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the Compartmental Tissue Uptake Model for Dynamic
Contrast-Enhanced MRI
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Purpose: Fitting tracer kinetic models using linear methods is

much faster than using their nonlinear counterparts, although this
comes often at the expense of reduced accuracy and precision.

The aim of this study was to derive and compare the performance
of the linear compartmental tissue uptake (CTU) model with its non-
linear version with respect to their percentage error and precision.

Theory and Methods: The linear and nonlinear CTU models
were initially compared using simulations with varying noise

and temporal sampling. Subsequently, the clinical applicability
of the linear model was demonstrated on 14 patients with
locally advanced cervical cancer examined with dynamic

contrast-enhanced magnetic resonance imaging.
Results: Simulations revealed equal percentage error and pre-
cision when noise was within clinical achievable ranges (con-

trast-to-noise ratio >10). The linear method was significantly
faster than the nonlinear method, with a minimum speedup of

around 230 across all tested sampling rates. Clinical analysis
revealed that parameters estimated using the linear and non-
linear CTU model were highly correlated (r � 0.95).

Conclusion: The linear CTU model is computationally more efficient
and more stable against temporal downsampling, whereas the non-

linear method is more robust to variations in noise. The two methods
may be used interchangeably within clinical achievable ranges of
temporal sampling and noise. Magn Reson Med 000:000–000,
2016. VC 2016 The Authors Magnetic Resonance in Medicine pub-
lished by Wiley Periodicals, Inc. on behalf of International Soci-
ety for Magnetic Resonance in Medicine. This is an open access
article under the terms of the Creative Commons Attribution
License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited.
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INTRODUCTION

Dynamic contrast-enhanced MRI (DCE-MRI) is a power-
ful tool to evaluate tissue perfusion, permeability, and
vasculature. High temporal resolution scans are per-
formed while a gadolinium-based contrast agent is intro-
duced into the patient’s blood stream, and its subsequent
uptake is recorded. Numerous methods of analyzing the
temporal tissue enhancement profile have been proposed,
including phenomenological, semiquantitative, and quan-
titative tracer kinetic models (1,2). The most commonly
used tracer kinetic models are the Tofts and extended
Tofts models, which have proven useful in a variety of
clinical applications (3,4). The limitations of the extended
Tofts model have been revealed recently, as experimental
evidence has shown that this model often fits poorly to
data measured at high temporal resolution (5).

This has recently raised an increased interest in the use
of more general models, such as the two-compartment
exchange model (2CXM) (6). The 2CXM allows for the
description of two distinct compartments (ve and vp) and
separation of flow (Fp) and the permeability surface area
product (PS). For reliable estimation of all four parameters,
a good contrast-to-noise ratio (CNR), high temporal resolu-
tion, and sufficiently long scan duration is required (7).
The compartmental tissue uptake (CTU) model is a special
case of the 2CXM which applies particularly for data with
shorter scan durations (8,9). This model has only three
parameters (Fp, PS, vp) and can be applied whenever the
acquisition time is shorter than the contrast agent’s
extravascular transit times (typically in the range of 2–3
min, but significantly extended in some pathologies). The
CTU model is a direct generalization of the well-known
Patlak model (10), which applies to data with poorer tem-
poral resolution. An important application of the CTU
model may be in tissues that include necrosis or cell mem-
brane rupture where the contrast agent is captured for a
long time. In those cases it is practically impossible to
measure long enough to capture the washout phase.

Regardless of the choice of model for data analysis, the
parameter estimation is often performed using a nonlinear
fitting algorithm. Nonlinear methods require an initial
guess of the parameters to be estimated and may converge
only to a local minimum. Conversely, linear methods
determine the kinetic parameters by solving a set of linear
equations, as exemplified by Murase (11) and Flouri et al.
(12) for DCE-MRI, and there is also extensive experience in
nuclear medicine (13). This is often much faster than the
nonlinear approaches, as the optimum can be identified
analytically by a single matrix inversion in a closed-form
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solution, rather than iteratively via gradient-descent type
methods. The drawback often encountered with linear
approaches is the higher sensitivity to noise and possible
bias due to differences in data weighting (14). The nature
and severity of the problem is model dependent, but these
issues have not yet been investigated in the specific con-
text of the CTU model.

