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Abstract

Various measurements of thermal trap depth are evaluated for K-feldspar grains extracted from a bedrock

sample. The initial rise method and the various heating rates method yield consistent results for both the

natural signal (E = 1.23 and 1.16 eV, respectively) and for a regenerative dose of 64 Gy (0.83 and 0.78 eV).

For the fractional glow curve, apparent E-values range from 0.39 eV to a plateau around 1.50 eV. The highest

values for the natural and regenerative signals are obtained using the newly-developed post-isothermal TL

(pI-TL) method wherein the isothermal loss curves (gotten by subtracting TL curves obtained after different

preheat durations) are fitted in the initial rise region on an Arrhenius plot. For a dose of 12.8 Gy, this

method measures apparent E-values ranging from 0.73 eV to a plateau near 1.84 ± 0.06 eV. We repeat this

analysis on three additional feldspar samples (two perthites and a high albite) to get a mean value of E =

1.86 ± 0.03 eV. The same analysis of natural aliquots of the K-feldspar sample yields similar results, with

the two highest E-values at 1.81 and 1.86 eV. The kinetic order does not systematically vary with isothermal

holding temperature or duration but remains relatively constant at 1.6 ± 0.3 (regenerative dose) and 1.5 ±

0.5 (natural dose). The apparent frequency factor, measured assuming a single E-value of 1.86 eV, decreases

systematically (∼ 1023 − 1012 s−1) with hold temperature and duration, a result which is consistent with a

thermally-activated, distance-dependent tunneling model for feldspar thermoluminescence (i.e., a single trap

depth and a continuum of apparent frequency factors). Frequency factor values measured following identical

isothermal treatments are comparable between the natural and regenerative post-isothermal TL curves. By

contrast, if different E-values are assumed, the apparent frequency factor values appear stochastic. Finally,

it is speculated that the plateau of pI-TL E-values may be interpreted as the thermal depth of the main

dosimetric trap measured with IRSL protocols.
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1. Introduction1

One critical parameter in understanding how the feldspar luminescence system will evolve in different2

thermal scenarios is the thermal activation energy required for recombination (E-value). A number of mea-3

surements can be used to constrain this parameter under first-order kinetics; however, in the case of feldspar4

luminescence, which exhibits a continuum of thermoluminescence (TL) signals (Grün and Packman, 1994;5

Visocekas et al., 1996) and is generally considered to exhibit non-first-order recombination kinetics (Ankjaer-6

gaard et al., 2006; Jain and Ankjaergaard, 2011), the determination of this parameter is not straightforward,7

nor is it necessarily a single trap being accessed during a TL measurement (Balescu and Lamothe, 1992;8

Murray et al., 2009).9

The basic obstacle that must be overcome in order to measure the E-values of a sample, is that TL glow10

curves (following natural or laboratory irradiations) comprise overlapping emissions of different stability. For11

potassium-rich feldspars, this is complicated by the presence of a second TL peak at higher temperatures (cen-12

tered around 330 ◦C for β = 5 ◦C/s), such that the measured glow curve contains a broad, asymmetric peak13

at lower temperatures (apex near 100 ◦C), and a high-temperature peak (or two peaks; e.g., Murray et al.,14

2009), often embedded within the first (Duller, 1997). This range of stability in the broad, lower-temperature15

emission has been interpreted as representing multiple, discrete trap depths (Strickertsson, 1985; Kirsh et al.,16

1987) or a continuum of trap depths (Sanderson, 1988). Alternately, a continuum of recombination distances17

may produce this behavior (Jain et al., 2012). Pagonis et al. (2014) recently concluded that either mechanism18

could produce the observed TL data. Regardless, to measure the kinetic properties for a portion of a feldspar19

TL glow curve (e.g., a single trap depth or a limited range of recombination distances), one must isolate that20

particular emission, either experimentally or mathematically.21

To determine the thermal trap depths of the dosimetric traps producing the TL or IRSL signals, workers22

have relied chiefly upon: the initial rise method (hereafter, IRM), usually in conjunction with the fractional23

glow curve method (hereafter, FGC; Strickertsson, 1985; Visocekas et al., 1996; Chruścińska, 2001); isothermal24

loss measurements (Sanderson, 1988; Guralnik et al., 2015); and curve fitting methods (Pagonis et al., 2014;25

