M. sinaica 1 M. synosa 1 M. synosa 1 M. synosa 1 Moricandia		F. linearis	77	Wetlands, woodlands, sandy, disturbed	
F. sonorensis 3 Disturbed, semiarid solls Parthenium P. hysterophorus 11 Disturbed, mainly dry or saline solls Hedge and Patil, 1980; Moore et al., 1987 Boraginaceae Heldotropium H. convolvulaceum 164 Sand dune specialist Fohlich, 1976; Vagen et al., 2007 Heldotropium H. convolvulaceum 164 Sand dune specialist Fohlich, 1976; Vagen et al., 2007 Brassicaceae Disturbed Open site, lay, gravel solls Apel et al., 1997; Brassicaceae Disturbed Apel et al., 1997; USDAVNECS, 2016 D. muralis 428 Grazed grasslands, disturbed USDAVNECS, 2016 M. ritens 285 USDAVNECS, 2016 USDAVNECS, 2016 M. sinaica 14 USDAVNECS, 2016 USDAVNECS, 2016 M. signicsa 14 USDAVNECS, 2016 Econorova et al., 202 M. signicsa 14 USDAVNECS, 2016 Econorova et al., 202 M. signicsa 14 USDAVNECS, 2016 Econorova et al., 202 Cleomaceae Cleomaceae Trinifields, orchards, disturbed Sage et al., 2011 Euphorbia E. acuta 7 Dry limestone upla		F. ramosissima	6		
Parthenium P. hysterophorus 11 Disturbed, mainly dry or saline soils Hedge and Patil, 1980; Moore et al., 1987 Boraginaceae Heilotropium H. convolvulaceum 164 Sand dune specialist Frohlich, 1978; Vogan et al., 2007 Heilotropium H. convolvulaceum 164 Sand dune specialist Frohlich, 1978; Hagreggii 49 Open site, lay, gravel soils Frohlich, 1978; Brassicaceae Diplotaxis D. erucoides 2328 Disturbed Diplotaxis D. erucoides 2328 Grazed grasslands, disturbed USDA/NRCS, 2016 Moricandia M. ritens 285 Holaday and Chollet, 19 USDA/NRCS, 2016 Moricandia M. sulfruticosa 32 Holaday and Chollet, 19 USDA/NRCS, 2016 M. sinica 14 USDA/NRCS, 2016 USDA/NRCS, 2016 Euphorbiaceae Cleome C. paradoxa 7 Arid, rocky soils Voznesenskaya et al., 2010 Euphorbiaceae Euphorbiaceae Foolorova et al., 2010 Feodorova et al., 2010 Euphorbiaceae E. lata 52 Dry limestone uplands, semi-arid scrublands; calcareous soils, calcareous soils, calcareous soils, sandy plains Moluginaceae Hypertelis spergulacea 16 Edwards and Ku, 1987; Christin et al., 2011b; Christin et al., 2011b; Chris		F. sonorensis	3	Disturbed, semiarid soils	
Boraginaceae Moore et al., 1987 Heliotropium H. convolvulaceum 164 Sand dune specialist Frohlich, 1978; H. igoense 5 Vogan et al., 2007 K. igoense Sand dune specialist Vogan et al., 2007 Brassicaceae Disturbed D. erucoides 2328 Disturbed Apel et al., 1997; USDAVNRCS, 2016 D. muralis 4828 Grazed grasslands, disturbed USDAVNRCS, 2016 Moricandia M. nitens 285 Wetlands, wet woods, mountain slopes, sandy, disturbed Holaday and Chollet, 19 Mosinica 14 Wittinds, wet woods, mountain slopes, sandy, disturbed USDAVNRCS, 2016 Moricandia M. nitens 285 Holaday and Chollet, 19 M. sinica 14 USDAVNRCS, 2016 Holaday and Chollet, 19 M. suffruticosa 32 M. arvensis 821 Grainfields, orchards, disturbed Feodorova et al., 2010 Euphorbiaceae Elphorbiaceae 7 Arid, rocky soils Voznesenskaya et al., 2011 Feodorova et al., 2011 Euphorbia E. lata 52 Dry limestone uplands, semi-arid scrublands; calcareous soils, calcareous soils, sandy plains Sage et al., 2011	Parthenium	P. hvsterophorus	11	Disturbed, mainly dry or saline soils	Hedge and Patil. 1980:
Boraginaceae Heliotropium H. convolvulaceum 164 Sand dune specialist Frohlich, 1978; Heliotropium H. lagoense 5 Vogan et al., 2007 H. greggii 49 Open site, lay, gravel soils Frohlich, 1978; Brassicaceae D. erucoides 2328 Disturbed Apel et al., 1997; D. muralis 4828 Grazed grasslands, disturbed USDA/NRCS, 2016 Moricandia M. nitens 285 Holaday and Chollet, 19 M. sinaica 14 USDA/NRCS, 2016 USDA/NRCS, 2016 M. suffruiticosa 32 Grainfields, orchards, disturbed USDA/NRCS, 2016 M. suffruiticosa 32 Grainfields, orchards, disturbed Voznesenskaya et al., 20 Elephorbia C. paradoxa 7 Arid, rocky soils Voznesenskaya et al., 20 Euphorbia E. acuta 7 Dry limestone uplands, semi-arid scrublands, disturbed Sage et al., 2011 Euphorbia E. idat 52 Dry limestone uplands, semi-arid scrublands, clacareous soils, calcareous soils, sandy plains Sage et al., 2011 Molluginaceae Ferdorova et al., 2010 Paramollugo nudicaulis 203 Ruderal habitats lacking competition Christin et al., 2011b; Molluginaceae Hypertelis spergulacea 16 Ed		<u> </u>			Moore <i>et al.</i> , 1987
Heliotropium H. convolvulaceum 164 Sand dune specialist Frohlich, 1978; Vogan et al., 2007 H. iggoense 5 Vogan et al., 2007 Brassicaceae Open site, lay, gravel soils Prohlich, 1978; Diplotaxis D. erucoides 2328 Disturbed Apel et al., 1997; D. muralis 4828 Grazed grasslands, disturbed USDA/NRCS, 2016 Moricandia M. nitens 285 Holaday and Chollet, 19 M. sinaica 14 USDA/NRCS, 2016 USDA/NRCS, 2016 M. sufficiticosa 32 Eacuta 7 Arid, rocky soils Voznesenskaya et al., 20 Elefonre C. paradoxa 7 Arid, rocky soils Voznesenskaya et al., 2010 Feodorova et al., 2010 Euphorbiaceae E acuta 7 Dry limestone uplands, semi-arid scrublands, disturbed Sage et al., 2011 Molluginaceae E Johy innestone uplands, semi-arid scrublands; calcareous s	Boraginaceae				
H. lagoense5Vogan et al., 2007H. greggii49Open site, lay, gravel solisBrassicaceae	Heliotropium	H. convolvulaceum	164	Sand dune specialist	Frohlich, 1978;
H. greggii49Open site, lay, gravel soilsBrassicaceaeDisturbedApel et al., 1997; USDAVNRCS, 2016DiplotaxisD. erucoides2328Grazed grasslands, disturbedUSDAVNRCS, 2016D. teruifolia7206Wetlands, wet woods, mountain slopes, sandy, disturbedHoladay and Chollet, 19 USDAVNRCS, 2016MoricandiaM. nitens285Holaday and Chollet, 19 USDAVNRCS, 2016M. sinaica14USDAVNRCS, 2016M. spinosa1USDAVNRCS, 2016M. arvensis821Grainfields, orchards, disturbedCleomaC. paradoxa7Arid, rocky soilsVoznesenskaya et al., 20 Feodorova et al., 2010EuphorbiaceaeE2Dry limestone uplands, semi-arid scrublands, disturbedSage et al., 2011EuphorbiaE. lata52Dry limestone uplands, semi-arid scrublands; calcareous soils, calche outcropsSage et al., 2011Molluginaceae16Edwards and Ku, 1987; Paramollugo nudicaulis203Ruderal habitats lacking competitionChristin et al., 2011b; Christin et al., 2011b; Christin et al., 2011b; Cureannettion		H. lagoense	5		Vogan <i>et al.</i> , 2007
Brassicaceae D. erucoides 2328 Disturbed Apel et al., 1997; D. muralis A. 2328 Grazed grasslands, disturbed USDAVNRCS, 2016 D. tenuifolia 7206 Wetlands, wet woods, mountain slopes, sandy, disturbed Holaday and Chollet, 19 Moricandia M. nitens 285 Holaday and Chollet, 19 M. sinaica 14 USDAVNRCS, 2016 M. sinaica 14 USDAVNRCS, 2016 M. siniaca 14 USDAVNRCS, 2016 M. arvensis 821 Grainfields, orchards, disturbed Cleomaceae E E Preadoxa 7 Euphorbia E. acuta 7 Dry limestone uplands, semi-arid scrublands, disturbed Sage et al., 2011 Euphorbia E. lata 52 Dry limestone uplands, semi-arid scrublands; calcareous soils, caliche outcrops Sage et al., 2011 Kolluginaceae E Dry limestone uplands, semi-arid scrublands; calcareous soils, caliche outc		H. greggii	49	Open site, lay, gravel soils	
DiplotaxisD. erucoides2328DisturbedApel et al., 1997; USDAVNRCS, 2016D. muralis4828Grazed grasslands, disturbedUSDAVNRCS, 2016D. tenuifolia7206Wetlands, wet woods, mountain slopes, sandy, disturbedHoladay and Chollet, 19MoricandiaM. nitens285Holaday and Chollet, 19M. sinaica14USDAVNRCS, 2016M. suffruticosa32USDAVNRCS, 2016M. arvensis821Grainfields, orchards, disturbedCleomaceaeCparadoxaCleomaceae7Arid, rocky soilsEuphorbiaE. acuta7E. johnstonii1Dry limestone uplands, semi-arid scrublands, disturbedSage et al., 2011Dry limestone uplands, semi-arid scrublands; calcareous soils, caliche outcropsMolluginaceae1Sage et al., 2011HypertelisHypertelis spergulacea16Molluginaceae16Edwards and Ku, 1987; Faramollugo nudicaulisMollugoM. verticillata16Fields, gardens, disturbed, moist to dry soils; lacking competitionUSDAVNRCS, 2016	Brassicaceae				
D. muralis4828Grazed grasslands, disturbedUSDA/NRCS, 2016D. tenuifolia7206Wetlands, wet woods, mountain slopes, sandy, disturbedMoricandiaM. nitens285Holaday and Chollet, 19M. sinaica14USDA/NRCS, 2016M. sinosa1USDA/NRCS, 2016M. suffruitosa32Jacoba (Sacoba (Sacob	Diplotaxis	D. erucoides	2328	Disturbed	Apel <i>et al.</i> , 1997;
D. tenuifolia7206Wetlands, wet woods, mountain slopes, sandy, disturbedMoricandiaM. nitens285Holaday and Chollet, 19M. sinaica14USDA/NRCS, 2016M. spinosa1USDA/NRCS<, 2016		D. muralis	4828	Grazed grasslands, disturbed	USDA/NRCS, 2016
