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Abstract: 37 

 38 

The molecular and cellular processes driving the formation of secondary lymphoid tissues have 39 

been extensively studied using a combination of mouse knockouts, lineage specific reporter 40 

mice, gene expression analysis, immunohistochemistry and flow cytometry.  However, the 41 

mechanisms driving the formation and function of tertiary lymphoid tissue (TLT) experimental 42 

techniques have proven to be more enigmatic and controversial due to differences between 43 

experimental models and human disease pathology.  Systems-based approaches including data-44 

driven biological network analysis (Gene Interaction Network, Metabolic Pathway Network, 45 

Cell-Cell signalling & cascade networks) and mechanistic modelling afford a novel perspective 46 

from which to understand TLT formation and identify mechanisms that may lead to the 47 

resolution of tissue pathology.  In this perspective, we make the case for applying model-driven 48 

experimentation using two case studies which combined simulations with experiments to 49 

identify mechanisms driving lymphoid tissue formation and function, and then discuss 50 

potential applications of this experimental paradigm to identify novel therapeutic targets for 51 

TLT pathology. 52 

 53 

 54 

 55 
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Formation and function of secondary and tertiary immune microenvironments 56 

 57 

Lymphoid tissues are responsible for the orchestration of functional immune responses. This 58 

is achieved through the development and maintenance of niches that support the retention, 59 

activation and proliferation of adaptive immune cells in response to antigenic stimulation.  60 

Adult lymphoid tissue architecture is organised by an underlying network of stromal cells that 61 

produce extracellular matrix (e.g. collagens) and provide survival (e.g. BAFF, IL-7), migratory 62 

(CCL19/21, CXCL13) and immune activation (the storage and presentation of immune 63 

complexes by follicular dendritic cells) signals (Junt et al, 2008).  Distinct stromal subsets with 64 

unique secretion profiles (chemokines, other cytokines, survival factors) develop in response 65 

to signalling from lymphocytes with a key role for TNF superfamily receptors; this stromal-66 

lymphocyte cross-talk ensures the correct cell type is stimulated (or regulated) at the right time 67 

and place.  Sustained cross-talk between mesenchymal stroma and lymphocyte subsets is a core 68 

feature of lymphoid tissue formation and maintenance, and occurs irrespective of the tissue 69 

type or anatomical location. 70 

 71 

Formation of lymphoid tissues can occur by different cellular and molecular mechanisms.  72 

During foetal development secondary lymphoid tissues form in a process dependent on the 73 

RAR-related orphan receptor gamma, RORγ transcription factor expressing lymphoid tissue 74 

inducer cells (LTi) responding to localised chemotactic gradients leading to formation of lymph 75 

nodes (LN) and Peyer’s patches (PP) in a lymphotoxin β (LTβ) dependent process (Pavert & 76 

Mebius, 2010). Localised mesenchyme, lymphoid tissue organiser (LTo) cells differentiate into 77 

adult marginal reticular cells (MRCs), fibroblastic reticular cells (FRCs) and follicular 78 

dendritic cells (FDCs) (Jarjour et al., 2014).  Likewise, in the adult, innate lymphoid cells type 79 

3 (ILC3s), the adult equivalent of LTi cells, have a key role in regulating crypto-patches that 80 
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can mature into isolated lymphoid follicles (Mowat and Agace, 2014). These specialised 81 

lymphoid structures contain predominantly B cells and often contain germinal centre (GC) 82 

reactions. 83 

 84 

In humans, tertiary lymphoid tissues (TLT) are found in inflammatory immune responses 85 

associated with chronic pathology from hip joint replacements, keloids, tissues in autoimmune 86 

disease (e.g. the salivary gland in Sjogren’s syndrome, multiple sclerosis and rheumatoid 87 

arthritis) to solid tumours and follicular lymphomas in the bone marrow (Mittal et al., 2013; 88 

Bombardieri et al., 2012; Bagabir et al., 2012; Dieu-Nosjean et al., 2016; Guilloton et al., 89 

2012).  Although the role of specific cell types has been controversial, there is an emerging 90 

paradigm of a multi-step process where localised inflammation induces stromal cell activation 91 

in a lymphocyte independent process, leading to localised microenvironments permissive for 92 