Jain et al., 2015) (for a full discussion of conventional methods, see pp. 101 - 130 of Chen and McKeever,26

1997). The following incomplete list of the resulting E-values can be broadly categorized as either singular,27

continuous, or multiple and discrete. The singular estimates for the IRSL source trap include >1.5 (Jain28

and Ankjaergaard, 2011), 1.66 (Li and Tso, 1997), 1.72 (Li et al., 1997), 1.71 ± 0.08 (Murray et al., 2009),29

1.92 - 2.06 (Li and Li, 2013), and ∼2 (Jain et al., 2015) eV. Pagonis et al. (2014) estimated a continuum of30

depths from 1.1 to 1.8 eV in plagioclase; Strickertsson (1985) assumed first-order kinetics to fit six TL peaks31

between 0.76 and 1.80 eV; and Kirsh et al. (1987) estimated five distinct peaks, ranging from 0.70 to 1.3932

eV.33

In this study, we estimate the apparent thermal activation energies responsible for natural and laboratory34

TL signals in feldspar crystals extracted from bedrock samples. First, we apply the initial rise method, the35

various heating rates method, and the fractional glow curve technique. Second, we develop a new E-value36
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estimation technique based on the isothermal decay of TL curves: the post-isothermal TL (pI-TL) method.37

This method quantifies (by glow curve subtraction) the loss between hold times at various temperatures. By38

doing so, we quantify not only the magnitude of isothermal decay but also the shape of the TL signal that39

would have resulted during thermal stimulation. In other words, those emissions which are of lesser stability40

are stripped away, allowing for peak shape analysis of a narrow range of thermal stabilities. Finally, the41

pI-TL results are discussed in terms of recombination kinetics, including the variation in kinetic order and42

frequency factor.43

2. Samples and methodology44

2.1. Sample collection45

Bedrock samples were collected from two locations. Sample J0165 is a granodiorite taken from a vertical46

transect of the Yucaipa Ridge block, a fault-bounded, tectonic block within the San Bernardino Mountains47

in southern California (Spotila et al., 1998). Samples J0995 (quartzofeldspathic gneiss), J0999 (granite),48

and J1001 (granite) were collected from a glacial valley within the Beartooth uplift, a 60 × 125 km block49

of Precambrian crystalline basement initially exhumed during the Laramide Orogeny (Wise, 2000). Samples50

were collected by detaching chunks of in situ bedrock by hammer and chisel.51

2.2. Sample preparation and luminescence instrumentation52

Samples were first spray-painted with a contrasting color. They were then broken into smaller fragments53

under dim, amber LED lighting. The light-exposed, outer-surface pieces (as identified by the presence of54

spray-paint) were discarded and the unexposed inner pieces were gently ground using a pestle and mortar.55

The feldspar grains of 175-400 µm were then isolated from the rubble. Subsamples were wet-sieved,56

treated with 3% HCl, separated by density using lithium metatungstate (ρ <2.565 g/cm3; Rhodes 2015),57

and treated with 10% HF for 10 minutes to remove the outer layer from the grains and thereby enhance the58

sample brightness. Grains were mounted on stainless steel discs in a small-diameter (ca. 3-5 mm) monolayer59

using silicone oil.60

Luminescence measurements were carried out using a TL-DA-20 Risø automated reader equipped with a61

90Sr/90Y beta source (Bøtter-Jensen et al., 2003). TL emissions were detected through a Schott BG3-BG3962

filter combination in a nitrogen atmosphere. Unless otherwise noted, TL glow curves were measured at a63

heating rate of 5 ◦C/s.64

2.3. Sample compositions65

Several separated grains of each sample were prepared for electron-probe microanalysis (EPMA) to deter-66

mine their chemical compositions. These grains were mounted within epoxy, the surface of which was then67

progressively polished to expose the internal surfaces of grains. Prior to analysis, this mount was coated with68

a surficial layer of carbon to avoid electrical charging during electron bombardment.69
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Table 1: Composition of feldspar samples, as determined by electron-probe microanalysis.