Moricandia M. nitens 285 Holaday and Chollet, 19 M. sinaica 14 USDA/NRCS, 2016 M. sinicica 1 USDA/NRCS, 2016 M. sinicica 32 USDA/NRCS, 2016 M. suffruticosa 32 USDA/NRCS, 2016 Cleomaceae 6rainfields, orchards, disturbed Voznesenskaya et al., 20 Cleome C. paradoxa 7 Arid, rocky soils Voznesenskaya et al., 2010 Euphorbiaceae Euphorbia E. acuta 7 Dry limestone uplands, semi-arid scrublands, disturbed Sage et al., 2011 Euphorbia E. lata 52 Dry limestone uplands, semi-arid scrublands; calcareous soils, caliche outcrops Sage et al., 2011 Kolluginaceae Thypertelis Pypertelis spergulacea 16 Edwards and Ku, 1987; Paramollugo nudicaulis Mollugo M. verticillata 1686 Fields, gardens, disturbed, moist to dry soils; lacking USDA/NRCS, 2016		D. tenuifolia	7206	Wetlands, wet woods, mountain slopes, sandy, disturbed	
M. sinaica 14 USDA/NRCS, 2016 M. spinosa 1 M. suffruticosa 32 M. arvensis 821 Cleomaceae Grainfields, orchards, disturbed Cleome C. paradoxa 7 Arid, rocky soils Voznesenskaya et al., 20 Euphorbiaceae Feodorova et al., 2010 Euphorbia E. acuta 7 Dry limestone uplands, semi-arid scrublands; disturbed Sage et al., 2011 Euphorbia E. acuta 7 E. johnstonii 1 Dry limestone uplands, semi-arid scrublands; calcareous soils, calcine outcrops E. lata 52 Dry limestone uplands, semi-arid scrublands; calcareous soils, sandy plains Molluginaceae Hypertelis spergulacea 16 Hypertelis Hypertelis spergulacea 16 Paramollugo nudicaulis 203 Ruderal habitats lacking competition Christin et al., 2011b; Mollugo M. verticillata 1686 Fields, gardens, disturbed, moist to dry soils; lacking USDA/NRCS, 2016	Moricandia	M. nitens	285		Holaday and Chollet, 1984;
M. spinosa 1 M. suffruticosa 32 M. arvensis 821 Grainfields, orchards, disturbed Cleomaceae Cleome C. paradoxa 7 Arid, rocky soils Voznesenskaya et al., 20 Feodorova et al., 2010 Euphorbiaceae Euphorbia E. acuta 7 Dry limestone uplands, semi-arid scrublands, disturbed Sage et al., 2011 E. johnstonii 1 Dry limestone uplands, semi-arid scrublands; calcareous soils, caliche outcrops E. lata 52 Molluginaceae Hypertelis Hypertelis spergulacea 16 Feideral habitats lacking competition Christin et al., 2011b; Mollugo M. verticillata		M. sinaica	14		USDA/NRCS, 2016
M. suffruticosa 32 M. arvensis 821 Grainfields, orchards, disturbed Cleomaceae Cleome C. paradoxa 7 Arid, rocky soils Voznesenskaya et al., 20 Cleome C. paradoxa 7 Arid, rocky soils Voznesenskaya et al., 2010 Euphorbiaceae E E Euphorbia E. acuta 7 Dry limestone uplands, semi-arid scrublands, disturbed Sage et al., 2011 Euphorbia E. acuta 7 Dry limestone uplands, semi-arid scrublands; calcareous soils, caliche outcrops Sage et al., 2011 E. lata 52 Dry limestone uplands, semi-arid scrublands; calcareous soils, sandy plains Sage et al., 2011 Molluginaceae Feodorova 1 Dry limestone uplands, semi-arid scrublands; calcareous soils, sandy plains Sage et al., 2011 Molluginaceae Feodorova 1 Baramollugo nudicaulis Cleowed Mollugo M. verticillata 1686 Fields, gardens, disturbed, moist to dry soils; lacking Christin et al., 2011b; Christin et al., 2011b; Christin et al., 2011b;		M. spinosa	1		
M. arvensis821Grainfields, orchards, disturbedCleomaceaeCleomeC. paradoxa7Arid, rocky soilsVoznesenskaya et al., 20CleomeC. paradoxa7Arid, rocky soilsVoznesenskaya et al., 2010EuphorbiaceaeEuphorbiaE. acuta7Dry limestone uplands, semi-arid scrublands, disturbedSage et al., 2011EuphorbiaE. acuta7Dry limestone uplands, semi-arid scrublands; calcareous soils, caliche outcropsSage et al., 2011E. lata52Dry limestone uplands, semi-arid scrublands; calcareous soils, sandy plainsSage et al., 2011MolluginaceaeHypertelis spergulacea16Edwards and Ku, 1987; Christin et al., 2011b;MollugoM. verticillata1686Fields, gardens, disturbed, moist to dry soils; lackingUSDA/NRCS, 2016		M. suffruticosa	32		
Cleomaceae C. paradoxa 7 Arid, rocky soils Voznesenskaya et al., 20 Euphorbiaceae Eacuta 7 Dry limestone uplands, semi-arid scrublands, disturbed Sage et al., 2011 Euphorbia E. acuta 7 Dry limestone uplands, semi-arid scrublands; calcareous soils, caliche outcrops Sage et al., 2011 Euphorbia E. lata 52 Dry limestone uplands, semi-arid scrublands; calcareous soils, sandy plains Sage et al., 2011 Molluginaceae Feadmolugo nudicaulis 203 Ruderal habitats lacking competition Edwards and Ku, 1987; Christin et al., 2011b; Mollugo M. verticillata 1686 Fields, gardens, disturbed, moist to dry soils; lacking USDA/NRCS, 2016		M. arvensis	821	Grainfields, orchards, disturbed	
Cleome C. paradoxa 7 Arid, rocky soils Voznesenskaya et al., 20 Euphorbiaceae Euphorbia E. acuta 7 Dry limestone uplands, semi-arid scrublands, disturbed Sage et al., 2011 Euphorbia E. acuta 7 Dry limestone uplands, semi-arid scrublands, disturbed Sage et al., 2011 Euphorbia E. acuta 7 Dry limestone uplands, semi-arid scrublands; calcareous soils, caliche outcrops Sage et al., 2011 E. lata 52 Dry limestone uplands, semi-arid scrublands; calcareous soils, sandy plains Sage et al., 2011 Molluginaceae Hypertelis Hypertelis spergulacea 16 Edwards and Ku, 1987; Paramollugo nudicaulis Mollugo M. verticillata 1686 Fields, gardens, disturbed, moist to dry soils; lacking USDA/NRCS, 2016	Cleomaceae				
Euphorbiaceae Euphorbia E. acuta 7 Dry limestone uplands, semi-arid scrublands, disturbed Sage et al., 2011 Euphorbia E. johnstonii 1 Dry limestone uplands, semi-arid scrublands; calcareous soils, caliche outcrops Sage et al., 2011 E. lata 52 Dry limestone uplands, semi-arid scrublands; calcareous soils, sandy plains Sage et al., 2011 Molluginaceae Hypertelis spergulacea 16 Edwards and Ku, 1987; Paramollugo nudicaulis Mollugo M. verticillata 1686 Fields, gardens, disturbed, moist to dry soils; lacking USDA/NRCS, 2016	Cleome	C. paradoxa	7	Arid, rocky soils	Voznesenskaya <i>et al.</i> , 2007;
EuphorbiaE. acuta7Dry limestone uplands, semi-arid scrublands, disturbedSage et al., 2011E. johnstonii1Dry limestone uplands, semi-arid scrublands; calcareous soils, caliche outcropsSage et al., 2011E. lata52Dry limestone uplands, semi-arid scrublands; calcareous soils, sandy plainsSage et al., 2011MolluginaceaeHypertelis spergulacea16Edwards and Ku, 1987; Christin et al., 2011b;MollugoM. verticillata1686Fields, gardens, disturbed, moist to dry soils; lackingUSDA/NRCS, 2016	Euphorbiaceae				reouorova <i>et al.</i> , 2010
E. johnstonii 1 Dry limestone uplands, semi-arid scrublands; calcareous soils, caliche outcrops E. lata 52 Dry limestone uplands, semi-arid scrublands; calcareous soils, sandy plains Molluginaceae Hypertelis spergulacea 16 Hypertelis Hypertelis spergulacea 16 Paramollugo nudicaulis 203 Ruderal habitats lacking competition Mollugo M. verticillata 1686	Euphorbia	E. acuta	7	Dry limestone uplands, semi-arid scrublands, disturbed	Sage <i>et al.</i> , 2011
E. lata 52 Dry limestone uplands, semi-arid scrublands; calcareous soils, sandy plains Molluginaceae Hypertelis spergulacea 16 Edwards and Ku, 1987; Paramollugo nudicaulis Mollugo M. verticillata 1686 Fields, gardens, disturbed, moist to dry soils; lacking USDA/NRCS, 2016		E. johnstonii	1	Dry limestone uplands, semi-arid scrublands; calcareous soils,	
Molluginaceae Hypertelis spergulacea 16 Edwards and Ku, 1987; Paramollugo nudicaulis 203 Ruderal habitats lacking competition Christin et al., 2011b; Mollugo M. verticillata 1686 Fields, gardens, disturbed, moist to dry soils; lacking USDA/NRCS, 2016		E. lata	52	Dry limestone uplands, semi-arid scrublands; calcareous soils.	
Molluginaceae Hypertelis spergulacea 16 Edwards and Ku, 1987; Hypertelis Paramollugo nudicaulis 203 Ruderal habitats lacking competition Christin et al., 2011b; Mollugo M. verticillata 1686 Fields, gardens, disturbed, moist to dry soils; lacking USDA/NRCS, 2016				sandy plains	
Hypertelis Hypertelis spergulacea 16 Edwards and Ku, 1987; Paramollugo nudicaulis 203 Ruderal habitats lacking competition Christin et al., 2011b; Mollugo M. verticillata 1686 Fields, gardens, disturbed, moist to dry soils; lacking USDA/NRCS, 2016	Molluginaceae				
Paramollugo nudicaulis 203 Ruderal habitats lacking competition Christin et al., 2011b; Mollugo M. verticillata 1686 Fields, gardens, disturbed, moist to dry soils; lacking USDA/NRCS, 2016	Hypertelis	Hypertelis spergulacea	16		Edwards and Ku, 1987;
Mollugo M. verticillata 1686 Fields, gardens, disturbed, moist to dry soils; lacking USDA/NRCS, 2016		Paramollugo nudicaulis	203	Ruderal habitats lacking competition	Christin <i>et al.</i> , 2011 <i>b</i> ;
companion	Mollugo	M. verticillata	1686	Fields, gardens, disturbed, moist to dry soils; lacking competition	USDA/NRCS, 2016
Portulacaceae	Portulacaceae				
Portulaca P. cryptopetala 35 Moist, warm habitats Voznesenskaya et al., 2 Scrophulariaceae	<i>Portulaca</i> Scrophulariaceae	P. cryptopetala	35	Moist, warm habitats	Voznesenskaya <i>et al.</i> , 2010
Anticharis A. ebracteata 5 Quartz gravel Khoshravesh et al., 201	Anticharis	A. ebracteata	5	Quartz gravel	Khoshravesh et al., 2012
A. juncea 7 Farm, granite rocks		A. juncea	7	Farm, granite rocks	,

