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ABSTRACT: We investigate the nonlinear mechanical properties of GaAs
nanowires with anisotropic cross-section. Fundamental and second order
flexural modes are studied using laser interferometry with good agreement
found between experiment and theory describing the nonlinear response
under mechanical excitation. In particular, we demonstrate that the sign of
the nonlinear coupling between orthogonal modes is dependent on the cross-
section aspect ratio. The findings are of interest for applications such as
amplitude to frequency conversion and vectorial force sensing.
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The mechanical properties of semiconductor nanowires
have proven increasingly useful for a number of

applications. These range from ultrasensitive detection of
mass1 and force2,3 to coupling of the optical and mechanical
degrees of freedom in heterostructure nanowires for use as
hybrid quantum systems.4,5 Applications such as these can
naturally leverage the high mechanical quality factors expected
for grown nanowires with atomically sharp facets and
atomically abrupt clamping at the nanowire-substrate interface,
particularly when compared to their etched counterparts that
may suffer from surface6 and clamping7,8 induced losses.
Furthermore, relatively high nanowire resonance frequencies
result in decoupling of the motion from common sources of
noise while improving force sensitivity.9

Nonlinear behavior is commonly encountered when
investigating the dynamical properties of resonators such as
nanowires10,11 and cantilevers.12,13 Nonlinearities are respon-
sible for a wealth of interesting phenomena, including
mechanical frequency mixing,14 signal amplification,15 and
noise squeezing.16 Nonlinear coupling between nanowire
modes provides a means to determine the amplitude of one
mode via a frequency measurement performed on a second
mode, potentially enabling quantum nondemolition measure-
ments of the mode occupancy.17

Recently, we demonstrated linearly polarized photon
emission from an InGaAs quantum dot embedded in a GaAs
nanowire through control of the nanowire cross-section aspect
ratio.18 Here, we show that tuning the aspect ratio can also be
used to control the linear and nonlinear mechanical properties
of GaAs nanowires. In particular, by determining the nanowire
cross-section aspect ratio at the growth stage, we are able to
control the sign of the nonlinear coupling between the
fundamental flexural modes, and between the fundamental
and second order flexural modes. We also show that,

independent of the aspect ratio, the initial dependence of the
frequency of one mode on the squared amplitude of a coupled
mode evolves into a linear relationship for larger motional
amplitudes, which may be of particular interest for amplitude to
frequency conversion applications.
The GaAs nanowires discussed here were produced using a

bottom-up growth technique. Fabrication began with the
deposition of 30 nm of SiO2 on a (111)B GaAs substrate by
plasma enhanced chemical vapor deposition. The SiO2 growth
mask was subsequently patterned into squares of 135 μm side
length to moderate the nanowire growth rate.19,20 Electron
beam lithography and reactive ion etching were then used to
pattern a single row of 20 apertures into each SiO2 square. The
apertures had a pitch of 4 μm and were either circular with
diameter of ∼120 nm or elongated with minor axis length of
∼120 nm and varying major axis lengths. This allowed the
cross-section of the resulting nanowires to be controlled. GaAs
nanowires were grown from the apertures at 750 °C by metal
organic vapor phase epitaxy using trimethylgallium (TMGa)
and arsine (AsH3) as precursors and hydrogen as a carrier gas.
The reactor pressure and total gas flow were kept at 150 Torr
and 18 standard liters per minute, respectively. The supply rates
of TMGa and AsH3 to the growth chamber were 5.2 × 10−5

and 6.3 × 10−4 mol/min, respectively. An AsH3 overpressure
was maintained during cooling of the sample to prevent
degradation of the nanowires. Note that we have shown
previously that there are three equivalent directions in which
the elongation of the nanowire cross-section remains true to
the elongation of the growth mask aperture due to the
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symmetry of the hexagonal cross-section.18 Here, we arbitrarily
choose to align the major axis parallel to the major flat of the
GaAs wafer.
Figure 1a shows a scanning electron microscope (SEM)

image of a representative line of nanowires that have a diameter
of ∼130 nm and height of ∼14.5 μm. The substrate has been