Endmember composition Elemental composition

Sample n An (mol%) Ab (mol%) Or (mol%) Ca (wt%) Na (wt%) K (wt%)

J0165 4 0.3 10.5 89.3 0.0 0.9 12.8

J00995 4 0.1 99.6 0.3 0.0 8.9 0.0

J0999

Na-rich zones 3 18.5 78.5 3.0 2.8 6.8 0.4

K-rich zones 2 0.0 3.6 96.3 0.0 0.3 13.7

J1001

Na-rich zones 3 8.0 90.3 1.7 1.3 8.1 0.3

K-rich zones 3 0.1 3.8 96.2 0.0 0.3 13.9

The mounted and polished grains were then measured with a JEOL JXA-8200 electron-probe microan-70

alyzer. First, backscattered electron (BSE) images were acquired to assess the compositional structure of71

grains, and then spot analyses with wavelength-dispersive spectroscopy (WDS) were used to quantitatively72

determine the K, Na, and Ca abundances of each grain (Huot and Lamothe, 2012). Grains with more hetero-73

geneous compositions (i.e., phases of disparate average Z-values) were measured multiple times to quantify74

each phase. Duplicate measurements were performed to assess reproducibility. Spot analyses were performed75

using a defocused electron beam of diameter 10 µm, an accelerating voltage of 15 keV, and a beam current76

of 15 nA. Immediately prior to measurement, spectrometer calibration was performed with anorthite, albite,77

and K-feldspar standards. Spot analyses were rejected when the interpreted total mass was outside the range78

of 98 - 102%.79

The compositions of all samples are listed in Table 1. The analyzed grains of J0165 are K-feldspars, with80

an average composition of Or89. Sample J0995 is high albite, An0.1. Samples J0999 and J1001 both exhibit81

perthitic textures. In sample J0999, zones alternate between average compositions of An25 and Or96 and82

J1001 alternates between An8 and Or96.83

3. Determining thermal trap depths in K-feldspar84

The terms used throughout this study are described in Table 2.85

3.1. Initial rise method86

The initial rise method (IRM) plots the natural log of the normalized TL intensity as a function of

the inverse temperature, analogous to an Arrhenius plot. If the concentrations of trapped electrons and

recombination centers are effectively constant (a reasonable assumption for the low-temperature region of a

stimulation curve), then the TL intensity with temperature should go as:

I(T ) ∝ exp
(

− E/kBT
)

, (1)
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Table 2: Nomenclature used in this study.

Term Description

E Thermal trap depth

s Frequency factor

b Kinetic order

kB Boltzmann constant (8.617 × 10−5 eV · K−1)

Tm Temperature at maximum intensity

T1/2 Temperature at half-maximum intensity

β Heating rate

IRM Initial rise method

VHRM Various heating rates method

FGC Fractional glow curve

pI-TL Post-isothermal TL

which implies that a straight line fitted to ln(I(T )) plotted against 1/T should have a slope of −E/kB (Chen87

and Kirsh, 1981, p.148). The results of the IRM are shown for K-feldspar extract of Yucaipa Ridge bedrock88

sample J0165, for the natural luminescence signal (Fig. 1(a)) and following a laboratory beta dose of 6489

Gy (Fig. 1(b))(see the Supplementary Materials for the original TL measurements). A heating rate of 0.190

◦C/s was used to minimize errors associated with thermal lag. Three aliquots were used in both cases and91

remarkable inter-aliquot consistency was found. The apparent activation energies of the natural (1.23 eV)92

and regenerative (0.83 eV) signals differ substantially, with the E-value following 64 Gy being far too shallow93

to retain electrons for longer than a few days at room temperature.94

3.2. Various heating rates method95

The various heating rates method (VHRM) exploits the fact that the temperature of maximum TL

emission intensity (Tm) can be expressed in terms of the heating rate, β:

β = (skB/E)T 2
m exp

(

− E/kBTm

)

, (2)

so that the plot of ln(T 2
m/β) versus (1/Tm) can be fitted with a straight line of slope −E/kB . To measure96

the apparent trap depth of the natural signal, three aliquots were heated for each heating-rate: 0.1, 0.5, 1,97

5, and 10 ◦C/s. For the apparent E value after 64 Gy, the same 3 aliquots were heated at 0.1, 0.3, 1, 3, and98

10 ◦C/s. The resulting E values of 1.16 and 0.78 eV are shown for the natural (Fig. 1(c)) and regenerative99

(Fig. 1(d)) signals (see the Supplementary Materials for the original TL measurements).100