Table 1. Continued

Comparison	Species	n	Habitat	Reference ^a
Cyperaceae				
Eleocharis	E. atropurpurea	355	Wetlands, disturbed	Roalson et al., 2010;
	E. brainii	6		USDA/NRCS, 2016
	E. flavescens	182	Wetlands	
	E. nigrescens	53	Wetlands, woodlands, sandy and peaty soils	
	E. subfoliata	6		
Poaceae				
Alloteropsis	Zambezian A. semialata	13	Shady, miombo woodlands	Lundgren <i>et al.</i> , 2015; 2016
Homolepis	H. aturensis	411	Rainforest	Khoshravesh et al., 2016
Neurachne	N. minor	69	Arid soils, often shallow	Prendergast and Hattersley,
				1985;
				Hattersley et al., 1986
Steinchisma	S. cuprea	8		Edwards and Ku, 1987;
	S. decipiens	130		USDA/NRCS, 2016
	S. hians	285	Wetlands	
	S. spathellosum	57		
	S. stenophyllum	6	Wetlands	

^a References describe local habit. Those characterising C₃-C₄ intermediate status are italicized.

of the wettest quarter), minimum temperature (i.e. minimum temperature of the coldest month), number of annual frost days, minimum precipitation (i.e. precipitation of the driest month), number of annual wet days, percentage of maximum possible sunshine, rainfall seasonality, and fire return interval (FRI) were also used to characterize the environment. The rainfall seasonality data, which come from Lehmann et al. (2011), are based on an index that indicates how evenly dispersed rainfall is throughout a year, with zero indicating equal rain in all months and a value of 100 indicating that all annual rain fell within a single month (see Supplementary Table S1). The FRI data, which come from Archibald et al. (2013), are based on an index that indicates the growth time available to plants between fires, with greater FRI values indicating less frequent fire regimes and longer regrowth periods (Supplementary Table S1). Climate and soil fertility data were obtained by overlaying the occurrence coordinates onto high-resolution raster layers obtained from WorldClim (http:// www.worldclim.org; Hijmans et al., 2005), Climatic Research Unit (New et al., 2002; http://www.ipcc-data.org), and the Harmonized World Soils Database (HWSD; FAO/IIASA/ISRIC/ISSCAS/JRC, 2012; http://webarchive.iiasa.ac.at; Supplementary Table S1).

Data from the dominant soil type of the topsoil layer were extracted from the HWSD raster layers. Specifically, four soil parameters were used to characterize soil fertility and are described below as per the HWSD classifications (FAO/IIASA/ISRIC/ISSCAS/JRC, 2012). First, the percentage of organic carbon (OC) in the topsoil is a particularly good indicator of soil health, with moderate to high OC present in fertile, well-structured soils. Soils with less than 0.2% or 0.6% OC are considered very poor and poor, respectively, and soils with greater than 2% OC are considered fertile. Total exchangeable bases (TEB) is the sum of exchangeable cations of sodium, calcium, magnesium, and potassium in the topsoil and, as such, soils with more TEB have better fertility. The cation exchange capacity (CEC) of the topsoil indicates the total nutrient fixing capacity of the soil, with low CEC soils, such as sandy soils with CEC less than 4 cmol kg⁻¹, having little resilience and low nutrient stores, while soils with greater than 10 cmol kg⁻¹ have high nutrient fixing capacity and are suitable for crops. The pH of the topsoil indicates the acidity and alkalinity of the soil, with pH values less than 4.5, as found in mangrove soils or acid sulfate soils, being extremely acid and poorly draining, pH values of 5.5-7.2 are considered neutral, and those above 8.5 are alkaline and consequently may inhibit the bio-availability of nutrients in the soils.

The variation among environmental variables at individual plant occurrence points was summarized using a principal component analysis (PCA), as implemented in the FactoMineR package in R (Lê *et al.*, 2008). A first PCA was conducted on climate variables,

as described in Lundgren *et al.* (2015), and a second PCA was completed on the four soil fertility variables.

Testing for phylogenetic effects on the ecological sorting of C_3 – C_4 lineages

To determine whether the ecological sorting of C_3 - C_4 taxa is partially determined by the phylogenetic lineage to which they belong, we tested for an effect of the abiotic environment of the closest C₃ relatives on the sorting of C₃-C₄ lineages, and for an effect of the C₃-C₄ habitat on the sorting of the C4 relatives. For this purpose, we identified sets of C3-C4 species and their C3 and C4 sister groups. An angiosperm-wide phylogeny including all of the C_3 - C_4 groups and their relatives was unavailable, and thus groups were defined based on phylogenetic trees published for the different clades (see Supplementary Table S2). This endeavor was complicated by taxa with unknown photosynthetic types. In addition, while some small groups have well resolved phylogenetic trees with clearly identified photosynthetic types (e.g. Flaveria; McKown et al., 2005), many other systems have only been partially sampled or phenotyped. Nodes separating clearly identified C_3 and C_3 – C_4 , or C_3 – C_4 and C_4 groups were selected, ignoring any groups with unknown photosynthetic types. For some C3-C4 lineages, either the C_3 or the C_4 sister group could not be identified. For example, Portulaca cryptopetala is nested in a group of C₄ species and the related species are potentially CAM (Ocampo and Columbus, 2010; Arakaki et al., 2011), and several C₃-C₄ intermediates lack close C₄ relatives (Supplementary Table S2). In cases where C_3-C_4 taxa were mixed with species of unknown type, the C_3-C_4 taxa were grouped and compared with a more distant clade with clearly established C3 taxa (e.g. Eleocharis; Roalson et al., 2010; Paramollugo; Christin et al., 2011b), and C_3 – C_4 groups forming paraphyletic clades with respect to C₄ species were merged (e.g. Flaveria; McKown et al., 2005; Lyu et al., 2015). However, C₃-C₄ belonging to the same family, but with distinct C_3 and C_4 relatives were considered separately (Supplementary Table S2). In other cases, where the phylogeny or photosynthetic categorization for a genus was incomplete, only taxa with clearly assigned photosynthetic types were considered and grouped based on the photosynthetic type independently of the phylogenetic relationships (e.g. Heliotropium; Supplementary Table S2). This approach decreases the number of contrasts, as closely related, yet independent C_3 - C_4 lineages might have been merged. However, it ensures that no erroneous comparisons are included, for example when available plastid phylogenies do not perfectly match genomewide relationships (e.g. Lyu et al., 2015). Indeed, our analyses only compare photosynthetic types within groups that are monophyletic,

C_3 - C_4 ecology | Page 5 of 14

even if these are incompletely sampled. In conclusion, while the incomplete phylogenetic knowledge probably decreases our analytical power, our approach is statistically conservative.