T and B cells entry (De Silva & Klein, 2015). These lymphocytes have the potential to drive 93 

the formation of organised tertiary tissue in an autocrine dependent process.  This process 94 

closely resembles the capacity of naïve B cells to drive B cell follicle formation in secondary 95 

lymphoid tissues in a TNFα and LTβ dependent process, and the capacity of activated B cells 96 

to generate the germinal center (GC), a transient microenvironment that drives high affinity 97 

immune responses in a self-regulating autocrine dependent process.  In both secondary immune 98 

tissues (LN, PP and spleen) and tertiary lymphoid tissues including ILFs and TLT, activated B 99 

cells prime the formation of the GC reaction.  This specialised microenvironment contains both 100 

activated and proliferating B cells and different stromal compartments of CXCL12 secreting 101 

stroma (dark zone) and CXCL13 secreting FDCs (light zone).  This facilitates the cyclic 102 

selection and expansion of antigen specific B cells (Zhang et al., 2016). 103 

 104 
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Non-lymphoid inflammatory immune structures, granulomas, can form in the liver, intestine, 105 

adipose tissue (crown-like structures) and lung induced by chronic infection/inflammation 106 

associated with tuberculosis, leishmaniasis, schistosomiasis, cell death and Crohn’s disease 107 

(Sandor et al., 2003; Beattie and Kaye, 2016; Bolus et al., 2015). The formation of these highly 108 

dynamic microenvironments superficially resemble TLT, however their formation and 109 

organisation is driven by activated macrophages rather than by the mesenchymal-lymphocyte 110 

cross-talk observed in lymphoid tissues thus do not exhibit lymphocyte compartmentalisation. 111 

Granuloma structures are very heterogeneous in presentation within individual patients in a 112 

continuum between early macrophage centric granulomas, self-resolving granulomas to 113 

fibroblastic structures, these often being fibrotic rather than taking on a supportive stromal 114 

network phenotype.  The triggers that drive granuloma formation instead of TLT formation 115 

appear not to be due to differences in the different chemotactic cues delivered by activated 116 

macrophages compared to those delivered by activated stromal fibroblasts leading to a very 117 

different cellular make up to the inflammatory foci of leukocytes (primarily myelo-monocytic 118 

(granuloma) vs. lymphocytic (TLT)). 119 

 120 

Current approaches to studying lymphoid tissue formation: Limits, challenges ad new 121 

approaches. 122 

 123 

Experimental studies, principally performed in gene knockout, lineage specific fluorescent 124 

protein and Cre reporter mouse lines have contributed significant insights into the roles of 125 

multiple different cell types and molecules in lymphoid tissue formation and function. This has 126 

been further validated using histology and flow cytometry analysis on human secondary 127 

lymphoid tissues.  However, in contrast to secondary lymphoid tissues there are some distinct 128 

differences in human tissue pathologies to those found in mice including the cellular 129 
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composition of TLTs, granulomas and other inflammatory tissues. This arises in part from 130 

genetic and physiological differences between human and mice including the timing and 131 

duration of the immune response (chronic vs acute inflammation), the inflammatory triggers 132 

(infection, autoimmunity and cancer) and transcriptional differences in immune cells in the 133 

different species.  In general, mouse models of immune mediated inflammatory disease are 134 

acute and fail to replicate the chronic human disease characterised by disease flairs followed 135 

by remission, limiting their translational capacity to human disease.  Infection and tumour 136 

models in mice either rapidly resolve (too quickly for chronic pathology to establish) or lead 137 

to the mouse having to by euthanized for health and welfare prior to tertiary lymphoid 138 

pathology occurring.  In comparison, humans may live the rest of their life with the disease 139 

pathology, particularly in the context of treatment with biologics and small molecules, thus 140 

pathology has the opportunity to evolve from localised inflammation to fibrotic tissue failure, 141 

systemic inflammation and autoimmunity working together to prevent disease resolution.  142 