3.3. Fractional glow curve analysis101

To probe multiple traps of similar depths (e.g., a continuum of depths or tunneling distances), researchers102

have developed the fractional glow curve (FGC) (Rudlof et al., 1978; Kirsh et al., 1987), which involves a series103

5



of preheats to progressively higher temperatures. After holding at a given temperature, the sample is cooled104

before heating to a slightly higher hold temperature and so on. In this way, the lowest temperature region105

is investigated (and thereby emptied) before the next-highest temperature region is investigated, thereby106

minimizing overlap from the lower-temperature region.107

Although recent feldspar models (Poolton et al., 1995; Jain and Ankjaergaard, 2011) do not require a108

distribution of trap depths, the distribution in sub-conduction-band recombination distances should result109

in a similar effect of overlapping TL peaks (Jain et al., 2012). Therefore, the FGC for a single aliquot110

of J0165 was measured by first administering a dose of 12.8 Gy, then heating the sample at 5 ◦C/s to a111

hold temperature of T ◦C for 100 s, with T ranging from 20 to 500 ◦C in increments of 20 ◦C (Fig. 2(a)).112

Unfortunately, at T > 320 ◦C, the signal intensity was similar in magnitude to the thermal background,113

precluding analysis beyond this point. The initial rise regions of the individual heating steps following a114

single beta dose of 64 Gy (Fig. 2(a)) were then fitted with a straight line having a slope of −E/kB (see115

Section 3.1). These E-values are plotted against the corresponding hold temperature (Fig. 2(b); cf. Fig. 3.14116

of Chen and McKeever, 1997).117

Two observations can be made about Fig. 2(b). First, a relationship seems to exist between the final118

temperature and the E-value, representing a gradation in apparent site stability, perhaps due to increasing119

recombination distances (if the E-values are artifacts), or perhaps deeper traps are progressively accessed (if120

the E-values are real). Second, this linear increase in FGC E-values (0.97 - 1.51 eV) extends past the trap121

depth of the natural TL signal as calculated with the IRM and VHRM results (1.23 and 1.16 eV, respectively)122

(Fig. 1(a) and (c)).123

3.4. Post-isothermal TL (pI-TL) curve analysis124

An alternate approach is to monitor how the TL shape changes following isothermal treatments of various125

durations. For analysis of the regenerative signal, the same aliquot of sample J0165 was repeatedly given the126

same dose of 12.8 Gy and then held at T ◦C for t s, where T ranged from 100 to 350 ◦C in increments of127

50 ◦C, and t = 0, 3, 10, 30, 100, 300, 1000 s. Following each isothermal treatment, the aliquot was cooled128

to room temperature before a TL measurement at 5 ◦C/s to 500 ◦C. These TL curves are shown with linear129

and logarithmic y-axes (Fig. 3(a) and inset, respectively). The advantage of this approach is based upon130

the ability to isolate the luminescence emitted during hold-times by subtracting one TL curve from another.131

In other words, each subtracted curve represents the pseudo-TL curve that would be depleted during that132

isothermal treatment. Fig. 3(b) shows the regenerative TL lost during the hold time of t = 3-10 s, 10-30 s,133

and so on, for all the hold temperatures.134

For analysis of the post-isothermal TL natural signals, a multi-aliquot approach is necessary, where each135

heat treatment is performed on a different unbleached natural aliquot of sample J0165 (Fig.4(a)). The TL136

emissions of each aliquot were normalized to a subsequent test dose response (maximum TL intensity following137

a dose of 1.3 Gy). Because the natural glow curve is not significantly eroded by the lower temperature138

treatments, the isothermal treatments of the natural signals were limited to T = 250, 300, and 350 ◦C.139
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3.4.1. Trap depth140

If we consider these subtracted TL curves to be the charge lost during specific hold-time ranges, then the141

shape of these curves should contain useful kinetic information. The initial rise portion of these subtracted TL142

curves was fitted in the same way as in Section 3.3 to determine the apparent thermal trap depth; hereafter,143

this will be called the post-isothermal TL (pI-TL) method. The results for the regenerative and natural144

signals are shown in Fig. 5(a) and (e), respectively.145

Just as with the FGC E-values following a regenerative dose (Fig. 2(b)), these pI-TL E-values steadily146

increase as deeper thermal regions are probed (Fig. 5(a)). Apparent E-values increase from about 0.73 eV147

to a seeming plateau around 1.86 (K-feldspar sample J0165). It is notable that the lowest value is similar to148

the values from the IRM and the VHRM for the 64 Gy irradiation in Sections 3.1 and 3.2. Additionally, this149

upper limit is higher than the highest FGC E-value (1.5 eV) observed for this sample.150