The abiotic environment of C_3 and C_4 relatives of C_3 - C_4 lineages was assessed as described for C3-C4 taxa. For each species and each variable, the median was used to avoid extreme values, which could be misidentifications or erroneously reported occurrence points. To obtain one value per group, the average of the medians was calculated for each C₃-C₄ lineage, its C₃ sister group, and its C₄ sister group. A phylogenetic effect on the sorting of C_3 - C_4 taxa was evaluated with correlation tests between the climatic environment of the C_3 group and the environment inhabited by its closely related C_3 - C_4 group. In the absence of phylogenetic effects, the values for C_3 - C_4 taxa should be independent from those observed in the closely related C_3 group. These analyses were repeated by testing for a correlation between the environment of the C_3 - C_4 lineage and that of the closely related C_4 group. Because many variables failed the Shapiro-Wilk test for normality, correlations were tested using the non-parametric Kendall rank correlation, which does not assume normality and is unbiased by small sample sizes. These tests were performed on the primary axis of the climate and soil PCAs, as well as on four climate variables (i.e. growing season temperature, minimum temperature, minimum precipitation, and rainfall seasonality) and two soil fertility variables (i.e. topsoil organic matter and TEB). These variables were selected to capture both temperature and precipitation patterns, which have classically been linked to photosynthetic types (reviewed in Christin and Osborne, 2014), and the two soil variables were selected to characterize the overall soil fertility. P-values of all tests were compared with a threshold corrected for eight comparisons (two PCA primary axes and six independent environmental variables; 0.00625).

Testing for differences among photosynthetic types, while controlling for phylogeny

Phylogenetic effects and photosynthetic types can both potentially contribute to the ecological sorting of plants. We consequently tested for differences among photosynthetic types, while controlling for phylogenetic effects. A sister group approach was adopted to compare C_3 , C_3 - C_4 , and C_4 photosynthetic types within each lineage (see Supplementary Table S2), an approach that removes phylogenetic effects in a similar manner to phylogenetic independent contrasts (Garland et al., 1992). Indeed, a directional shift consistently associated with a given photosynthetic type within each group is strongly indicative of non-random processes (Vamosi and Vamosi, 2005; Edwards and Still, 2008; Edwards and Smith, 2010; Spriggs et al., 2014). The age of the different groups varies (Christin et al., 2011a, 2014), which means that the amount of divergence between the photosynthetic types is not necessarily constant among groups. However, our analyses are based on rank or sign tests and are therefore unaffected by variation in the magnitude of differences between photosynthetic types within each group. Consistent shifts between photosynthetic types were evaluated as the number of clades where the mean of the medians of the type of interest (either C_3 - C_4 or C_4) was larger than the mean of the medians of the comparison (C_3 and C_3 - C_4 , respectively). The probability of observing such a shift with a random process (i.e. a probability of success of 0.5) was calculated based on a binomial distribution, in a two-tailed sign test. These tests were performed on the same eight variables used to assess the phylogenetic effects on C3-C4 sorting, and using the same corrections for multiple testing.

Results

Geographic distribution of C_3 – C_4 intermediates

As a whole, C_3-C_4 intermediates are broadly distributed across Australia, Asia, Europe, Africa, and the Americas (Fig. 1). While the sampling is clearly biased toward western Europe, Central America, and specific countries (e.g. Israel), the data clearly indicate that intermediates can occur in most tropical and temperate regions. The C_3-C_4 occurrences span a latitudinal belt between 50°S and 65°N (Fig. 1, Table 2,

Fig. 1. Global distribution of C_3 - C_4 taxa. Each dot represents an occurrence point for a single C_3 - C_4 intermediate plant.

and Supplementary Dataset S1), with Diplotaxis intermediates reaching from northern Europe to the south of Australia, Africa, and South America (see Supplementary Fig. S1). *Eleocharis* and *Mollugo* C₃-C₄ plants are similarly widespread, spreading across the Americas, Europe, Africa, Asia, and Australia (Table 2, Supplementary Figs S1 and S2, and Supplementary Dataset S1). Other intermediate lineages, such as Alloteropsis, Neurachne, Blepharis, and Sebodassia, have smaller geographic ranges, according to the available occurrence data (Table 2, Supplementary Figs S1 and S2, and Supplementary Dataset S1). Many intermediates occur well below sea level, along the Dead Sea (e.g. Diplotaxis erucoides, Moricandia sinaica, and Parthenium hysterophorus), in The Netherlands (e.g. Diplotaxis tenuifolia and Diplotaxis muralis), or along the Gulf of Mexico (e.g. Flaveria linearis, Eleocharis atropurpurea; Table 2, Supplementary Figs S1 and S2, and Supplementary Dataset S1). C_3-C_4 intermediates also occur at high elevations, along the Andes mountains (e.g. Steinchisma decipiens, Steinchisma hians, Mollugo verticillata, Diplotaxis muralis), in Lesotho (e.g. Diplotaxis muralis, Blepharis espinosa), and in the highlands of Mexico (e.g. Mollugo verticillata, Berkheya spinosissma; Table 2; Supplementary Figs S1 and S2; Supplementary Dataset S1).

Environmental distribution of C₃-C₄ intermediates

As a whole, C_3-C_4 taxa are broadly distributed across environments, inhabiting a variety of warm biomes, from tropical rainforests to deserts (Fig. 2C, D and Tables 1 and 2).

In particular, C_3-C_4 eudicots are distributed within tropical seasonal forests, savannas, the woodland/grassland/shrubland habitats, temperate forests, and deserts (Fig. 2C, G). C_3-C_4 monocots are primarily distributed within tropical seasonal forests and savannas (Fig. 2D, H). Unlike C_3-C_4 eudicots, they are largely excluded from deserts and are present in tropical rainforests. They also have a smaller presence in the woodland/grassland/shrubland habitats than eudicot intermediates (Fig. 2D, H).

While the exact conditions in which the plants grow are not captured by average climatic variables, especially for annuals, annual precipitation may be virtually absent (e.g. Mollugo verticillata in the warm coastal deserts of Peru) or over 7700 mm (e.g. Homolepis aturensis in the tropical rainforests of Colombia) in habitats supporting C₃-C₄ intermediates (Table 2 and Supplementary Dataset S1). C_3-C_4 plants can inhabit regions with mean annual temperatures just below zero (e.g. Diplotaxis muralis, Diplotaxis tenuifolia, Eleocharis flavescens), but also as high as 30°C (e.g. Paramollugo nudicaulis; Table 2 and Supplementary Dataset S1). They exist in areas with winter temperatures down to -25°C (e.g. Diplotaxis muralis and Mollugo verticillata in Ontario and Saskatchewan, Canada) and 285 days of frost per year (e.g. Mollugo verticillata in the Rocky Mountains of Colorado and Eleocharis flavescens in the Andes of Chile) and growing season temperatures as low as -10°C (e.g. *Eleocharis flavescens* in Wyoming) but also above 32°C (e.g. Paramollugo nudicaulis in Pakistan, Heliotropium convolvulacea in California, Eleocharis atropur*purea* in Western Australia, and *Cleome paradoxa* in Ethiopia; Supplementary Dataset S1). These broad climatic variables do

Table 2. Ranges of geography, climate, and soil characteristics of C_3 – C_4 taxa within each lineage group

C ₃ –C ₄ group	n	Latitude	Altitude (m)	MAT (°C)	MAP (mm)	OC (% weight)	TEB (cmol/kg)	CEC (cmol/kg)	pH (–log (H⁺))
Eudicots									
Alternanthera	714	35°S–51°N	0–2873	8–29	363–4523	0.1–16	0.2-76	1–76	3.3–8.4
Anticharis	12	29°S–22°S	289–1831	18–23	27–442	0.3–0.7	1.5–16	2–16	5.5-8.6
Blepharis	84	33°S-12°S	182-2555	10–23	100-1228	0.1–1.6	0–41	0–41	4.9–9.8
Cleome	7	11°N–16°N	23–777	25–29	38–503	0.3–0.7	6.8–17	6–17	6.5–8.1
Diplotaxisª	14362	50°S-65°N	-409 to 3959	–2 to 26	33–2990	0.1–39.4	0.8-68.2	1–87	4.1-8.8
Euphorbia	60	25°N–38°N	59–1913	11–23	245–736	0.4–1.8	4.4-31.1	5–23	6.0-8.4
Flaveria	209	17°N–35°N	-1 to 3116	10–27	214-1581	0.3–14	1.7–83	4–83	4.5-8.4
Heliotropium	218	15°S–40°N	0–2543	9–26	63–2183	0.1–14	1.1-44	2–44	4.7-8.4
Hypertelis	16	29°S–28°S	68–1086	16–23	41–98	0.4–0.7	4.0-16	4–16	6.5–8.5
Mollugo ^a	1889	38°S–53°N	–5 to 4209	0–30	1–4048	0.1–35.3	0.2-83	2–85	3.3–10.2
Moricandiaª	1153	35°S-60°N	-251 to 2701	6–25	10-1328	0.2-2.7	2.0-46.6	3–43	4.4-8.7
Partheniumª	11	22°S-33°N	–228 to 904	18–23	325–1685	0.4–1.6	1.7-45.2	6–44	4.9-8.1
Portulaca	35	34°S–17°S	2–1948	15–26	308-1749	0.4–2.5	0.6-43.4	2–43	4.9–9.0
Salsola	32	28°N–40°N	5-1066	14-21	97–545	0.5-1.4	4.5-24.3	5–16	6.4-8.0
Sedobassia	3	43°N–48°N	64–97	10-12	527-540	1.1–1.7	38.0-40.9	23–43	6.9–7.8
Monocots									
Eleocharis	604	35°S–51°N	-1 to 3805	–1 to 29	163-4614	0.1–35.3	0.2-76	2–84	3.3–8.9
Alloteropsis	13	13°S–6°S	958-2264	18–24	812-1439	0.7–2.5	0.8–12	5–20	4.6-6.5
Homolepis	411	18°S–20°N	0–3548	8–28	671–7731	0.1–28	0.2-83	1–85	3.3–8.3
Neurachne	69	34°S–23°S	205-637	14–24	166–1128	0.3–2.1	2.1–18.1	2–15	4.5-8.3
Steinchismaª	486	35°S-37°N	2–4524	3–27	229–3104	0.2–5.3	0.2–45.2	2–46	3.5–9

CEC, topsoil cation exchange capacity; MAP, mean annual precipitation; MAT, mean annual temperature; OC, topsoil organic matter content; TEB, topsoil total exchangeable bases.