The aim of this study was to formulate the CTU model in

a linear form and compare the precision and percentage

error of the parameter estimates of both linear and nonlinear

solutions. The evaluation was performed using simulations

with various noise levels and temporal downsampling. The

applicability of the linear approach was demonstrated on

14 clinical cases of locally advanced cervical cancer.

THEORY

The CTU model is a special case of the 2CXM, which is

valid whenever the indicator concentration in the

plasma volume (vp) is much larger than that in the

extravascular distribution volume (ve) (i.e., cp >> ce). It

is governed by the following set of coupled linear differ-

ential equations:

vp
dcpðtÞ

dt
¼ �PScpðtÞ þ FpðcaðtÞ � cpðtÞÞ [1]

ve
dceðtÞ

dt
¼ PScpðtÞ; [2]

where PS is the permeability surface area, Fp is the

plasma flow and ca is the concentration in the supplying

artery. The total concentration measured (C) is the com-

bination of concentration in the plasma and the extracel-

lular and extravascular volume:

CðtÞ ¼ vpcpðtÞ þ veceðtÞ: [3]

The analytical solution to the CTU kinetic model has

been shown previously to have the following form (9):

CðtÞ ¼ caðtÞ � ðFpe�t=Tp þ Ktransð1� e�t=TpÞÞ; [4]

where � is the convolution operator, Tp is the plasma

transit time also given as the ratio Tp ¼ vp

FpþPS, E is the

extraction fraction also given as E ¼ PS
PSþFp

, and Ktrans is

the volume transfer constant and can be written as

Ktrans ¼ E � Fp.

Linear Solution

By combining the coupled set of linear differential Equa-

tions [1] and [2] with Equation [3], we may derive the

linear solution to the CTU model.
Substitute in Equations [1] and [2] into the derivate of

Equation [3]:

dCðtÞ
dt

¼ �PScpðtÞ þ Fp

�
caðtÞ � cpðtÞ

�
þ PScpðtÞ

¼ Fp

�
caðtÞ � cpðtÞ

�
:

[5]

Differentiating once more and substituting in
dcpðtÞ

dt iso-

lated from Equation [1] yields:

d2CðtÞ
dt2

¼ Fp
dcaðtÞ

dt
� Fp

vp

�
�PScpðtÞ þ FpðcaðtÞ � cpðtÞÞ

�
:

[6]

Further isolating cpðtÞ in Equation [5] and inserting into
Equation [6], we have:

d2CðtÞ
dt2

¼ Fp
dcaðtÞ

dt
þ

FpPS

vp
caðtÞ �

Fp þ PS

vp

dCðtÞ
dt

[7]

Integrating Equation [7] twice over time gives an equa-
tion of the form:

C ¼ �a�C þ b �ca þ gca ; [8]

where �C and �ca denote the integral of C and ca, respec-
tively, over time and ca is the double integral of ca over
time. From the parameters (a;b; g) the following relations
for (vp; Fp; PS;Tp; E) may be found:

vp ¼
b2

ab� g
; Fp ¼ b; PS ¼ gb

ab� g
; Tp ¼

1

a
; E ¼ g

ab
:

[9]

Equation [8] is a linear equation and may be expressed
in matrix form as

c ¼ Ab: [10]

The least-squares solution can be found by solving the
following problem using standard techniques:

min
b
jjAb� cjj2 [11]

In the context of the CTU model, A, b, and c would be
given as

A ¼

��C ðt0Þ �caðt0Þ ca ðt0Þ

��C ðt1Þ �caðt1Þ ca ðt1Þ

� � �

��C ðtN�1Þ �caðtN�1Þ ca ðtN�1Þ

2
666664

3
777775

[12]

b ¼

PSþ Fp

vp

Fp

FpPS

vp

2
6666664

3
7777775

i:e;

a

b

g

2
664

3
775

and

c ¼

Cðt0Þ

Cðt1Þ
�

CðtN�1Þ

2
66666664

3
77777775
;

where N is the number of time points. Because c is pro-
portional to the extraction fraction E, which is defined
for 0 � E � 1 a solution with c � 0 is consistent with a
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one-compartmental state where either; no contrast agent

extravasates, the contrast agent exchanges rapidly or the

tissue is weakly vascularised (15).