The pI-TL regenerative E-values were also measured for samples J0995 (high albite), J0999 (perthite),151

and J1001 (perthite). A mean value of E = 1.84 ± 0.06 eV was calculated from the final three hold intervals152

(30 - 100, 100 - 300, and 300 - 1000 s) at 350 ◦C for the regenerative signals of all four feldspar samples.153

While samples J0165 and J0995 may plateau at these durations, samples J0999 and J1001 exhibited a positive154

slope, suggesting that the maximum E-value may be higher for these two samples. (That structurally well-155

ordered feldspars like perthites should have greater maximum stability than those which formed at higher156

temperatures and exhibit more uniform composition (e.g., Ab and Or) is consistent with the observation of157

Visocekas et al. (1994) that athermal fading rates increase with greater structural disorder.) The average158

plateau value for J0165 and J0995 is only 1.86 ± 0.03 eV. Whether this plateau is real or apparent requires159

further investigation.160

The trap depths measured for the natural pI-TL signals are generally consistent with the regenerative161

signals at the same isothermal conditions. Because of low signal intensity, the final subtracted curve at 350 ◦C162

(300 - 1000 s) was unsuited for analysis. The next two longest durations at 350 ◦C, however, give E-values of163

1.81 and 1.86 eV and are in good agreement with the plateau found after regenerative doses, lending further164

support to the idea of a maximum value near 1.86 eV.165

3.4.2. Kinetic order166

The shapes of the pI-TL curves (Figs. 3(b) and 4(b)-(d)) resemble what would be expected under mixed-167

order kinetics. This conjecture can be quantified with the TL curve symmetry factor of Halperin and Braner168

(1960), µg, which can be used to assign kinetic order to TL curves based on shape with little dependence on169

E or s values (Chen and Kirsh, 1981, pp. 159 - 167).170

Calculated symmetry factors for the pI-TL curves (excluding the initial 0 - 3 s measurement) yield an171

average kinetic order of 1.6 ± 0.3 for the regenerative signals and 1.5 ± 0.5 for the natural signals (Fig. 5(d)172

and (h)). There is no apparent relationship between hold temperature and the kinetic order for most sets173

of hold temperatures. This relatively stable kinetic order with greater temperature is consistent with the174

interpretation that the pathways are unchanging, whereas the probed lifetimes increase with TL temperature.175
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The high b-values for the natural signals lost at 250 ◦C between 3 - 10, 10 - 30, and 30 - 100 s (b = 2.2,176

2.3, and 2.1, respectively) may be an exception to this uniformity. That kinetic order is higher as the natural177

signal is initially depleted may be caused by charge transfer to sites of greater thermal stability.178

3.4.3. Frequency factor179

Finally, given that each pI-TL curve has an apparent trap depth and kinetic order, we can estimate the

corresponding frequency factors. The calculation assumes general-order kinetics, and requires kinetic order

(b), trap depth (E), temperature at maximum intensity (Tm), and heating rate (β) to determine the frequency

factor (s) (p. 11; Chen and Kirsh, 1981):

s(b− 1)/β

∫ Tm

T0

exp
(

− E/kBT
)

dT + 1 =
(

sbkBT
2
m/βE

)

exp
(

− E/kBTm

)

. (3)

This calculation was performed under two different scenarios. In the first scenario, the E-value measured180

for each isothermal condition was used to calculated the corresponding frequency factor. In the second, the181

plateau value of 1.86 eV was used to calculate the apparent frequency factor for each pI-TL curve.182

Assuming individual E-values. If each pI-TL curve derives from different trap depth (or range of depths), the183

frequency factors for the regenerative and natural signals are shown in Fig. 5(b) and (f). The regenerative184

values seem to increase with hold time, especially those at T = 100, 300, and 350 ◦C, but the results from185

the other hold temperatures are less convincing. This result is unexpected if this broad regenerative peak186

represents an increase in recombination-by-tunneling distances; this mechanism should produce the opposite187

effect: a decrease in the apparent frequency factor as sites increase in stability (Jain and Ankjaergaard, 2011;188