^a C₃–C₄ lineages lacking close C₄ relatives.

Fig. 2. Comparative C_3-C_4 distributions across biomes. The median \pm 10th and 90th quantiles for mean annual temperature (MAT) and precipitation (MAP) are plotted for eudicot (left) and monocot (right) C_3 sister (blue; A, B), C_3-C_4 (green, C, D), and C_4 sister (red, E, F) taxa. The bottom row overlaps the three distributions for eudicots (left, G) and monocots (right, H). All panels contain biome classifications (see Ricklefs, 2008) for tropical rainforest (TrRF), temperate rainforest (TeRF), temperate forest (TF), tropical seasonal forest (TSF), woodland/grassland/shrubland (WGS), savanna (S), desert (D), taiga (Ta), and tundra (Tu).

not encapsulate the micro-environment of each species. Of the plants that inhabit the coldest climates, *Mollugo verticillata* and *Diplotaxis muralis* are annuals, and the perennial *Eleocharis flavescens* occurs in aquatic environments connected to warm thermal water (Simpson and Simpson, 2015). However, these regional climatic variables do highlight the broad-scale variation among C_3 - C_4 taxa. The broad ecological distribution of C_3 - C_4 taxa found in the global raster datasets is supported by species-specific habitat descriptions from the literature (Table 1). These descriptions report C_3 - C_4 plants from deciduous woodlands, grasslands, wetlands, scrublands, and mountainous slopes, as well as from a variety of soil types (e.g. from fine-textured, to sandy, gravelly, and rocky soils; Table 1).

Phylogenetic effects on the sorting of C_3 – C_4 taxa and their C_4 relatives

The C₃ relatives of C₃–C₄ lineages occur in a variety of temperature regimes from dry habitats to moderately wet ones, a pattern that is similar in monocot and eudicot systems (Fig. 2A, B). The medians of the C₃–C₄ lineages are widely distributed along the primary PCA axis for climatic variables, which explains 50.23% of the variation, and these are not correlated to those of their close C₃ relatives (Fig. 3A, C, E and Table 3). However, the soil fertility conditions experienced by C₃– C₄ plants, extracted from the primary PCA axis for soil variables, which explains 55.58% of the variation, are correlated to those of their C₃ relatives, which might be driven by topsoil

Fig. 3. Distribution of photosynthetic types in ecological space. The median \pm 10th and 90th quantiles for the first two principal component axes (PC1 and PC2) of the climate (A) and soil fertility (B) PCAs for C₃ sister (blue), C₃–C₄ (green), and C₄ sister (red) taxa. The associated variable factor maps for the climate and soil fertility PCAs are shown in (C, D). Shifts in the primary axis of the climatic (E) and soil fertility (F) PCAs, as comparisons between C₃–C₄ taxa and their closely related C₃ (blue) and C₄ (red) sister taxa within each phylogenetic group. Comparisons of C₃–C₄ taxa and their C₃ relatives in groups that lack close C₄ relatives are presented as blue triangles. Black lines indicate the 1:1 relationship. Linear relationships are shown for correlations significant after correction for multiple testing (*P*<0.00625), in the relevant color (see Table 3).

TEB (Fig. 3B, D, F and Tables 3 and 4). Similarly, variation in minimum precipitation experienced by C_3-C_4 lineages is correlated to that of closely related C_3 lineages (Fig. 4C and Table 3), indicating a strong phylogenetic effect.

The close C_4 relatives of C_3-C_4 plants exist along a broad range of temperatures in eudicots, but are restricted to warmer areas in monocot species, resulting in less overlap between photosynthetic types in the latter than in the former (Fig. 2E–H). The variation among C_4 lineages on the first axis of the climate variable PCA is correlated with that of their C_3-C_4 relatives (Fig. 3A, E and Table 3), indicating an overall phylogenetic effect on the sorting of C_4 lineages. The soil fertility conditions experienced by C_4 plants, assessed with the PCA on soil variables, is weakly correlated to that of their C_3-C_4 relatives (Fig. 3B, F and Table 3). Among the individual variables, the minimum precipitation and rainfall seasonality experienced by C_4 lineages are correlated to that of their C_3-C_4 relatives (Fig. 4C, D and Table 3). Moreover, the growth season temperature and topsoil properties of C_4 lineages are also weakly correlated to those of their close C_3-C_4 relatives; however, these do not remain significant after correcting for multiple tests (Fig. 4A, E, F and Table 3). Thus, the precipitation, and possibly the temperature and soil fertility, preferences of C_4 lineages depend, to varying degrees, on phylogenetic effects.

Effects of photosynthetic types after correcting for phylogenetic signals

The five C_3-C_4 lineages without close C_4 relatives do not behave in the same manner as the lineages that did evolve C_4 photosynthesis. With the exception of *Eleocharis*, which contains aquatic plants that grow in warm waters within cold climates, four of these five lineages are those that occupy the coldest environments experienced by intermediate plants (Table 2) and are primarily in habitats with higher minimum precipitation than their C_3 relatives (Fig. 4C). All five of these C_3-C_4 lineages inhabit areas with more organic soils than their close C_3 relatives (Fig. 4E). These lineages without C_4 relatives are also among the most widely distributed of all intermediates groups (i.e. *Diplotaxis, Mollugo verticillata*; Supplementary Figs S1 and S2), which likely reflects an ability to tolerate diverse ecological conditions.

Considering the C_3-C_4 lineages with close C_4 relatives, their distributions are significantly shifted toward positive values of the primary axis of the climate variable PCA, which corresponds to drier and warmer environments, compared with their paired C_3 relatives (Fig. 3A, C, E and Table 4). This shift is reflected within the individual

Table 3. Kendall correlation tests for environmental mediansamong photosynthetic types across angiosperms

	$C_3 - C_4 vs.$	C₃	C ₄ vs. C ₃ –C ₄		
Variable	P-value	tau	P-value	tau	
Climate PCA axis 1	0.27	0.19	0.0059*	0.52	
Soils PCA axis 1	0.0032*	0.50	0.02	0.46	
Growth season temperature	0.14	0.25	0.03	0.42	
Minimum temperature	0.78	-0.05	0.85	0.05	
Minimum precipitation	0.0041*	0.48	0.0025*	0.59	
Rainfall seasonality	0.07	0.31	0.0011*	0.63	
Topsoil organic content	0.92	0.02	0.02	0.47	
Total exchangeable bases	0.04	0.34	0.03	0.42	

* Tests that were considered significant, using a threshold of 0.00625, which corresponds to a 0.05 threshold corrected for eight tests.

 Table 4. Tests for environmental shifts among photosynthetic types across angiosperms

	C ₃ -C ₄ vs. C ₃ (all lineages)		C_3 - C_4 vs. C_3 (only lineages with close C_4 relatives)		C ₄ vs. C ₃ -C ₄	
Variable	Observed ^a	P-value	Observed ^a	P-value	Observed ^a	P-value
Climate PCA axis 1	14/19	0.019	12/14	0.0018*	8/15	0.61
Soil fertility PCA axis 1	10/19	0.65	8/14	0.42	6/15	0.61
Growth season temperature	14/19	0.019	13/14	0.00012*	5/15	0.30
Minimum temperature	13/19	0.064	12/14	0.0018*	8/15	0.61
Minimum precipitation	7/19	0.36	3/14	0.057	7/15	1
Rainfall seasonality	14/19	0.019	12/14	0.0018*	6/15	0.61
Topsoil organic content	11/19	0.36	6/14	0.79	5/15	0.30
Total exchangeable bases	8/19	0.65	5/14	0.42	6/15	0.61

^a The number of points higher in the focal group is indicated.

* Tests that were considered significant, using a threshold of 0.00625, which corresponds to a 0.05 threshold corrected for eight tests.

variables, with C_3-C_4 lineages occupying regions with warmer growing season temperatures, higher minimum winter temperatures, and more seasonal rainfall patterns than their C_3 relatives (Table 4). Therefore C_3-C_4 intermediates tend to inhabit relatively warm regions, regardless of the habitat in which their C_3 relatives occur, while their preference for habitat aridity does depend on the minimum precipitation experienced by their C_3 relatives (Fig. 4A–C and Table 4).

None of the studied environmental parameters, including both of the composite PCA variables and the six individual environmental variables, show a significant shift between close C_3 - C_4 and C_4 relatives (Table 4). Therefore, with the data available here, the C_4 physiology is not linked to consistent ecological shifts when controlling for phylogenetic effects.