Increasingly human 3-dimensional tissue culture models containing both stroma and 143 

lymphocytes have become increasingly common and useful in understanding underlying 144 

molecule mechanisms of TLT formation.  However, it is not currently possible to represent the 145 

full complexity of chronic human pathology in vitro. 146 

 147 

Experimental systems (in vivo and in vitro) to date have proven limited in their ability to explain 148 

chronic clinical pathology and resolve established Sjogren’s pathology, although TNF has an 149 

important role in FDC differentiation and B cell organisation, anti-TNF fails to induce 150 

resolution disease (Sankar, 2004). To better understand the form and function of TLTs, current 151 

knowledge of stromal regulation through molecular signals and immune cell behaviour within 152 

lymphoid tissue must be consolidated and considered in a quantitative, systems-based 153 

approach. The development of systems-level stochastic computational models can bring 154 
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together a broad understanding across spatiotemporal scales of how genetic and molecular 155 

factors relate to cellular and tissue level form and function, and give rise to the complex, 156 

functional architectures observed in secondary lymphoid organs and disease specific TLT. 157 

These models permit in silico experimentation providing a unique platform driving further 158 

experimentation and assessing novel mechanistic targets and intervention strategies where in 159 

vivo observed heterogeneity can be replicated. 160 

 161 

Alan Turing (of code breaking fame) in seminal early work in mathematical biology (Turing, 162 

1952) noted that gastrulation, arose from symmetry breaking, this leads to fundamental insights 163 

and principles that drive modern mathematical and computational biology: the notion that 164 

chaotic, non-linear behaviour of individual biological processes, including the self-165 

organisation of complex biological structures (e.g. TLT), can result in emergent properties that 166 

cannot be understood from consideration of each individual component in isolation. The 167 

development of models that capture the essential, emergent behaviour of specific biological 168 

processes, with extraneous components excluded, enables understanding of how complex 169 

molecular and cellular interactions govern complex, emergent biological processes and can 170 

therefore lead to new insights and quantitative predictions (Callard and Yates, 2005).  Emergent 171 

properties in a TLT model would include stromal networks, lymphocyte organisation, 172 

migration and interactions with antigen presenting cells, and localised cytokine/chemokine 173 

production. 174 

 175 

Application of model-driven experimentation to understand mechanisms of lymphoid 176 

tissue development and function. 177 

 178 
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Advances in computing resources and computational modelling technology has provided the 179 

capacity to generate complex in silico models of lymphoid tissues that incorporate space, time 180 

and cellular heterogeneity found in immune tissues including TLT.  Applying in silico 181 

approaches to understand secondary lymphoid tissue formation and function requires the 182 

integration of experimental data across cellular, molecular and tissue levels of organisation.  183 

Ensuring that the biological processes are appropriately described requires a fine balance 184 

between model abstraction and interpretation (quantitative and qualitative) of experimental 185 

data.  A number of different modelling approaches may be utilised (summarised in Table 1), 186 

increasingly, integration of different mathematical/computational techniques into a hybrid 187 

model is a common strategy to address the limitations of using each technique in isolation. This 188 

approach also facilitates the consolidation of data across different levels of organisation 189 

(molecular, cellular, tissue and patient) into a single multiscale model. For example, an agent-190 

based model can capture an individual cell, which in turn incorporates a differential equation-191 

based model capturing a ‘lower-level’ aspect of that individual's behaviour, such as surface 192 

expression of a receptor. Adopting an in silico approach provides a platform that can provide 193 

insights and generate predictions that can be verified in vivo: verification that can lead to 194 

increased biological understanding and incrementally improved in silico models for further 195 

experimentation.  This iterative approach of combining in vivo, in vitro and in silico approaches 196 

has been termed ‘model-driven experimentation’ (MDE)(Ganesan & Levchenko, 2012). 197 

 198 

Case Study 1: Insights from MDE to secondary lymphoid tissue formation: 199 

 200 

Peyer’s patches (PP) are specialised secondary lymphoid tissues of the intestine that develop 201 

during a fixed window in foetal development and have an essential role in maintaining 202 

intestinal immunity.  PP form stochastically along the mid-gut, with mice developing 8-12 203 
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patches, however, as the absence of or reduction in the number of PPs is observed in several 204 

different gene knockouts, the molecular process which triggers patch formation was unclear 205 