cleaved parallel to the line of nanowires to facilitate optical
detection of the mechanical motion, as explained later. Figure
1b shows an angled SEM image from a different array of a
single nanowire with an elongated cross-section with the inset
showing the aperture in the SiO2 mask from which the
nanowire was grown. Figure 1c shows a shallow angle SEM
image of a nanowire with a cross-section aspect ratio (AR)
equal to 2.25. We define the AR as the maximum width (wmajor)
along the major axis (the elongation direction) divided by the
width along the minor axis (wminor). Note that this means the
AR is independent of the nanowire length. For the case of a
nanowire with a regular hexagonal cross-section the orthogonal
widths lead to an AR of 2/ 3 = 1.155. Figure 1d−g shows the
fundamental and second order flexural mechanical mode shapes
for a nanowire with an elongated cross-section determined
from finite element method (FEM) simulations. For each
flexural mode order i (=1, 2, ...) there exist two non-degenerate
orthogonal modes due to the cross-section anisotropy. The
FEM simulations show that the higher frequency mode vibrates
in the plane formed by the nanowire growth axis and the cross-
section elongation axis (the major axis). We refer to this mode
as the major mode (with frequency f i

major), and the orthogonal
mode as the minor mode ( f i

minor). By choosing the elongation
axis we are able to deterministically control the precise
direction of motion of the orthogonal modes, unlike in the
case of conventional nanowires with a small degree of random
asymmetry in the cross-section.2,10

Nanowire motion was detected using a Michelson
interferometer. The sensing laser was a wavelength stabilized
diode operating at 633.1 nm. The sample was mounted on a
right angled bracket attached to a piezo transducer (PZT)
within a vacuum chamber. The nanowire growth axis was
aligned perpendicular to the interferometer optical axis (Figure
1h). The sample was rotated about the nanowire growth axis
such that the nanowire major axis was at ∼60° relative to the
optical axis. This ensured that the orthogonal vibrational modes
could be detected simultaneously. Prior to mounting, the
sample was cleaved parallel to the rows of nanowires at a
distance of ∼30 μm (see Figure 1a). This allowed a high NA
objective (NA = 0.7, 100× magnification) to be used to focus
the laser on a single nanowire without the substrate blocking a
significant fraction of the incident and reflected laser fields. The
photons reflected from the nanowire were interfered with
photons returning from the Michelson reference arm on a
variable gain photodiode, which was used in conjunction with a
spectrum analyzer to determine the frequency response of the
nanowire motion.
Measurements were undertaken at room temperature and a

pressure of ∼10−6 mbar. The interferometer laser power was set
at ∼2 μW to minimize heating of the sample.2 We first consider
three nanowires with AR = 1.17 (length × wmajor × wminor =
14.44 μm × 156 nm × 133 nm), AR = 1.72 (14.3 μm × 196 nm
× 114 nm) and AR = 1.98 (12.88 μm × 244 nm × 123 nm).
Figure 2a shows the fundamental thermomechanical mode
spectra for these nanowires. The modes have room temperature
quality factors (Q factors) of 2000−3000. The attribution of the
modes was enabled by FEM simulations (as in Figure 1d−g)
and confirmed by rotating the sample relative to the
interferometer optical axis and determining when the major
mode could no longer be measured, as in this case the nanowire
major mode vibrates perpendicularly to the optical axis and
thus cannot be resolved. Figure 2b shows the slight lifting of the
degeneracy of the fundamental modes of the nanowire with AR

Figure 1. Scanning electron microscope (SEM) image of a line of
vertical nanowires, with the (111)B GaAs substrate cleaved parallel to
the line at a distance of ∼30 μm (shown by the dashed red line). Scale
bar 20 μm. (b) Angled SEM image of a nanowire from a different array
with an elongated cross-section. Scale bar 400 nm. (Inset) Top down
SEM image of the aperture formed in the SiO2 mask prior to nanowire
growth. Scale bar 200 nm. (c) Shallow angle SEM image of a nanowire
with cross-section aspect ratio of 2.25:1. Scale bar 100 nm. (d−g)
Finite element simulations showing the orthogonal fundamental
flexural mode shapes of the nanowire in (c) with lower frequency
(d) f1

minor and higher frequency (e) f1
major, and the orthogonal second

order modes shapes with frequency (f) f 2
minor and (g) f 2

major. (h)
Simplified measurement schematic for the Michelson interferometer.
(Inset) End view schematic of a nanowire, showing the orientation of
the cross-section elongation axis relative to the interferometer optical
axis. AFG, arbitrary function generator; BS, beam splitter; NW,
nanowire; PD, photodetector; PZT, piezo transducer; ref. mirror,
reference arm mirror; SA, spectrum analyzer.
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= 1.17 in greater detail. The small frequency difference is
commonly observed4,10,11,21,22 and arises due to the seemingly
unavoidable asymmetry inherent to nanowires with nominally
regular hexagonal cross-section.
The average resonance frequencies for three sets of