Jain et al., 2015).189

While both natural and regenerative frequency factors span a similar range (∼ 1011 − 1013 s−1), the190

former seem less organized. This may represent the lower signal intensities involved, resulting in poor fittings191

of E or b values. Alternately, the peak overlap from a higher temperature peak (e.g., Fig. 4 (b) - (d)) may192

sufficiently distort the Tm value or the position of T2 (T1/2 > Tm).193

Assuming a shared E-value of 1.86 eV. If each pI-TL curve derives from a single trap depth of 1.86 eV194

(see Section 3.4.1), the frequency factors for the regenerative and natural signals are shown in Fig. 5(c)195

and (g). The consistent decrease in apparent frequency factor with increasing hold time and temperature is196

consistent with the interpretation that K-feldspar thermoluminescence derives from a single dosimetric trap197

via tunneling to centers at a variety of distances (Jain and Ankjaergaard, 2011). Such an interpretation would198

result in a range of apparent frequency factors which reflects the range of recombination probabilities (Jain199

et al., 2015). We favor this simple interpretation (i.e., one trap depth of 1.86 eV, many apparent frequency200

factors).201

Finally, it is remarkable that the frequency factors for the natural and regenerative signals decrease at202

a similar rate and over a similar range. Such similarity supports the conjecture that the natural signal for203
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sample J0165 contains the stable portion of the signal measured after laboratory irradiation and exhibits204

similar kinetic properties.205

4. Discussion206

4.1. Comparing the methods for E-value determination207

To interpret the results from these four methods, it is helpful to consider their critical assumptions. The208

initial rise method assumes that detrapping, at least for the first portion of the emitted peak, is related only209

to the ratio of E/kBT (Eq. 1). In other words, effects like retrapping and changes in recombination efficiency210

should be negligible. The method also requires that the entire fitted region derives from the same trap and211

does not include overlapping peaks. With the IRM, a single E-value is produced that, for glow curves without212

overlapping emissions, corresponds to the first accessed trap. The various heating rates method also produces213

a single E-value and assumes that neither the trap depth nor the frequency factor change during the TL214

measurement. The fractional glow curve method incorporates the assumptions of the IRM but offers the215

possibility of measuring multiple trap depths, provided that each initial rise region is sufficiently separated216

for the chosen heating rate and stop-temperature increment.217

The post-isothermal TL method is similar in approach to the FGC method: the TL curve is progressively218

measured, allowing for multiple E-value analyses. Unlike the FGC, however, the pI-TL method is not219

inaccurate if there is trap overlap initially, as the next measured curve is subtracted before analysis (in the220

case of no overlap, the pI-TL method would reduce to the FGC method for E-value determination). Another221

advantage obtained by considering the emissions between hold times is that peak shape analyses can be222

performed, including the evaluation of b and s values for each isothermal time range. Because feldspar TL is223

known to exhibit overlapping emissions, we consider the pI-TL results least subject to error.224

4.2. Comparing the measured E-values225

Notable concordance is found between the initial rise method and the various heating rates method. For226

the VHRM, the data seem to be sub-linear rather than linear as would normally be expected. This effect227

probably reflects the asymmetric nature of the feldspar TL glow curve: the initial rise region of the curve228

would be less affected, but in measuring the Tm value, the influence of overlapping, higher-stability traps229

biases the E-value determination. This effect should vary with heating rate, as lower heating rates will tend230

to minimize this trap separation effect. Importantly, the feldspar samples did not receive preheats prior to231

the measurement of apparent natural E-values.232

The FGC E-values obtained compare well with experimental results reported elsewhere from sedimentary233

K-feldspars. Previous studies have reported values ranging from 0.4 eV at liquid nitrogen temperatures234

(Visocekas et al., 1996) to about 1.7 eV at temperatures above 280 ◦C (Strickertsson, 1985; Chruścińska,235

2001). All of these studies also noted the linear increase in E with FGC hold temperature.236
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Several observations can be made about the regenerative E-values derived from the post-isothermal TL237

method. First, just as with the FGC, a linear relationship exists between the isothermal duration and the238

corresponding E-value. A similar type of analysis on a museum specimen of plagioclase was done by Pagonis239

et al. (2014), who performed a general-order kinetics fitting of TL curves gotten by subtraction of post-240

isothermal TL curves where hold temperatures were varied but not durations. These authors found a range241

of E-values from 1.1 to 1.8 eV, with a generally decreasing kinetic order, from about 2.0 to 1.5. Measurements242

for our albitic sample (J0995) are comparable, varying over a slightly broader range, from 0.76 to 1.87 eV243