(Veiga-Fernandes et al., 2007). Using an MDE based approach had the potential to provide 206 

new insight into how different signalling pathways (RET, chemokine receptors, cytokine 207 

receptors, TNF superfamily, adhesion molecules) might integrate to induce PP development in 208 

silico and to subsequently design key experiments to test hypotheses in vivo.  PPSim is an agent 209 

based Peyer’s patch simulator that captures key processes during the 72-hour period of tissue 210 

development in prenatal mice and replicates (statistically similar) emergent cell behaviours 211 

found in vivo, specifically Populations of haematopoietic cells, known as Lymphoid Tissue 212 

Initiator (LTin) and Lymphoid Tissue Inducer (LTi) cells, migrate into the developing gut, with 213 

data from laboratory observations suggesting these cells follow a random motion. Both cell 214 

populations express receptors for the adhesion molecule VCAM-1, expressed by stromal 215 

Lymphoid Tissue Organizer (LTo) cells residing in the gut wall. (Alden et al., 2012; Patel et 216 

al., 2012). In this computational model LTi and LTin are captured as individual entities that 217 

migrate into the developing mid-gut serosa and undergo a random walk, interacting with their 218 

localised simulated environment through signalling pathways including GDRFs/Ret signalling 219 

pathways, adhesion molecules and chemokine receptors, as is observed in vivo.  On ensuring 220 

PPsim adequately represented individual cell responses, statistical analysis techniques, 221 

specifically sensitivity analyses, were used to explore mechanisms driving prenatal lymphoid 222 

organ formation (Alden et al., 2013; Butler et al., 2014). This exploration of the simulated 223 

biological pathways revealed which pathways had significant impacts on simulated cell 224 

behaviour at different time points during PP development. By examining correlations in the 225 

level of activity of simulated pathways and cell behaviour, the hypothesis was derived that 226 

contact between LTin and LTo cells that leads to the localised upregulation of VCAM-1 on 227 

stromal cells was the key triggering event that determined the site of PP formation on the mid-228 
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gut (Patel et al., 2012). Utilising this prediction, an in vitro assay imaging foetal mid-gut 229 

explants incubated in the presence or absence of anti-VCAM-1 antibodies was developed. 230 

Using this assay, it was verified that early upregulation of VCAM-1 was the triggering event 231 

that was essential for the initiation of LTi & LTin cell clustering.  The model simulation results, 232 

supported by replicated experimentation and safety-critical systems-based fitness-for-purpose 233 

argumentation that details the knowledge integration in model composition, provide evidence 234 

that the simulation was fit for the purpose of aiding exploration of this specific research 235 

question: understanding the triggering of lymphoid tissue development which was not possible 236 

by conventional genetic approaches (Alden et al., 2015a; Alden et al., 2015b). 237 

 238 

Case Study 2: Applying MDE to understand germinal centre dynamics and function 239 

 240 

The GC reaction is a transient microenvironment in which affinity maturation occurs in 241 

response to immunisation and infection bearing key similarities to TLT in its evolution in the 242 

role of lymphocytes in inducing highly organised stromal networks, the essential role of TNF 243 

superfamily members in regulating its induction and the induction of chemokine gradients (De 244 

Silva and Klein, 2015; Victora and Mesin, 2014).  However, in comparison to TLT, the GC is 245 

a self-resolving tertiary lymphoid microenvironment. Recent technological advances, 246 

particularly the advent of intravital multiphoton imaging including photo-activated fluorescent 247 

proteins has led to the unprecedented availability of data on the dynamics B-cell migration and 248 

selection (Allen et al., 2007; Schwickert et al., 2007; Shulman et al., 2013, 2014).  However, 249 

imaging datasets provide a narrow window of insight into a process that occurs over a timescale 250 

of days and weeks. Furthermore, as imaging techniques are optimised for a given time and 251 

length scale, they are limited in their ability to link molecular, cellular and tissue level 252 

processes.  This has made the interpretation of imaging datasets in the context of the wider 253 
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literature challenging. To address this issue modelling approaches have been used to test the 254 

validity of different hypotheses for mechanisms controlling B-cell migration and selection 255 

within the GC (Chan et al., 2013; Figge et al., 2008; Meyer-Hermann, 2006; Meyer-Hermann 256 

et al., 2012). 257 

With respect to the germinal centre, model-derived insights have proved useful not only in the 258 

analysis of existing datasets but also as a driver for further experimentation. Specifically, an 259 