METHODS

Simulation Data

Synthetic concentration curves were generated (Fig. 1a–

c) using Equation [4] with a noiseless input function

from Parker et al. (16) with a 20-s baseline and 4-min

postinjection duration. The temporal resolution was ini-

tially set at 10 ms before downsampling, and Gaussian

noise was added to the tissue concentration curve C and

ca to imitate more realistic clinical scenarios. The data

were downsampled to a range of temporal resolutions in

the interval Dt ¼ (0.05–10 s) in 0.05-s increments, and

the onset time was varied randomly within the chosen

resolution (Dt) for all simulations. The CNR was defined

as the maximum difference in indicator concentration in

the tissue divided by the standard deviation of the base-

line noise and was simulated over a range of values

(CNR values ranging from 2 to 40). The convolution

operation was performed explicitly assuming an expo-

nential decay for one of the functions as previously

shown by Flouri et al. (12). Three different tissue

enhancement curves were considered, corresponding to

previously reported values extracted using the CTU

model (summarised in Table 1).
The simulations were performed using MATLAB

(MathWorks, Natick, Massachusetts, USA) on an Intel

Xeon 2-core (2.4 GHz) with 20 GB RAM, and computa-

tion time was measured using the functions tic() and

toc(). For the nonlinear parameter estimation, the lsqnon-
lin() function in MATLAB along with the Trust Region

Reflective algorithm with bounds fixed for the Fp, PS,

and vp parameters to be real positive values (17) was

used (and is referred to hereafter as NLLS). The initial

starting guess supplied for NLLS was chosen to be the

“true” values used to generate the synthetic data in order

to avoid convergence to an unwanted local minimum.

This means giving the NLLS a best case scenario with

respect to parameter estimation and time to convergence,

which may not reflect clinical reality. In other words, we

compare the best possible performance of the NLLS with

Table 1
Parameters Used for Simulation

Fp

(min�1) vp

PS
(min�1) Reference

Brain (tumor) 0.23 0.05 0.02 Sourbron et al. (9)
Cervix (tumor) 0.57 0.28 0.2 Kallehauge et al. (23)

Cervix (tumor) 0.65 0.22 0.14 Donaldson et al. (5)

FIG. 1. Example of the differences in fits between LLS and NLLS. (a–c) CNR was fixed at 10 and the temporal sampling at 2 s. The cor-

responding parameters were extracted from (a) Sourbron et al. (9), (b) Kallehauge et al. (23), and (c) Donaldson et al. (5) as summarised
in Table 1. The L2-norm showed slightly superior fits of NLLS over LLS for the simulated curves. (d–e) Clinical data curves reflecting dif-

ferent types of enhancement. The corresponding parameter estimates for NLLS and LLS were as follows: (d) Fp (NLLS) ¼ 0.76 min�1,
Fp (LLS) ¼ 0.72 min�1, vp (NLLS) ¼ 0.26 min�1, vp (LLS) ¼ 0.26 min�1, PS (NLLS) ¼ 0.03 min�1, PS (LLS) ¼ 0.03 min�1. (e) Fp (NLLS) ¼
0.11 min�1, Fp (LLS) ¼ 0.11 min�1, vp (NLLS) ¼ 0.17 min�1, vp (LLS) ¼ 0.18 min�1, PS (NLLS) ¼ 0.06 min�1, PS (LLS) ¼ 0.06 min�1. (f)

Fp (NLLS) ¼ 0.48 min�1, Fp (LLS) ¼ 0.50 min�1, vp (NLLS) ¼ 0.36 min�1, vp (LLS) ¼ 0.35 min�1, PS (NLLS) ¼ 0.05 min�1, PS (LLS) ¼
0.06 min�1. The L2-norm shows very similar fit quality on the clinical data.