(omitting the 0-3 s measurement, the range becomes 0.97 to 1.87 eV).244

There exists a plateau in regenerative pI-TL E-values at 1.86 ± 0.03 eV (J0165 and J0995; 1.84 ± 0.06 eV245

for all four samples) for the three highest E-values observed in our pI-TL method. We tentatively interpret246

this as the depth of the ground state for the main dosimetric trap (see also Section 4.4). Whether this is a247

maximum within a distribution of depths or the true trap depth (i.e., activation progresses up through the248

band-tail states finally into the conduction band) is unclear.249

Another consideration is the difference between the FGC and pI-TL methods in the final values obtained250

for regenerative E-values. Both techniques yield final values which might be interpreted as plateaus: 1.49251

± 0.03 eV (FGC, last four values of J0165) and 1.84 ± 0.03 eV (pI-TL, last three values of J0165). Per-252

haps the best explanation for this discrepancy is that the reason for each ‘upper limit’ is different. In the253

regenerative fractional glow curve method, the sample receives a single dose before all measurements are254

performed. It seems reasonable to assume that above 320 ◦C the source traps have been emptied and that255

further measurements are comprised mostly of thermal background emissions. The FGC upper limit may,256

in this interpretation, be understood as methodological, not directly characteristic of trap parameters. By257

comparison, the pI-TL method involves irradiation of the sample prior to each isothermal treatment, thereby258

replenishing the source traps. The upper limit for this technique is governed also by the low signal intensity259

relative to the thermal background, but this is true only after treatments of 350 ◦C lasting 300 and 1000 s,260

which probe higher regions of the glow curve than those reached by the FGC method. Of course, the upper261

limit of this technique may also be limited by instrumental resolution and not by the maximum trap depth262

that would contribute TL at these measurement conditions.263

Finally, it is encouraging that both the natural and regenerative doses yield similar E-values for J0165264

when evaluated with the pI-TL method. This is true for both the rising values measured at T = 250, 300,265

and 350 ◦C, and for the uppermost values: 1.86 ± 0.03 eV (n = 3) for the regenerative dose, and 1.84 ± 0.04266

eV (n = 2) for the natural dose.267

4.3. Kinetic order and frequency factor values268

The pI-TL kinetic order values of 1.6 ± 0.3 for the regenerative signals and 1.5 ± 0.5 for the natural269

signals (Fig. 5(d) and (h)) compare well and show no obvious dependence on hold temperature. This may270

indicate that similar recombination pathways are utilized during the entirety of the TL measurement.271
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Assuming that a) the application of Eq. 3 to pI-TL curves is valid, and b) the TL emissions share an272

actual (i.e., not apparent) E-value of ∼1.86 eV, the apparent frequency factor decreases regularly over the273

entire range of hold temperatures and durations (Fig. 5(c) and (g)). Even more striking is the correspondence274

between the natural and regenerative pI-TL frequency factors. This correspondence lends credence to the275

hypothesis that the natural and regenerative TL glow curves may receive contributions from the same trap276

population, with the natural signal missing the nearer trap-and-center pairs, i.e., a truncated n(r) distribution277

in Jain et al.’s (2015) model. That a shared E-value produces expected behavior in apparent frequency278

factors may favor the interpretation of a single trap depth responsible for the lower-temperature blue-green279

TL emissions (Jain et al., 2015) instead of a continuum of trap depths (Sanderson, 1988).280

4.4. Relating the pI-TL E-value to IRSL signals281

A primary concern when evaluating luminescence ages from K-feldspars is the thermal trap depth asso-282

ciated with the IRSL signal. Workers have investigated this parameter through the use of pulse-annealing283

experiments and the reduction of TL curves by IR stimulation (Li and Aitken, 1989; Duller and Wintle, 1991;284