nanowires with average AR of 1.16, 1.64, and 2.00 and similar
wminor (115−135 nm) are summarized in Table 1. Resonance

frequencies of the order of 440−540 kHz are measured for
f1
minor, while the average value of f1

major − f1
minor increases from

∼9 kHz for AR = 1.16 to ∼210 kHz (∼440 kHz) for AR = 1.64
(2.00). The increase in mode splitting is predominantly due to
the nanowire dimension wmajor increasing with the AR, as wminor

is approximately constant across the arrays. Good agreement
was found between the measured frequencies and those
obtained from FEM simulations (within ∼1%, see Supporting
Information), using a value of 130 GPa for the Young’s
modulus of GaAs. This is reasonably consistent with the bulk
value of 141 GPa for GaAs in the [111] direction along which
the nanowire growth axis lies.23 The difference between the two
values could potentially be due to rotational twin formation
within the nanowires.24 The absence of a diameter dependence
of the Young’s modulus suggests the difference is not the result
of surface effects.25

Table 2 summarizes the measured frequency ratios for
orthogonal modes of the same flexural order ( f1

major/f1
minor and

f 2
major/f 2

minor) and copolarized modes of differing order
( f 2

minor/f1
minor and f 2

major/f1
major) for the same nanowires

considered in Table 1. Regarding the former, Euler−Bernoulli
beam theory predicts that f i

j ∝ Ij where Ij is the second

moment of area pertaining to a mode vibrating in the direction
j (= major or minor) and is independent of the mode number i.
The orthogonal mode ratios are therefore given by f i

major/f i
minor

= I I/major minor . In the case of a beam with a rectangular cross-

section, this value equals the ratio wmajor/wminor with the
frequency of the major (minor) mode being linearly dependent
on wmajor(minor). Here, we have used the exact expression for the
second moment of area for each hexagonal cross-section
nanowire with the calculated frequency ratios shown in the
fourth column of Table 2 (see also Supporting Information
Section S3). We see that the theory agrees very well with the
measured values given in columns 2 and 3 of the same table.
With regard to the copolarized mode ratios, we see that these
are consistent with the value of 6.267 also obtained from
Euler−Bernoulli beam theory. Note that calculations show that
for a nanowire with an AR of 5.5, f1

minor + f1
major ∼ f 2

minor, while
for AR = 6.5, f1

major ∼ f 2
minor, two situations which are likely to

lead to interesting mode coupling effects via internal
resonances.26,27

It is well-known that a driven oscillator is liable to deviate
from a linear response for sufficiently large response amplitude,
resulting in the observation of nonlinear dynamics. With this in
mind, we next investigate the behavior of each mode under
swept mechanical excitation provided by the PZT attached to
the sample. Figure 3 shows swept excitation measurements
performed separately on the first and second flexural modes of
two different nanowires with AR = 1.17 and AR = 1.98. For the
smallest sweep amplitudes, the frequency fmax at which the
maximum amplitude response is observed is approximately that
of the linear resonance frequency. As the sweep amplitude is
increased, the resonator begins to exhibit nonlinear behavior.
This first manifests as a change in fmax, a phenomenon known

Figure 2. (a) Fundamental thermomechanical mode spectra for three
nanowires with aspect ratio (AR) of 1.17, 1.72, and 1.98. The modes
f1
major and f l

minor are orthogonal (see text). The spectra are scaled such
that the maximum amplitude is the same in each case. The actual
amplitude of thermomechanical motion is dependent on the spring
constant associated with each mode, and the measured amplitude also
depends on the detection angle. Spectra are offset in y for clarity. (b)
Narrower bandwidth fundamental mode spectrum for the nanowire
with an AR of 1.17, which has a nominally regular hexagonal cross-
section. The mode splitting arises from the slight cross-section
asymmetry of the nanowire. The experimental data (circles) is fitted
with a double Lorentzian function (line).