Linear Implementation of the Compartmental Tissue Uptake Model 3



that of the linear least squares (LLS). The LLS solution

was implemented by first calculating all the inputs for A
(Equation [12]) using trapezoidal integration. The solu-

tion vector b was subsequently determined using analyti-

cal matrix inversion of the 3-by-3 matrix ATA, where AT

is the transpose of A. The goodness-of-fit was compared

using the Euclidean distance (L2-norm) between the data

and the fit as estimated from Equations [4] and [8] for

NLLS and LLS, respectively. All simulation code can be

found online at https://github.com/Jkallehauge/Linear-

CTU.

Statistical Analysis

A Monte Carlo simulation of 1000 runs with different

random noise was performed for each condition of tem-

poral downsampling and noise level. For each of the

1000 runs, the estimated values for Fp, PS, and vp were

calculated using the linear and nonlinear approach and

compared. The systematic and stochastic variation in

parameter estimations were evaluated using precision

and percentage error, which is here defined as

Precisionð%Þ ¼ s

m
� 100

Errorð%Þ ¼ x � m

m
� 100;

where x is the parameter value for each of the 1000 sim-

ulations, r is the standard deviation of x, and l is the

“true” value from which the synthetic data have been

generated.

Clinical Data

The clinical applicability was investigated in a prospec-

tive study approved by the local medical ethics research

board, with written informed consent from all patients. A

total of 14 patients with locally advanced cervical cancer

were scanned within one week of the start of chemoradio-

therapy using MRI on a 3T Philips Achieva-X scanner.

DCE-MRI was performed using a three-dimensional axial

nonselective saturation recovery spoiled gradient echo

technique with the following parameters: number of slices

¼ 20; slice thickness ¼ 5 mm; repetition time ¼ 2.9 ms;

echo time ¼ 1.4 ms; Tsat ¼ 25 ms; flip angle ¼ 10	; in-

plane resolution ¼ 2.3 � 2.3 mm; and time resolution ¼
2.1 s. The bolus injected was 0.1 mmol/kg Dotarem at 4

mL/s, followed by a 50-mL saline flush. A total of 120

dynamic scans were obtained, of which an average of 18

time points were scanned before the bolus arrived at the

external iliac arteries. A T1 relaxation map was con-

structed [following Deoni et al. (18)] before contrast agent

injection using a three-dimensional gradient recalled echo

sequence with five different flip angle scans (5	, 10	, 15	,
20	, 25	) with the same orientation and field of view as the

dynamic scan, a repetition time of 20 ms, and an echo

time of 1.7 ms. The dynamic magnitude images were sub-

sequently converted into contrast agent concentrations as

described previously (19). The regions of interest

were chosen to be the clinical gross tumor volume

delineated by an experienced oncologist on a transversal

T2-weighted MRI, following the recommendations of the
GEC-ESTRO working group (20). In each patient, an arte-
rial input function (AIF) was derived by averaging the
measured voxelwise AIFs over a number of included vox-
els in the left femoral arteries where the B1 field was con-
sistently most homogenous (inspected qualitatively).
Specifically for the AIF, the precontrast longitudinal
relaxation (T1,0) determination was connected with some
uncertainty, and a literature value for T1,0 was chosen
instead: T1,0(blood) ¼ 1660 ms (21). For the remaining tis-
sue curves, the estimated T1-map was used for the conver-
sion from signal to contrast concentration. To correct for
differences in large and small vessel hematocrit, the AIF
was multiplied by a factor 1.18, based on an assumed
hematocrit of 0.38 and an assumed small-to-large vessel
ratio of 0.7 (22). The clinical data were analysed using
both LLS and NLLS.

RESULTS

Synthetic Data

Figure 1a–c shows three example simulations using a
temporal resolution of 2 s, where the total acquisition
time was 260 s with a baseline of 20 s, CNR ¼ 10, and
kinetic parameters corresponding to those in Table 1.
Both the NLLS and LLS fits described the synthetic data
similarly with only a small difference in the L2-norm
(LNLLS

2 and LLLS
2 ).