Discussion

A uniform C_3 – C_4 niche does not exist

C₃-C₄ taxa are remarkably widespread across geographical and environmental space, maintaining the ability to exist in both typical C_3 and C_4 niches (Figs 1–3 and Supplementary Figs S1 and S2). It should be noted that the GBIF occurrence data, if anything, represent a subset of the total geographic range for each species and the realized geographical and environmental ranges of these taxa may be larger than presented here, especially for groups distributed in poorly sampled areas, such as Africa and southeast Asia. However, since related taxa tend to occur in similar regions, a sampling bias would likely affect the different photosynthetic types within a lineage to a similar degree, and the dataset is therefore still representative of the relative distribution of each type. Furthermore, several of the C_3 - C_4 groups likely include more intermediate species than we present here, as we considered only those taxa for which the photosynthetic type has been assessed with confidence. For instance, the photosynthetic type of only one species within the genus Homolepis has been determined (Khoshravesh et al., 2016), while the remaining

Fig. 4. Ecological shifts between photosynthetic types. Shifts in growing season temperature, minimum temperature of the coldest month, minimum precipitation of the driest month, rainfall seasonality, topsoil organic matter content, and topsoil total exchangeable bases (as labelled) between C_3-C_4 taxa and their C_3 (blue) and C_4 (red) close relatives were evaluated. Each point represents an average for all species within each comparison group (see Methods). Comparisons of C_3-C_4 taxa and their C_3 relatives in groups that lack close C_4 relatives are presented as blue triangles. Black lines indicate the 1:1 relationship. Linear relationships are shown for correlations significant after correction for multiple testing (P<0.00625), in the relevant color (see Table 3).

five congeners have not yet been characterized. The same is true of *Eleocharis*, where several species have been characterized as only possible intermediates (Roalson *et al.*, 2010) and, as such, were not included in the study. Finally, it is unknown whether the various occurrences for each taxon are using the same photosynthetic type, or whether these vary intraspecifically across space or environments, as has been observed in the grass *Alloteropsis semialata* (Lundgren *et al.*, 2015, 2016), and suggested for other taxa (e.g. Khoshravesh *et al.*, 2012). When this variation had been reported but not clarified, the taxon was ignored, but in most cases, only a limited number of plants have been screened per species. With these caveats in mind, it is clear that the physiology of C_3-C_4 plants does not strongly restrict the migration of species geographically or into new environments.

Evolutionary history influences the realized ecology

While differences between sister groups can result from shifts in either group, they do allow for comparisons among character states independent of phylogeny. Interestingly, these analyses clearly show that the precipitation niches of C_{3^-} C_4 taxa are statistically correlated to those of their close C_3 relatives, specifically with respect to minimum precipitation.

C_3 - C_4 ecology | Page 11 of 14

This suggests that C_3 - C_4 plants can occur in arid habitats if their C₃ relatives are already adapted to do so, and not specifically as a result of the C₃-C₄ physiology. Similarly, statistical evidence indicates that soil preferences of C3-C4 are correlated to those of their close C_3 relatives. C_3 - C_4 physiology is only part of the attributes that a plant can use to tolerate environmental conditions, which tend to be similar among relatives (Christin and Osborne, 2014). These attributes, which can include life-history traits, growth strategies, and other non-photosynthetic characters, lead to a certain niche conservatism. Moreover, related taxa tend to occur within the same regions as a function of their biogeography, which increases the likelihood of being found in similar environments. Both precipitation variables are similarly correlated between C_3 - C_4 and C_4 relatives, likely explaining previously reported differences among C_4 lineages in aridity preferences (Teeri and Stowe, 1976; Stowe and Teeri, 1978; Taub, 2000; Christin and Osborne, 2014). The influence of evolutionary history on the realized C₄ niche could go beyond precipitation preference, as our data suggest that temperature and soil fertility between C₃-C₄ and closely related C₄ groups are also associated, although this was not significant with our small species sampling.

C_3 – C_4 species shift closer to the C_4 niche

In some cases, C₃-C₄ lineages emerged from groups that already inhabited warm climates, as reported in C_4 grasses (Edwards and Smith, 2010), while in others cases, C₃ relatives exist in cold areas (Fig. 3A, C). Independent of C₃ ecology, the C_3 - C_4 lineages occupy warm habitats, which might reflect the increased temperature tolerance conferred by the C_3-C_4 physiology (Schuster and Monson, 1990). Despite some $C_{3^{-}}$ C₄ taxa persisting in cold regions, the convergence of physiological intermediates in warmer areas, whether that be in wet forests or dry deserts, may have increased the likelihood of further transitions to a C₄ state that occupies a similar temperature niche. Therefore, in terms of temperature, the C_3 - C_4 state brings lineages into warmer habitats that should promote photorespiration and, thus, may encourage selection for C_4 physiology, thereby representing a true bridge between the ancestral C₃ state and C₄ origins. As more detailed phylogenies and updated lists of C3-C4 species become available, further comparative work might be able to distinguish whether this happens via an increase in C₃-C₄ migrations toward warmer habitats or a decrease in their migrations outside of such habitats, since both scenarios would result in a concentration of C_3 - C_4 lineages in warmer habitats than their C_3 relatives.

While precipitation preferences vary tremendously across C_3-C_4 lineages as a function of evolutionary history, these intermediate lineages shifted toward habitats with more rainfall seasonality than their close C_3 relatives, yet no consistent shift was observed between C_3-C_4 plants and their C_4 relatives (Table 4). Phylogenetic models in grasses have previously reported that C_4 origins were accompanied by consistent shifts into drier habitats (Edwards and Smith, 2010), a trend that we suggest is initiated in C_3-C_4 taxa. Direct

measurements and modelling efforts have failed to identify increases in water-use efficiency in intermediates of *Flaveria*, which suggests that the C₃–C₄ advantage is mainly linked to carbon gain, not water saving (Monson, 1989; Vogan and Sage, 2011; Way *et al.*, 2014). However, the xylem architecture was altered during the transition from C₃ to C₃–C₄ species in *Flaveria*, providing protection against cavitation and hence increased drought tolerance (Kocacinar *et al.*, 2008). Such alterations of leaf hydraulics, if consistently associated with the C₃–C₄ type, might explain their observed propensity to migrate to habitats with higher rainfall seasonality, habitats that would promote episodes of water limitations, potentially increasing the pressure for further evolutionary transitions to C₄ photosynthesis (Osborne and Sack, 2012), especially in warm habitats where C₃–C₄ plants tend to occur.

The fate of C_3 – C_4 lineages lacking C_4 relatives

Since all of the taxa included in this study still naturally occur in the wild, they have all persisted in a C_3-C_4 state since their early emergence from C_3 ancestors, which is estimated to be as recent as 2 and as old as 20 Ma, depending on the group (Christin et al., 2011a). However, most of the known C_3-C_4 lineages are related to some C_4 groups, which prove that their ancestors had the ability, at least at some point, to produce C_4 descendants. Clear exceptions include the closely related groups Diplotaxis and Moricandia, which belong to a large family completely lacking C₄ taxa (Brassicaceae). While three other C₃-C₄ groups (Steinchisma, Mollugo verticillata, Parthenium) belong to families with C4 origins, which are included here for other C_3-C_4 groups (Poaceae, Molluginaceae, Asteraceae), they are sufficiently distant from any C_4 group in their phylogenies that one cannot be sure whether their ancestors were able at any point to produce C₄ descendants (Christin et al., 2011b; Grass Phylogeny Working Group II, 2012). It is therefore reasonable to ask whether some attributes of these groups decreased the likelihood of C₄ evolution. While genomics, anatomy, and physiology might play a role (Christin et al., 2013; Bräutigam and Gowik, 2016), the ecology might also affect these evolutionary trajectories. For instance, C3-C4 Moricandia occurs mainly in colder climates, which might decrease pressure for C_4 evolution. Three of the other four C_3 - C_4 groups lacking close C_4 relatives are among the most widespread geographically (see Supplementary Figs S1 and S2), and these groups tend to occur in habitats with relatively high minimum precipitation and fertile soil. While none of these factors should prevent C_4 evolution in itself, it is possible that the realization of the C_3-C_4 phenotype in these groups was successful enough to limit selective pressures for further transitions in photosynthesis.

Conclusions

In this study, we present the first systematic description of the geographical and ecological distribution of C_3-C_4 intermediates. Our investigations reveal that C_3-C_4 taxa are found in a very large range of conditions and habitats, from dry deserts

to tropical rainforests and cold wetlands. This variation is partially explained by evolutionary history, with C_3 - C_4 lineages tending to grow in habitats with similar precipitation to their C₃ relatives, a conservatism that is further reported onto C_4 lineages. However, C_3 - C_4 taxa inhabit warm climates, independent of the ancestral condition, and shift toward more seasonal rainfall habitats. Our findings indicate that the C_{3-} C₄ condition moves lineages into environments that promote photorespiration and, as such, may facilitate the evolution of a full C₄ pathway. There is, in our dataset, no clear difference between C_3 - C_4 and C_4 in any of the environmental preferences. However, different C4 groups might shift in various directions or extend their niche in ways that are not universal across flowering plants as, for example, it has been suggested that C₄ evolution was linked to different pressures in grasses and chenopods (Osborne and Freckleton, 2009; Kadereit et al., 2012). While group-specific detailed analyses might reveal peculiarities of each lineage, our angiosperm-wide joint analysis of C_3 , C_3 – C_4 , and C_4 groups helps to disentangle the ecological changes that happened during consecutive phases of C₄ evolution. Indeed, shifts toward drier and warmer habitats occurred in C_3 - C_4 lineages, but others, such as geographic expansions, might be specific to the C₄ state. When detailed phenotype information becomes available for a larger number of taxa, similar analyses might identify the changes linked to each individual C₄ component, bringing together anatomy, biochemistry, physiology, and evolutionary ecology.

Supplementary data

Supplementary data are available at JXB online.

Dataset S1. Occurrence and environmental data for C_3 - C_4 taxa and their close C_3 and C_4 relatives used in this study.

Fig. S1. Distribution of C_3 sister (blue), C_3 - C_4 (green), and C_4 sister (red) taxa in eudicot comparison groups.