Table 1. Average Resonance Frequencies for the First Four
Flexural Modes for Nanowires with Three Different Average
Cross-Section ARsa

AR f1
minor (kHz) f1

major (kHz) f 2
minor (kHz) f 2

major (kHz)

1.16 ± 0.07 461 ± 7 468 ± 10 2880 ± 40 2910 ± 40
1.64 ± 0.06 442 ± 15 651 ± 17 2770 ± 100 4080 ± 100
2.00 ± 0.07 542 ± 11 986 ± 15 3400 ± 70 6180 ± 100

aAverages are taken over 6, 8, and 8 nanowires for an AR of 1.16, 1.64,
and 2.00, respectively. Errors are equal to one standard deviation in the
nanowire dimensions for the AR and in the average measured
frequencies otherwise.

Table 2. Average Frequency Ratios for the First Four Flexural Modes for Nanowires with Three Different Average Cross-section
ARsa

AR f1
major/f1

minor f 2
major/f 2

minor E-B theory f 2
minor/f1

minor f 2
major/f1

major

1.16 ± 0.07 1.017 ± 0.015 1.005 ± 0.005 1.002 ± 0.080 6.272 ± 0.006 6.254 ± 0.031
1.64 ± 0.06 1.47 ± 0.04 1.47 ± 0.04 1.48 ± 0.03 6.269 ± 0.001 6.267 ± 0.001
2.00 ± 0.07 1.82 ± 0.02 1.82 ± 0.02 1.81 ± 0.07 6.267 ± 0.002 6.265 ± 0.006

aThe fourth column gives the expected frequency ratios for the orthogonal modes calculated from Euler−Bernoulli (E-B) theory, which show good
agreement with the experimentally determined ratios in columns two and three. The values in the final two columns agree with the value of 6.267
also calculated from E-B theory. Errors are equal to one standard deviation in the nanowire dimensions for AR and E-B theory and in the average
measured frequency for the frequency ratios.
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as spring stiffening or spring softening depending on whether
fmax increases or decreases. Eventually, the system enters a
bistable regime, characterized by a step change in amplitude at a
critical sweep frequency. The frequency at which this occurs is
dependent on the drive amplitude and the initial conditions (in
this case governed by the sweep direction). Note that the
different sweep directions used for the two cases plotted in
Figure 3 were chosen simply to show maximum frequency
pulling. For the relatively large amplitudes required to observe
nonlinear behavior here, the interferometer detection scheme
itself becomes nonlinear with higher harmonics appearing for
amplitudes greater than the interferometer fringe width (λ/4, λ
= 633.1 nm). On the basis of the interferometer response, we
estimate that the amplitude at the onset of nonlinear motion of
the f1 modes is of the order of 1 μm, while for the f 2 modes the
amplitude is less than the fringe width (∼160 nm). An upper
limit on the amplitude of the f i

major modes is given by the 4 μm
separation of adjacent nanowires in the major direction (hence
an amplitude of 8 μm).
For all values of the AR considered here the f1

minor and f1
major

modes exhibit spring stiffening, consistent with reports in the

literature for nanowires with regular hexagonal cross-
section.10,11 In contrast, the f 2

minor and f 2
major modes exhibit

spring softening with fmax reduced relative to the linear
resonance frequency. The change in fmax as a function of
drive amplitude is plotted in the lower panels of Figure 3,
revealing a quadratic dependence in each case. The observation
of either spring stiffening or spring softening for a particular
mode was found to be independent of the AR within the limits
of the ARs considered here.
We can understand the observed behavior by modeling the

nanowire as a damped, driven harmonic oscillator with a
nonlinear restoring force. By writing the mode as u(x, t) =
a(t)ξ(x) with mode shape ξ(x), the dimensionless equation of
motion for the time dependent amplitude a(t) is the Duffing
equation12

μ ω γδ γ δ̈ + ̇ + + + ̇ + ̈ = Ωa a a a aa a a F t( ) ( , )2
1

3
2

2 2
(1)