MDE approach to examine the effects of antibody-feedback on the process of affinity 260 

maturation (Zhang et al., 2013).  Analysis of an in silico GC reaction yielded the prediction 261 

that GC B-cells, which require antigen on FDCs for positive selection, were competing for 262 

antigen by early low-affinity antibodies. Only higher affinity B-cells were able to outcompete 263 

for antigen to receive the necessary survival signals. To experimentally validate this prediction, 264 

the authors manipulated the GC response with monoclonal antibodies of defined affinities and 265 

were able to confirm that antibody feedback provides a dynamic selection threshold to 266 

maximise Ig affinities (Zhang et al., 2013). A similar approach was employed to investigate 267 

the role of Toll-like receptor 4 (TLR4) on the GC where an iterative cycle of in silico and in 268 

vivo experimentation dissected the importance of TLR4 signalling on the maturation of 269 

Follicular Dendritic Cells, key regulators of B-cell selection in the light zone of the GC (Garin 270 

et al., 2010).  Both of these MDE examples highlight the use of in silico experimentation as a 271 

means of refining the use of experimental animals and available resources through the 272 

identification of key time-points and conditions to test in vivo.  These case studies together 273 

provide example of how theoretical models can consolidate data from different sources as a 274 

platform for the development novel hypotheses and a driver for further experimentation. 275 

 276 
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Perspective on MDE as applied to tertiary lymphoid tissue formation, function and 277 

therapeutic resolution. 278 

 279 

When computational modelling is combined with the knowledge that can be derived from next 280 

generation imaging, multi-dimensional cytometry and gene expression analysis of human TLT 281 

pathology, MDE has the potential to provide novel insights to key questions on molecular and 282 

cellular mechanisms involved in TLT formation, maintenance and function similar to its 283 

capacity to impact on our understanding of lymphoid stromal network and granuloma dynamics 284 

(Table 2)(Kislitsyn, A et al., 2015; Novkovic M et al., 2016; Warsinke et al., 2016; Marino et 285 

al., 2016).  One of the key advantages of applying multi-scale modelling is it permits capture 286 

of a wide range of different phenomena that occur on different orders of magnitude in terms of 287 

time and length scales that are critical in the stochastic processes involved in TLT induction.  288 

These include different cell types, states and interactions, inflammatory molecules, 289 

extracellular matrix, adhesion molecules and chemotactic signals all in the context of an 290 

evolving tissue microenvironment.  Developing in silico models permits temporal inhibition of 291 

different signalling pathways and cellular depletions during different stages of TLT pathology 292 

using statistical tools (Figure 1).  This permits identification of key pathways that could be 293 

targeted to induce resolution of pre-existing TLT rather than inhibiting its formation as has 294 

been used to make in silico predictions for the treatment of tuberculosis (Pienarr et al., 2015).  295 

A large number of novel antibody therapies, biologics and small molecular inhibitors have been 296 

developed to target immune function for the treatment of immune mediated inflammatory 297 

diseases.  These therapies are unlikely to show maximal efficacy against existing tissue 298 

pathology when used as mono-therapies, rather it is more likely that use of therapeutic 299 

combinations that is most likely to show clinical efficacy.   The clinical challenge is that there 300 

are already over 20,000 possible different combinations using existing therapeutics that would 301 
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need to be trialled to find optimal targeting strategy to resolve TLT pathology.  Thus MDE 302 

based approaches provide a rational approach to identify novel combination therapeutic 303 

regimes that have a best potential in clinical trials. 304 

 305 

Although the adoption of MDE has only recently started to impact on immunology research, it 306 

is starting to have a very significant impact on other areas of biology.  We propose that the 307 

increased accessibility of computational models, high-performance computing resources, the 308 

increased familiarity and understanding of simulations as tools to understand immune function 309 

and the capacity to apply in silico approaches to identify potential therapeutic approaches and 310 

disease biomarkers will accelerate the application of MDE as a methodology understand and 311 

target disease resolution.   312 
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Table 1: Mathematical and Computational Techniques for Modelling Immune Processes 507 

Technique Description Comments 

ODE 

Ordinary Differential Equations: Describe the rate of 

change with respect to one other variable (e.g. 

population change over time, t). 