Fig. S2. Distribution of C_3 sister (blue), C_3 - C_4 (green), and C_4 sister (red) taxa in monocot comparison groups.

Table S1. Details on the environmental data used in this study.

Table S2. Details of C_3 - C_4 species used in this study and the C_3 and C_4 sister taxa within each comparison group.

Acknowledgements

This work was supported by a European Research Council grant (ERC-2014-STG-638333) and a Royal Society University Research Fellowship (URF120119).

References

Apel P, Horstmann C, Pfeffer M. 1997. The *Moricandia* syndrome in species of the Brassicaceae – evolutionary aspects. Photosynthetica **33**, 205–215.

Arakaki M, Christin PA, Nyffeler R, Lendel A, Eggli U, Ogburn RM, Spriggs E, Moore MJ, Edwards EJ. 2011. Contemporaneous and recent radiations of the world's major succulent plant lineages. Proceedings of the National Academy of Sciences of the United States of America **108**, 8379–8384. Archibald S, Lehmann CER, Gómez-Dans JL, Bradstock RA. 2013. Defining pyromes and global syndromes of fire regimes. Proceedings of the National Academy of Sciences of the United States of America **110**, 6442–6447.

Atkinson RR, Mockford EJ, Bennett C, Christin PA, Spriggs EL, Freckleton RP, Thompson K, Rees M, Osborne CP. 2016. C₄ photosynthesis boosts growth by altering physiology, allocation and size. Nature Plants **2**, 16038.

Bauwe H. 1984. Photosynthetic enzyme activities and immunofluorescence studies on the localization of ribulose-1,5-bisphosphate carboxylase/oxygenase in leaves of C_3 , C_4 , and C_3 - C_4 intermediate species of *Flaveria* (Asteraceae). Biochemie und Physiologie der Pflanzen **179**, 253–268.

Bauwe H, Chollet R. 1986. Kinetic properties of phosphoenolpyruvate carboxylase from C_3 , C_4 , and C_3 - C_4 intermediate species of *Flaveria* (Asteraceae). Plant Physiology **82**, 695–699.

Bräutigam A, Gowik U. 2016. Photorespiration connects C_3 and C_4 photosynthesis. Journal of Experimental Botany **67**, 2953–2962.

Chamberlain S, Ram K, Barve V, Mcglinn D. 2016. rgbif: Interface to the Global 'Biodiversity' Information Facility 'API'. R package version 0.9.3. https://CRAN.R-project.org/package=rgbif.

Christin PA, Osborne CP. 2014. The evolutionary ecology of C₄ plants. New Phytologist **204**, 765–781.

Christin PA, Osborne CP, Chatelet DS, Columbus JT, Besnard G, Hodkinson TR, Garrison LM, Vorontsova MS, Edwards EJ. 2013. Anatomical enablers and the evolution of C_4 photosynthesis in grasses. Proceedings of the National Academy of Sciences of the United States of America **110**, 1381–1386.

Christin PA, Osborne CP, Sage RF, Arakaki M, Edwards EJ. 2011a. C_4 eudicots are not younger than C_4 monocots. Journal of Experimental Botany **62**, 3171–3181.

Christin PA, Sage TL, Edwards EJ, Ogburn RM, Khoshravesh R, Sage RF. 2011b. Complex evolutionary transitions and the significance of C_3 - C_4 intermediate forms of photosynthesis in Molluginaceae. Evolution 65, 643–660.

Chollet R, Ogren WL. 1975. Regulation of photorespiration in $\rm C_3$ and $\rm C_4$ species. The Botanical Review **41,** 137–179.

Edwards EJ, Ogburn RM. 2012. Angiosperm responses to a low- CO_2 world: CAM and C_4 photosynthesis as parallel evolutionary trajectories. International Journal of Plant Sciences **173**, 724–733.

Edwards EJ, Smith SA. 2010. Phylogenetic analyses reveal the shady history of C_4 grasses. Proceedings of the National Academy of Sciences of the United States of America **107**, 2532–2537.

Edwards EJ, Still CJ. 2008. Climate, phylogeny and the ecological distribution of C_4 grasses. Ecology Letters **11**, 266–276.

Edwards GE, Ku MSB. 1987. Biochemistry of C_3 - C_4 intermediates. In: **Hatch MD, Boardman NK**, eds. The biochemistry of plants: A comprehensive treatise. Vol 10. Photosynthesis. New York: Academic Press, 275–325.

Ehleringer JR, Cerling TE, Helliker BR. 1997. C₄ photosynthesis, atmosphere CO₂, and climate. Oecologia **112**, 285–299.

Eliáš P, Dítě D. 2014. *Sedobassia sedoides* (Pall.) Freitag & G. Kadereit in Slovakia: native species or alien weed? Acta Fytotechnica et Zootechnica **16,** 74–77.

Epstein HE, Lauenroth WK, Burke IC, Coffin DP. 1997. Productivity patterns of C_3 and C_4 functional types in the U.S. Great Plains. Ecology **78**, 722–731.

FAO/IIASA/ISRIC/ISSCAS/JRC. 2012. Harmonized World Soil Database (version 1.2). Rome, Italy: FAO and Laxenburg, Austria: IIASA.

Feodorova TA, Voznesenskaya EV, Edwards GE, Roalson EH. 2010. Biogeographic patterns of diversification and the origins of C_4 in *Cleome* (Cleomaceae). Systematic Botany **35**, 811–826.

Fisher AE, McDade LA, Kiel CA, Khoshravesh R, Johnson MA, Stata M, Sage TL, Sage RF. 2015. Evolutionary history of *Blepharis* (Acanthaceae) and the origin of C₄ photosynthesis in section Acanthodium. International Journal of Plant Sciences **176,** 770–790.

Freitag H, Kadereit G. 2014. C_3 and C_4 leaf anatomy types in Camphorosmeae (Camphorosmoideae, Chenopodiaceae). Plant Systematics and Evolution **300**, 665–687.

Frohlich MW. 1978. Systematics of *Heliotropium* section Orthostachys in Mexico. PhD thesis, Harvard University.

Garland T, Harvey PH, Ives AR. 1992. Procedures for the analysis of comparative data using phylogenetically independent contrasts. Systematic Biology **41**, 18–32.

Grass Phylogeny Working Group II. 2012. New grass phylogeny resolves deep evolutionary relationships and discovers C_4 origins. New Phytologist **193**, 304–312.

Hatch MD. 1987. C_4 photosynthesis: a unique blend of modified biochemistry, anatomy and ultrastructure. Biochimica et Biophysica Acta **895,** 81–106.

Hatch MD, Osmond, CB. 1976. Compartmentation and transport in C_4 photosynthesis. Encyclopedia of Plant Physiology **3**, 144–184.

Hattersley PW, Wong SC, Perry S, Roksandic Z. 1986. Comparative ultrastructure and gas-exchange characteristics of the C_3 - C_4 intermediate *Neurachne minor* S. T. Blake (Poaceae). Plant, Cell and Environment **9**, 217–233.

Heckmann D, Schulze S, Denton A, Gowik U, Westhoff P, Weber AP, Lercher MJ. 2013. Predicting C_4 photosynthesis evolution: modular, individually adaptive steps on a Mount Fuji fitness landscape. Cell **153**, 1579–1588.

Hedge BA, Patil TM. 1980. Physiological studies on *Parthenium hysterophorus* under different ecological conditions. Biovigyanam **6,** 15–20

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology **25,** 1965–1978.

Holaday AS, Chollet R. 1984. Photosynthetic/photorespiratory characteristics of C_3 - C_4 intermediate species. Photosynthesis Research 5, 307–323.

Hyde MA, Wursten BT, Ballings P, Coates Palgrave M. 2016a. Flora of Mozambique. http://www.mozambiqueflora.com/index.php (accessed 22 July 2016).

Hyde MA, Wursten BT, Ballings P, Coates Palgrave M. 2016b. Flora of Zimbabwe. http://www.zimbabweflora.co.zw/index.php (accessed 22 July 2016).

Hylton CM, Rawsthorne S, Smith AM, Jones DA, Woolhouse HW. 1988. Glycine decarboxylase is confined to the bundle-sheath cells of leaves of C_3 - C_4 intermediate species. Planta **175**, 452–459.

Kadereit G, Ackerly D, Pirie MD. 2012. A broader model for C_4 photosynthesis evolution in plants inferred from the goosefoot family (Chenopodiaceae s.s.). Proceedings of the Royal Society of London. Series B, Biological Sciences **279**, 3304–3311.

Kennedy RA, Laetsch WM. 1974. Plant species intermediate for C₃, C₄ photosynthesis. Science **184**, 1087–1089.

Khoshravesh R, Hossein A, Sage TL, Nordenstam B, Sage RF. 2012. Phylogeny and photosynthetic pathway distribution in *Anticharis* Endl. (Scrophulariaceae). Journal of Experimental Botany **63**, 5645–5658.

Khoshravesh R, Stinson CR, Stata M, Busch FA, Sage RF, Ludwig M, Sage TL. 2016. C_3 – C_4 intermediacy in grasses: organelle enrichment and distribution, glycine decarboxylase expression, and the rise of C_2 photosynthesis. Journal of Experimental Botany **67**, 3065–3078.

Kocacinar F, McKown AD, Sage TL, Sage RF. 2008. Photosynthetic pathway influences xylem structure and function in *Flaveria* (Asteraceae). Plant, Cell and Environment **31**, 1363–1376.

Ku MS, Monson RK, Littlejohn RO, Nakamoto H, Fisher DB, Edwards GE. 1983. Photosynthetic characteristics of C_3 - C_4 intermediate *Flaveria* species: I. Leaf anatomy, photosynthetic responses to O_2 and CO_2 , and activities of key enzymes in the C_3 and C_4 pathways. Plant Physiology **71**, 944–948.