Here μ is the linear damping coefficient, ω/2π is the linear
resonance frequency, δ = (w/L)2 with w the nanowire width in
the direction of motion of the mode and L the nanowire length,
and F is a function of the time dependent driving force with
frequency Ω. The cubic nonlinearity parametrized by the
coefficient γ1 arises due to the geometric nonlinearity and is
responsible for the drive amplitude dependence of fmax for the
fundamental flexural modes.12 For this case, it can be shown28

that fmax has a quadratic dependence on the amplitude of the
driving force as seen experimentally in Figure 3. The fifth term
in eq 1 is due to the inertial nonlinearity and has been shown to
dominate the behavior of the second flexural mode in
cantilevers, giving rise to spring softening.12,26 This is in
agreement with the spring softening behavior observed here for
the f 2 modes. The magnitude of the experimentally observed
cubic nonlinearity can be estimated from the expression 32π2

f lin ( fmax − f lin)x
2/3, where f lin is the linear resonance frequency

and x is the amplitude at fmax.
29 For the nanowires discussed

here, estimates for the magnitude of the cubic nonlinearity of
1021 (ms)−2 and 1025 (ms)−2 are obtained for the f1 and f 2
modes, respectively, using the expected nonlinear amplitudes
discussed previously. In comparison, for f1 modes ref 22 reports
a value of 1021 (ms)−2 for silicon nanowires and ref 11 reports a
value of 1023 (ms)−2 for GaAs nanowires (at low temperature
hence higher Q factor). As demonstrated in ref 11, the
geometric nonlinearity in GaAs nanowires is sufficiently large to
allow for applications such as nonlinear mechanical mixing.
Note that the nonlinear coefficient scales with δ12 hence can be
tuned via this parameter.
The geometric nonlinearity also results in coupling between

the nanowire modes, whereby the frequency of one mode is
dependent on the amplitude of other modes. For coupled
major and minor modes u(x, t) = a(t)ξ(x) and v(x, t) =
b(t)ξ(x) with linear mode shape ξ(x), the dimensionless
equations of motion derived from ref 30 are

μ ω γδ γ ρ

ρ δ

̈ + ̇ + + + − −

+ − = Ω

⎡

⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤

⎦
⎥⎥

a a a
D
D

a
D
D

D
D

D

D
D
D

ab F t

1

1 ( , )
k

minor minor
2 min

maj
1

3 min

maj
1 1

min

maj

2
maj min

maj

2

2
minor

(2)

and

Figure 3. (Upper panels) Nanowire response amplitude under swept
excitation for representative (a,c) fundamental and (b,d) second order
flexural modes of nanowires with an AR of (a,b) 1.17 and (c,d) 1.98.
The drive amplitude increases from the bottom trace to the top trace
in each case. Note that for (a,c) the interferometer detection laser was
focused near the clamping point of the nanowire to prevent
compression of the optical signal at large amplitudes. (Lower panels)
Change in the frequency at maximum response amplitude fmax versus
drive amplitude. The experimental data points (circles) are fit with a
quadratic function (lines) in each case.

Nano Letters Letter

DOI: 10.1021/acs.nanolett.6b02994
Nano Lett. 2016, 16, 7414−7420

7417

http://dx.doi.org/10.1021/acs.nanolett.6b02994


μ ω γδ γ ρ
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including the geometric nonlinearity only (see Supporting
Information). Here, ωj/2π is the linear resonance frequency of
mode j (= major or minor), μj is the damping coefficient, γ1, ρ1
and ρ2 are mode coupling coefficients related to the mode
shape, δ = (wminor/L)

2 and Fj is a time dependent function of
the driving force with frequency Ω. Dj is the bending stiffness
related to motion of mode j, while Dk is the torsional stiffness.
The ratio Dmin/Dmaj is proportional to (wminor/wmajor)

2 (see
Supporting Information). Equations 2 and 3 result in the
frequency of mode u(x,t) having a quadratic dependence on the
amplitude b(t) of mode v(x,t).10,31,32 In the case of a nanowire
with an approximately regular hexagonal cross-section, Dmin/
Dmaj ∼ 1 and eqs 2 and 3 reduce to the system investigated in
ref 10. The equations describe the mode coupling in the
framework of Euler−Bernoulli beam theory, which therefore
places a lower limit on the ratio of the nanowire length to width
for which the theory is valid. This ratio is of the order of 10 (as
shown experimentally for SiN cantilevers33) implying a lower
limit on the length of ∼1−3 μm for the nanowires investigated
here (which are longer than 10 μm in each case). The validity
of eqs 2 and 3 also requires that the torsional frequencies be
much higher than the flexural mode frequencies, a condition
which is satisfied for lengths greater than ∼1−5 μm for the
nanowires studied here with an AR of 1.17−2.75 (see
Supporting Information). Crespo da Silva and Zaretzky have
developed a theoretical model for the case where torsional
modes are of comparable frequency to the flexural modes.34,35

We first experimentally demonstrate coupling of the
fundamental flexural modes, f1

minor and f1
major. For nanowires

with either AR = 1.17 or 1.72, driving either mode results in
spring stiffening of the orthogonal mode. Figure 4a,b shows the
frequency pulling due to spring stiffening observed in the case
of driving mode f1

major and detecting mode f1
minor in each case.