The difference between the true values and derived
parameters using both NLLS and LLS under varying noise
conditions are summarised in Figure 2. Figure 2a shows
the results for Fp where the LLS underestimates the true
value of Fp under noisy conditions (CNR < 10), whereas
NLLS tends to overestimate Fp under very noisy condi-
tions (CNR < 5). At high CNR values, LLS approximates
the true value better than NLLS. The precision of estimat-
ing Fp was consistently better for NLLS for CNR > 10.
Both NLLS and LLS overestimated the true value of vp

(Fig. 2b), although NLLS less so than LLS for low CNR
(CNR < 15). The two curves converge around CNR � 15
after which little difference between the two curves is
seen both in terms of percentage error and precision. The
influence of noise on PS was also lower for NLLS com-
pared with LLS under low noise conditions, and above
CNR ¼ 10 their precision and percentage error were com-
parable (Fig. 2c). The overall effect of noise on the quality
of the fit (Fig. 2d) was measured using the L2-norm and
showed comparable performance across all CNR values.

The percentage error and precision for the three differ-
ent tissue types (see Table 1) are summarised in Table 2
for a realistic temporal resolution and noise level (Dt ¼ 2 s
and CNR ¼ 10, corresponding to the vertical dashed lines
in Fig. 2). Both NLLS and LLS underestimated the true val-
ues of Fp for the three tissue types, with only marginally
better precision and percentage error for NLLS over for
LLS. vp was generally overestimated across all simulated
tissues, however, to a lesser degree for NLLS. The preci-
sion of vP was again better for NLLS. The percentage error
and precision of PS estimated using both NLLS and LLS
were comparable and with almost no bias.

The effect of temporal downsampling as examined on
noiseless data is shown in Figure 3. For the higher tested
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tissue values of Fp (0.57 min�1 and 0.65 min�1), LLS

was less influenced by temporal downsampling than

NLLS while for the low value Fp (0.23 min�1) NLLS was

less influenced. Almost no influence of temporal sam-

pling was observed for vp and PS for lower temporal

sampling. Above a temporal period of 8 s, both LLS and

NLLS begin to show oscillations corresponding to the

width of the Parker input function (�8.4 s) (16). The

speed improvement of the LLS approach was, over all

temporal resolutions and tested parameter configura-

tions, at minimum around 230 times faster than the

NLLS (Supporting Fig. S1).

Clinical Data

Figure 1d–f shows three clinical example curves with lit-

tle difference in the performance of the LLS and NLLS.

The three curves were chosen to reflect different capil-
lary transit times: fast (Fig. 1d), slow (Fig. 1e), and inter-
mediate (Fig. 1f). Figure 4 shows a comparison of the
kinetic maps derived using both LLS and NLLS for a sin-
gle central slice through a patient’s tumor. The maps
show very similar patterns, suggesting the two
approaches can be used interchangeably (see also Sup-
porting Figure S3a–n).

By aggregating the data from all 14 patients, a total of
34,525 tumor voxels were analysed using both LLS and
NLLS (see overview in Supporting Fig. S2). A subset of
these voxels were excluded if they had a negative distri-
bution volume (vd ¼

R
CðtÞdt=

R
caðtÞdt) or the model fit

was completely contained within the 95% confidence
interval of the baseline noise. The remaining 32,190 vox-
els had a median CNR of 17.4 (95% confidence interval:
6.9, 35.8). LLS returned unrealistic negative values of Fp,

FIG. 2. Influence of noise on the percentage error and precision of each hemodynamic parameter (a–c) and the overall fit (d) when
applying both NLLS and LLS. The vertical black lines correspond to the values shown in Table 2 (middle row).