Duller and Bøtter-Jensen, 1993; Duller, 1994; Tso et al., 1996; Murray et al., 2009). The interpretation of285

these experiments has not been straightforward, however, for although exposure to IR light depletes a broad286

region of the regenerative TL curve at lower temperatures, the majority of the IRSL source trap does not seem287

to be depleted significantly until higher temperatures. This reduction in TL intensity at lower measurement288

temperatures (i.e., the region populated after irradiation and without preheating) following IR exposure has289

been explained as a reduction in recombination efficiency (Murray et al., 2009). (If the loss of efficiency is290

related to the depletion of a shared recombination center, this explanation reconciles the similar emission291

spectra for K-feldspar TL and IRSL (Huntley et al., 1988, 1991).) More recently, Jain and Ankjaergaard292

(2011) have suggested that the lower- and higher-temperature TL peaks commonly found in feldspars may293

derive from a) localized recombination via the excited state of the trap, and b) recombination from the band-294

tail states (transitioning eventually into the conduction band), respectively. Under this interpretation, and295

given that the excited state is thought to lie within the band-tail states (Poolton et al., 2009), the uppermost296

pI-TL E-value should represent the thermal depth of the main dosimetric trap measured in IRSL protocols.297

5. Conclusions298

The similarity of pI-TL kinetic parameters between natural and artificial TL signals is intriguing and299

merits further exploration. The implication that the natural TL signal represents the high-stability region of a300

trap continuum may be overly simple, especially given previous studies which demonstrate differential thermo-301

optical bleaching properties between the low and high-temperature regions of the TL curve. Nevertheless,302

the agreement between the uppermost E-values of about 1.86 eV offer insight into the maximum thermal303

stability that may be expected for alkali feldspars extracted from bedrock samples. Finally, the temperature-304

independent kinetic order values combined with the decreasing apparent frequency factor values at higher305
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temperatures and longer hold times both support the recent hypothesis that feldspar TL (in addition to306

IRSL) derives from distance-dependent tunneling recombination.307
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Figure 1: Apparent thermal trap depths for sample J0165 are calculated using the initial rise method (natural signal in (a) and
regenerative signal after 64 Gy in (b)) and the various heating rates method (natural in (c) and 64 Gy in (d)). Note that the
values calculated with the various heating rates method (1.16 and 0.78 eV) are slightly lower than those from the initial rise
method (1.23 and 0.83 eV).
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Figure 2: (a) Normalized thermoluminescence intensity plotted against inverse temperature for TL curves measured from T =
60 to 320 ◦C in increments of 20 ◦C (sample J0165). (b) The data in (a) are fitted to calculate E-values for each of the TL
curves within the fractional glow curve experiment.
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Figure 3: (a) Thermoluminescence curves for sample J0165 following irradiation and hold times t = 0, 3, 10, 30, 100, 300, and
1000 s at T = 100, 150, 200, 250, 300, and 350 ◦C. The same data are shown on a semi-log plot in the inset. (b) The loss
between adjacent time steps (> 0 s) are plotted as subtracted TL glow curves. Notice how loss between hold times resembles
mixed-order thermoluminescence.
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Figure 4: (a) The natural TL curve (β = 5 ◦C/s) is shown in black, as well as the natural curve following isothermal treatments
t = 3, 10, 30, 100, 300, and 1000 s at T = 250, 300, and 350 ◦C (multiple aliquots of sample J0165). The natural TL curves are
normalized to subsequent test-dose responses. The areas between the adjacent TL curves are shown for T = 250, 300, and 350
◦C in (b),(c), and (d), respectively
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Figure 5: (a) Thermal trap depths of sample J0165 estimated for the regenerative signal using the pI-TL method (curves
shown in Fig. 3(b)). Notice the correspondence with Fig. 2(b) and the apparent plateau around 1.86 eV. (b) Regenerative
dose frequency factors are estimated assuming general-order kinetics, using the analytical expression for the temperature at
maximum intesnsity, Tm (p. 11; Chen and Kirsh, 1981). (c) Identical to (b), except that the E-value is not calculated for
each hold-time, but is instead set as 1.86 eV. This steady decrease in apparent frequency factor is consistent with the model
for K-feldspar luminescence production wherein a trap of singular depth exhibits decreasing recombination probabilities as the
tunneling distance increases (Jain and Ankjaergaard, 2011; Jain et al., 2015). (d) Kinetic order is estimated using the so-called
geometrical factor, µg , a peak-shape parameter, following Chen (1969). The same parameters are shown in (e)-(h), following
isothermal treatments of the natural signal. The hold temperatures for the natural signal are limited to 250, 300, and 350 ◦C.
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