The frequency pulling is seen to have a quadratic dependence
on the drive amplitude for small amplitudes. Upon increasing
the AR further to 1.98, a change in sign of the coupling is
observed resulting in spring softening of the coupled mode
(Figure 4c). We confirmed that this remains the case for a
nanowire with an even greater AR of 2.75 (dimensions of 12
μm × 347 nm × 126 nm).
The change in sign of the mode coupling can be understood

by considering the terms in ab2 in eq 2, which describes the
behavior of the minor mode. The parameters γ1, ρ1, and ρ2 have
values for the fundamental modes of 40.44, −20.22, and
−16.61, respectively (see Supporting Information). Consider
the case where we drive mode f1

major and measure the frequency
of f1

minor, as in Figure 4a−c. As the nanowire AR increases, the
ratio Dminor/Dmajor decreases from an initial value of unity (the
case for a nanowire with a regular hexagonal cross-section). The
sum of the first two terms in ab2 is positive for all AR and
increases linearly with increasing AR. The torsion-dependent
third term is negative for all AR and becomes rapidly more
negative with increasing AR due both to the quadratic
dependence on (1 − Dminor/Dmajor) and the fact that Dmajor/
Dk increases with increasing AR (see Supporting Information).
The term in ab2 therefore changes sign from positive to

negative with increasing AR. This leads to a transition from
spring stiffening to spring softening with increasing AR and
provides a new route to control the mode coupling in nano-
and microcantilevers. Note that driving the f1

minor mode has
exactly the same effect on the f1

major mode as in the reverse case
discussed above. From our experimental results, it can be
deduced that for a nanowire with an elongated hexagonal cross-
section there exists for 1.72 < AR < 1.98 an AR for which the
quadratic coupling between the fundamental modes disappears
and for small driven amplitudes there should be no observable
coupling to the orthogonal fundamental mode. Calculations
show that the change in sign should occur for AR ∼ 2.05 (see
Supporting Information). The slight discrepancy could arise
from other potential sources of nonlinearity, such as imperfect
surfaces (e.g., the effect of a native oxide) or crystal defects (for
instance due to rotational twinning). The proximity of the
experimental and theoretical values implies that such an effect is
however a relatively small perturbation.
The data in Figure 4a−c can be characterized in terms of the

resonance frequency shift of the undriven mode as a function of
the squared amplitude of the driven mode. Given the
uncertainty in the driven mode amplitude, this is estimated to
lie in the range 10−5−10−3 Hz nm−2 for the fundamental
modes. Note that the AR for which zero mode coupling is
observed is independent of the strength of the nonlinearity
when the behavior is described by eqs 2 and 3. Note also that as
the mode coupling strength is a function of the AR, the
strongest coupling occurs either for the minimum AR of 1.155
or for AR larger than ∼2.75 (see Figure S4 in Supporting
Information).
Figure 4d shows frequency pulling of mode f1

minor due to
driving mode f1

major for a nanowire with AR = 1.24 with the data
extended relative to that in Figure 4a−c to include much larger
drive amplitudes. We see a distinct change in behavior of the
mode coupling, with the quadratic frequency pulling observed

Figure 4. Spring stiffening observed for mode f1
minor when driving

mode f1
major in the case of nanowires with an AR of (a) 1.17 and (b)

1.72. (c) Spring softening of mode f1
minor when driving mode f1

major for
a nanowire with AR = 1.98. In (a−c), measured data points are given
by circles and red lines are quadratic fits to the data. (d) Transition
from quadratic to linear spring stiffening of mode f1