Table 2
Percentage Error and Precision for Different Tissue Types at Dt ¼ 2 s and CNR ¼ 10

Fp (min�1) vp PS (min�1)

NLLS LLS NLLS LLS NLLS LLS

Brain (tumor) �0.2 (7.4) �3.7 (10.0) �0.1 (4.8) 2.0 (5.3) �0.3 (4.6) �0.7 (5.0)
Cervix (tumor) �1.6 (9.2) �1.9 (10.6) 1.7 (12.0) 5.5 (12.7) 0.3 (5.0) �0.5 (5.7)

Cervix (tumor) �1.7 (8.1) �2.7 (9.7) 0.6 (7.5) 3.4 (8.0) 0.1 (3.9) �0.3 (4.5)

Linear Implementation of the Compartmental Tissue Uptake Model 5



PS, and vp in a considerable proportion of the 32,190
voxels, whereas the NLLS was constrained to be within
the set boundary points of the fitting algorithm. Discard-
ing the regions where the CTU model is not defined (i.e.,
where vp < 0 or E was not between zero and 1 as esti-
mated by LLS [25,325 voxels left]), we found good agree-
ment between NLLS and LLS (Fig. 5). The white dashed
line shows the identity line, and the white cross marks
(�) illustrate where the mode or most frequent parame-
ters are seen, thus indicating whether LLS over- or
underestimates compared with NLLS within in a given
range of parameters. Figure 5a generally shows that LLS

and NLLS agreed well over a large range of Fp, and only
at low values does it suggest that Fp is overestimated by
NLLS compared with LLS. Similar findings are seen in
Figure 5b,c for PS and vp, although they also suggest that
LLS overestimates the parameter values at high values
compared with NLLS. The L2-norm also showed good
agreement with a Pearson’s correlation of 0.99. The
excluded voxels from the final comparison between the
NLLS and LLS were investigated further. Supporting Fig-
ure S4 shows example curves of the regions with nega-
tive extraction fraction, regions with extraction fraction
greater than one, and regions with negative plasma

FIG. 3. Effect of temporal downsampling on both LLS and NLLS for the three different simulated tissue types from Table 1.

FIG. 4. Comparison of hemodynamic maps estimated and goodness-of-fit using both NLLS and LLS. The white center corresponds to
data with negative distribution volume or a fit completely contained within the 95% confidence interval of the baseline noise.

6 Kallehauge et al.



volume fraction. Similarly, Figure 6 shows the patient-

wise median curves of the aforementioned regions along

with the patient-wise median curves of the data included

in the comparison of NLLS and LLS. Generally, the

regions with E (LLS) < 0 showed significant washout,

whereas the regions with E (LLS) > 1 showed slow

enhancement, which may be described adequately by a

more simple model (e.g., a one-compartment model).

The regions that had a negative plasma volume fraction

again showed slow enhancement, with a slight decrease

in the initial indicator concentration. A quantitative

comparison of the different parameters in the different

regions can be found in Table 3. Here, the CNR level

was seen to be lower in the regions excluded compared

with the included regions. The plasma transit time esti-

mated by NLLS [Tp (NLLS)] was furthermore consider-

ably longer in the regions where E (LLS) > 1 or vp (LLS)

< 0. Whereas E (LLS) < 0, the Tp (NLLS) was compara-

ble to that of the included voxels, although with a much

larger confidence interval. A similar result was observed

for Fp (NLLS). Where vp (LLS) was negative, vp (NLLS)

similarly returned unrealistic values with a median that

was greater than 1.

DISCUSSION

Principal Findings

In this study, we derived and evaluated the precision

and percentage error of a linearised CTU kinetic model.

Specifically, we compared the effects of temporal down-

sampling, varying noise, and different tissue hemody-

namic parameters on the precision and percentage error

of both a nonlinear and linear CTU model. Within the

clinical achievable ranges (CNR � 10) and temporal reso-

lution (Dt � 2 s) (23), LLS showed comparable perform-

ance in terms of percentage error and precision

compared with NLLS. Parameters estimated using LLS

were generally more stable to temporal downsampling

(Fig. 3), whereas NLLS was consistently more stable to

variations in noise (Fig. 2). The clinical comparison of

LLS and NLLS showed very high agreement in parameter

estimation (Fig. 5). The simulations and the clinical data

analysis agreed in that LLS and NLLS performed compa-

rably under sufficiently high CNR and at the sampling

rate for the clinical data (2.1 s).