Lê S, Josse J, Husson F. 2008. FactoMineR: an R package for multivariate analysis. Journal of Statistical Software **25**, 1–18.

Lehmann CE, Archibald SA, Hoffmann WA, Bond WJ. 2011. Deciphering the distribution of the savanna biome. New Phytologist **191**, 197–209.

Lundgren MR, Besnard G, Ripley BS, *et al.* 2015. Photosynthetic innovation broadens the niche within a single species. Ecology Letters **18**, 1021–1029.

Lundgren MR, Christin PA, et al. 2016. Evolutionary implications of C_3 – C_4 intermediates in the grass *Alloteropsis semialata*. Plant, Cell and Environment **39,** 1874–1885.

Lundgren MR, Osborne CP, Christin PA. 2014. Deconstructing Kranz anatomy to understand C_4 evolution. Journal of Experimental Botany **65**, 3357–3369.

Lyu MJ, Gowik U, Kelly S, et al. 2015. RNA-Seq based phylogeny recapitulates previous phylogeny of the genus *Flaveria* (Asteraceae) with some modifications. BMC Evolutionary Biology **15**, 116.

Mallmann J, Heckmann D, Bräutigam A, Lercher MJ, Weber AP, Westhoff P, Gowik U. 2014. The role of photorespiration during the evolution of C_4 photosynthesis in the genus *Flaveria*. eLife **3**, e02478.

McKown AD, Dengler NG. 2007. Key innovations in the evolution of Kranz anatomy and C_4 vein pattern in *Flaveria* (Asteraceae). American Journal of Botany **94,** 382–399.

McKown AD, Dengler NG. 2009. Shifts in leaf vein density through accelerated vein formation in C_4 *Flaveria* (Asteraceae). Annals of Botany **104,** 1085–1098.

McKown AD, Moncalvo JM, Dengler NG. 2005. Phylogeny of *Flaveria* (Asteraceae) and inference of C_4 photosynthesis evolution. American Journal of Botany **92,** 1911–1928.

Monson RK. 1989. The relative contributions of reduced photorespiration, and improved water-and nitrogen-use efficiencies, to the advantages of C_3 - C_4 intermediate photosynthesis in *Flaveria*. Oecologia **80**, 215–221.

Monson RK, Moore BD. 1989. On the significance of C_3 - C_4 intermediate photosynthesis to the evolution of C_4 photosynthesis. Plant, Cell and Environment **12**, 689–699.

Moore BD, Franceschi VR, Cheng SH, Wu J, Ku MS. 1987. Photosynthetic characteristics of the C_3 - C_4 intermediate *Parthenium hysterophorus*. Plant Physiology **85**, 978–983.

New M, Lister D, Hulme M, Makin I. 2002. A high-resolution data set of surface climate over global land areas. Climate Research 21, 1–25.

Ocampo G, Columbus JT. 2010. Molecular phylogenetics of suborder Cactineae (Caryophyllales), including insights into photosynthetic diversification and historical biogeography. American Journal of Botany **97**, 1827–1847.

Osborne CP, Freckleton RP. 2009. Ecological selection pressures for C_4 photosynthesis in the grasses. Proceedings of the Royal Society of London. Series B, Biological Sciences **276**, 1753–1760.

Osborne CP, Sack L. 2012. Evolution of C_4 plants: a new hypothesis for an interaction of CO_2 and water relations mediated by plant hydraulics. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences **367**, 583–600.

Powell AM. 1978. Systematics of *Flaveria* (Flaveriinae Asteraceae). Annals of the Missouri Botanical Garden **65**, 590–636.

Prendergast HDV, Hattersley PW. 1985. Distribution and cytology of Australian *Neurachne* and its allies (Poaceae), a group containing C_3 , C_4 and C_3 – C_4 intermediate species. Australian Journal of Botany **33**, 317–336.

Rajendrudu G, Prasad JS, Das VS. 1986. C_3 - C_4 intermediate species in *Alternanthera* (Amaranthaceae): Leaf anatomy, CO_2 compensation point, net CO_2 exchange and activities of photosynthetic enzymes. Plant Physiology **80**, 409–414.

Ricklefs RE. 2008. The economy of nature, 6th edn. New York: W. H. Freeman.

Roalson EH, Hinchliff CE, Trevisan R, da Silva CR. 2010. Phylogenetic relationships in *Eleocharis* (Cyperaceae): C₄ photosynthesis origins and patterns of diversification in the spikerushes. Systematic Botany **35**, 257–271.

Rundel PW. 1980. The ecological distribution of C_4 and C_3 grasses in the Hawaiian-islands. Oecologia **45**, 354–359.

Sage RF. 2004. The evolution of C_4 photosynthesis. New Phytologist **161**, 341–370.

Sage RF, Stata M. 2015. Photosynthetic diversity meets biodiversity: the C_4 plant example. Journal of Plant Physiology **172**, 104–119.

Sage RF, Sage TL, Kocacinar F. 2012. Photorespiration and the evolution of C_4 photosynthesis. Annual Review of Plant Biology **63**, 19–47.

Page 14 of 14 | Lundgren and Christin

Sage RF, Wedin DA, Li M. 1999. The biogeography of C_4 photosynthesis: patterns and controlling factors. In: Sage RF, Monson RK, eds. C_4 plant biology. San Diego: Academic Press, 313–373.

Sage TL, Busch FA, Johnson DC, et al. 2013. Initial events during the evolution of C_4 photosynthesis in C_3 species of *Flaveria*. Plant Physiology **163**, 1266–1276.

Sage TL, Sage RF, Vogan PJ, Rahman B, Johnson DC, Oakley JC, Heckel MA. 2011. The occurrence of C₂ photosynthesis in *Euphorbia* subgenus *Chamaesyce* (Euphorbiaceae). Journal of Experimental Botany 62, 3183–3195.

Schlüter U, Weber AP. 2016. The road to C_4 photosynthesis: evolution of a complex trait via intermediary states. Plant and Cell Physiology **57**, 881–889.

Schuster WS, Monson RK. 1990. An examination of the advantages of C_3 - C_4 intermediate photosynthesis in warm environments. Plant, Cell and Environment **13**, 903–912.

Simpson A, Simpson R. 2015. Nature guide to Yellowstone National Park. Lanham, MD, USA: Rowman & Littlefield.

Spriggs EL, Christin PA, Edwards EJ. 2014. C₄ photosynthesis promoted species diversification during the Miocene grassland expansion. PLoS One **9**, e97722.

Stowe LG, Teeri JA. 1978. The geographic distribution of C_4 species of the dicotyledonae in relation to climate. American Naturalist **985**, 609–623.

Sudderth EA, Espinosa-García FJ, Holbrook NM. 2009. Geographic distributions and physiological characteristics of co-existing *Flaveria* species in south-central Mexico. Flora **204**, 89–98.

Svensson P, Bläsing OE, Westhoff P. 2003. Evolution of C_4 phosphoenolpyruvate carboxylase. Archives of Biochemistry and Biophysics **414**, 180–188.

Taub DR. 2000. Climate and the U.S. distribution of C_4 grass subfamilies and decarboxylation variants of C_4 photosynthesis. American Journal of Botany **87**, 1211–1215.

Teeri JA, Stowe LG. 1976. Climatic patterns and the distribution of C_4 grasses in North America. Oecologica **23**, 1–12.

USDA/NRCS. 2016. The PLANTS Database. Greensboro, NC, USA: National Plant Data Team. http://plants.usda.gov (accessed 22 July 2016).

Vamosi SM, Vamosi JC. 2005. Endless tests: guidelines for analysing non-nested sister-group comparisons. Evolutionary Ecology Research **7**, 567–579.

Vogan PJ, Frohlich MW, Sage RF. 2007. The functional significance of C_3 - C_4 intermediate traits in *Heliotropium* L. (Boraginaceae): gas exchange perspectives. Plant, Cell and Environment **30**, 1337–1345.

Vogan PJ, Sage RF. 2011. Water-use efficiency and nitrogen-use efficiency of C_3 - C_4 intermediate species of *Flaveria* Juss. (Asteraceae). Plant, Cell and Environment **34**, 1415–1430.

Voznesenskaya EV, Koteyeva NK, Chuong SD, Ivanova AN, Barroca

J, Craven LA, Edwards GE. 2007. Physiological, anatomical and biochemical characterisation of photosynthetic types in genus *Cleome* (Cleomaceae). Functional Plant Biology **34**, 247–267.

Voznesenskaya EV, Koteyeva NK, Edwards GE, Ocampo G. 2010. Revealing diversity in structural and biochemical forms of C_4 photosynthesis and a C_3-C_4 intermediate in genus *Portulaca* L. (Portulacaceae). Journal of Experimental Botany **61**, 3647–3662.

Voznesenskaya EV, Koteyeva NK, Akhani H, Roalson EH, Edwards GE. 2013. Structural and physiological analyses in Salsoleae (Chenopodiaceae) indicate multiple transitions among C_3 , intermediate, and C_4 photosynthesis. Journal of Experimental Botany **64**, 3583–3604.

Way DA, Katul GG, Manzoni S, Vico G. 2014. Increasing water use efficiency along the C_3 to C_4 evolutionary pathway: a stomatal optimization perspective. Journal of Experimental Botany **65**, 3683–3693.

Williams BP, Johnston IG, Covshoff S, Hibberd JM. 2013. Phenotypic landscape inference reveals multiple evolutionary paths to C₄ photosynthesis. eLife **2**, e00961.

Williams DG, Mack RN, Black RA. 1995. Ecophysiology of introduced *Pennisetum setaceum* on Hawaii: the role of phenotypic plasticity. Ecology **76**, 1569–1580.

Zanne AE, Tank DC, Cornwell WK, et al. 2014. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92.