minor when driving
mode f1

major for a nanowire with an AR of 1.24. The red line is a
quadratic fit to the experimental data (blue circles) for small drive
amplitudes and the green line is a linear fit to the data for large drive
amplitudes.
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at low drive voltage developing into a linear frequency pulling
regime. The same change was observed for nanowires with AR
= 1.72 and AR = 1.98. Note that we confirmed that the PZT
displacement responsible for the driving force increased linearly
over the entire voltage range used in this measurement (see
Supporting Information). When the Duffing oscillator as
described by eq 1 is driven at the linear resonance frequency,
the amplitude response as a function of the drive amplitude can
initially be considered to be linear but then develops a cube
root dependence as the oscillator becomes strongly nonlinear.
The frequency of a second mode quadratically coupled to the
driven mode as described by eq 2, might therefore be expected
to show a drive amplitude dependence which would transition
from V2 to V2/3 with increasing drive strength, which is in
contrast to our observation here. Observation of a V2 to V2/3

transition has been reported in the case of clamped−clamped
resonators31 and was attributed in that case to entering the
strong bending regime of motion.36

The origin of linear frequency pulling for large drive
amplitude in the system discussed here is unclear, but could
arise for a number of reasons. These include entering the strong
bending regime for a nanowire (rather than the clamped−
clamped beam case mentioned above), nonlinear damping, or
additional sources of nonlinearity arising from imperfect
surfaces, rotational twin defects and nonlinear elastic constants.
The calculated maximum strain experienced by the nanowires is
of the order of 0.25% (see Supporting Information), well below
the breaking strain reported for GaAs nanowires37 but
potentially large enough to show nonlinear elastic behavior.
Ultimately, the behavior we observe means that is it possible to
envisage a system where correct choice of the nanowire cross-
section AR reduces the quadratic coupling between modes to
zero with the larger amplitude coupling then entirely of linear
nature after an initial lower amplitude region exhibiting zero
coupling.
Coupling between the first and second order flexural modes

has also been observed. Figure 5a,b shows the frequency of
modes f1

minor and f1
major as a function of the drive amplitude of

either mode f 2
minor or f 2

major for a nanowire with AR = 1.17.
When the driven and detected modes are copolarized, spring
softening of the undriven mode is observed. Spring stiffening is
seen for the undriven mode when the driven mode is
orthogonally polarized. The form of the amplitude-frequency
dependence is not clear when driving the second flexural modes
and monitoring the fundamental modes due to the limited PZT
response at MHz frequencies. We confirmed that in the reverse
case a quadratic dependence is observed as for the case of
driving and detecting fundamental modes only. This is shown
in Figure 5c,d in which mode f1

major is driven while the
frequency of mode f 2

minor is measured for two nanowires with
AR of 1.17 and 1.98, respectively. As in the case of the
orthogonal fundamental modes discussed in Figure 4, a change
in sign of the mode coupling is observed with increasing AR. In
contrast, Figure 5e,f shows that when driving and measuring
copolarized modes (in this case driving f1

minor and measuring
the frequency of f 2

minor) no change in sign is observed. This is
as expected from eqs 2 and 3, because for copolarized modes
Dminor = Dmajor, hence in this case there is no dependence of the
sign of the mode coupling on the AR.
In conclusion, we have demonstrated control of nonlinear

mechanical mode coupling in grown GaAs nanowires through
control of the nanowire cross-section aspect ratio. Driving one
of the fundamental flexural modes results in spring stiffening of

the orthogonal fundamental mode for nanowires with regular
hexagonal cross-section. Upon increasing the cross-section
aspect ratio to 2:1 the mode coupling presents as spring
softening of the undriven coupled mode. We have also shown
that driving a mode at resonance into the nonlinear regime
leads to a linear dependence of the coupled mode frequency on
the driven mode amplitude in contrast to the sublinear
response predicted by the Duffing equation. Finally, we have
investigated the behavior of the second flexural modes, which
show frequency softening under swept excitation. The stiffening
or softening response of a second order mode when a coupled
fundamental mode is driven is also shown to depend on the
nanowire cross-section aspect ratio. Our fundamental studies
provide new information about mechanical mode coupling in
nanowires that is relevant for applications such as amplitude to
frequency conversion and vectorial force sensing. Future studies
could focus on additional factors such as nanowire surface and
growth quality or investigate the very large amplitude regime
where material nonlinearities may become important.
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Figure 5. Frequency pulling observed for modes f1
minor and f1

major due
to driving mode (a) f 2

minor and (b) f 2
major for a nanowire with an AR of

1.17. (c−f) Frequency pulling observed for mode f 2minor due to driving
mode (c,d) f1

major and (e,f) f1
minor. In (c,e) AR = 1.17 and in (d,f) AR =

1.98.
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