Commonly used technique 

that can be used to 

quantify changes in 

population size over time. 

PDE 

Partial Differential Equations: Describe rate of change 

of a function of more than one variable with respect to 

one of those variables (e.g. motion through space x,y,z 

as a function of time t).  

Often used to describe 

changes occurring over 

both time and multiple 

spatial dimensions. 

Monte Carlo 

Statistical random sampling method where outcomes 

are determined at random from input probability 

distribution functions. 

Stochastic technique to 

model deterministic 

processes, very frequently 

integrated within ABM, 

CPM and other stochastic 

modelling approaches. 

Petri Nets 

Graph based model describing network of events or 

‘transitions’ that occur depending on given conditions 

or ‘places’; a stochastic methodology. 

Computationally efficient, 

can be effectively defined 

using SBML2. Capturing 

explicit spatial 

representation can be 

difficult. 

ABMs 

Agent Based Models are composed of individual 

entities specified as agents which exist independently 

in a well-defined state: a set of attributes at a specific 

point in (e.g.) time and space, with state-transitions 

governed by a rule-set, often described in terms of 

Finite State Machines and other diagrammatic 

constructs using the UML (Unified Modelling 

Language). 

There are a number of 

methodologies to generate 

ABMs.  There are tools 

with user interfaces for 

constructing simpler 

lattice-based ABMS, or 

‘unconstrained’ models 

manually coded as 

software in languages such 

as Java and C++.  

(Extended) 

Cellular Potts 

Modelling 

A lattice based modelling technique for simulating the 

collective behaviour of cells. A cell is defined as a set 

of pixels within a lattice (sharing a ‘spin state’), and is 

updated pixel-by-pixel according to a mathematical 

function which incorporates cell volume, and 

surface/adhesion energies. 

Similar to an ABM, but 

relies on effective energy 

functions (the 

Hamiltonian) to describe 

cellular adhesion, 

signalling, motility and 

other physical phenomena. 

Hybridised 

Models 

Bringing together a range of different techniques 

generally within the context of an ABM or CPM, 

incorporating differential equations and a variety of 

other mathematical and computational techniques to 

effectively capture phenomena occurring over 

different spatiotemporal scales (e.g. intracellular 

activity) 

Can take advantage of 

different modelling 

techniques, particularly 

applicable where there are 

multiple processes 

occurring in different 

scales of time and space. 
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Table 2: Key questions on TLT formation and maintenance that can be address in hybridised 508 

TLT models 509 

Formation 

 

What are the minimum cellular requirements to initiate TLT formation? Is this driven by 

different types of stroma, lymphocytes, dendritic cells or tissue resident macrophage? 

 

 

What is the relative importance of inflammation and antigen in TLT induction?  Is 

autoantigen required for induction or just an outcome of the pathology? 

 

 

What is the role of different cytokines and chemotactic signals on TLT formation? 

 

Maintenance 

 

What is the relative role of inflammatory cytokines, lymphocyte – stromal cross talk, immune 

cell entry, cell death, antigenic stimulation on TLT maintenance?  

  

 

What are the key signalling pathways required to maintain TLT once it has formed? Can 

these pathways be targeted to induce TLT resolution? 

 

 

Can TLT self-resolve in humans? If so what is the balance between new TLT induction and 

resolution of existing structures? 

 

 510 

  511 
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 512 
 513 

 514 

Figure 1:  Application of Model-driven Experimentation to develop new mechanistic 515 

understanding of TLT formation and maintenance permitting identification of novel 516 

therapeutic approaches to resolve localised TLT pathology. 517 

Provisional



Figure 01.JPEG

Provisional