Interpretation of Findings

Previous studies have focused on the effects of temporal

downsampling on the accuracy of hemodynamic parame-

ters extracted from the Tofts model (24) and the 2CXM

(7). These studies showed that the amplitudes of the

impulse response functions of the Tofts model and

2CXM (i.e., Ktrans and Fp) were underestimated with

increasing temporal downsampling, whereas the distri-

bution volumes (i.e., ve and ve þ vp, respectively) were

overestimated. We found a similar trend for Fp for the

cervical cancer simulation data; however, we found very

little effect of temporal downsampling on the

FIG. 5. Correlations between LLS and
NLLS parameters and fit residuals for
all voxels where vp > 0 and 0 � E � 1.

The white dashed lines are the identity
line and the white cross marks (�)

show the mode (most frequent) corre-
sponding parameter estimates.

Linear Implementation of the Compartmental Tissue Uptake Model 7



distribution volume. The effect of temporal downsam-
pling on PS was also investigated in the study of the
2CXM (7) where a slight overestimation was observed
(for PS ¼ 0.10 min�1), and again we found little evi-
dence for this dependency. Our findings are more in line

with Flouri et al. (12) for NLLS, possibly because of sim-
ilar implementation of the convolution operation.
Finally, if the temporal resolution Dt is comparable or
larger than the peak width of ca, the quick wash-in pro-
cess in ca and C may be missed if the two sampling

FIG. 6. Patient-wise median uptake curves for the different regions within the tumor tissue. (a–c) Curves that were excluded from the

final comparison between NLLS and LLS. (d) Curves that were compared. (a) Curves that had a negative extraction fraction appear to
have significant washout. (b) Curves that had an extraction fraction greater than one appear to be enhancing slowly. (c) Curves that had
a negative plasma volume fraction appear to be enhancing slowly with a slight decrease in concentration initially. (d) Curves that had a

positive plasma volume fraction and an extraction fraction between 0 and 1. The noise on these curves is less due the greater number
of curves used for calculating the median curves.

Table 3
Characteristics of Included and Excluded Voxels from Clinical Data

E (LLS) < 0 E (LLS) > 1 vp (LLS) < 0
vp (LLS) > 0 \

(0 � E (LLS) � 1)

Fp (NLLS) (min�1) 0.42 (0.03, 3602) 0.10 (0.02, 0.71) 0.05 (0.01, 0.21) 0.56 (0.11, 2.14)
Fp (LLS) (min�1) 0.29 (�0.38, 1.97) 0.07 (0.00, 0.32) 0.03 (�0.12, 0.20) 0.54 (0.09, 1.95)

PS (NLLS) (min�1) 2.2e-12 (2.2e-14, 0.08) 3.3e-11 (2.2e-14, 5.1) 0.0 (2.60e-14, 225) 0.05 (0.00, 0.19)
PS (LLS) (min�1) �0.01 (�0.14, 0.04) �0.28 (�8.80, �0.00) 0.05 (�0.18, 10.29) 0.04 (0.00, 0.18)

vp (NLLS) 0.24 (0.02, 63.7) 0.42 (0.01, 100) 45.7 (0.1, 100) 0.30 (0.06, 0.86)
vp (LLS) 0.25 (�0.01, 1.18) 0.68 (�0.34, 4.18) �0.13 (�15.02, �0.00) 0.31 (0.07, 0.90)
E (NLLS) 5.7e-12 (1.4e-14, 0.2) 3.4e-10 (1.1e-13, 0.98) 0.01 (3.4e-13, 0.99) 0.08 (0.01, 0.31)

E (LLS) �0.05 (�7.27, �0.00) 1.41 (1.01, 30.5) 0.84 (�19.7, 18.04) 0.08 (0.01, 0.32)
Ktrans (NLLS) 2.2e-12 (2.2e-14, 0.07) 3.3e-11 (2.2e-14, 0.10) 0.00 (2.6e-14, 0.04) 0.04 (0.00, 0.15)

Ktrans (LLS) �0.01 (�0.53, 0.08) 0.11 (0.01, 2.2) 0.06 (�0.14, 0.34) 0.04 (0.00, 0.15)
Tp (NLLS) 0.46 (8.e-06, 1295.0) 3.49 (0.03, 3185.67) 860.6 (0.1, 5268.7) 0.47 (0.15, 1.34)
Tp (LLS) 0.63 (�0.33, 17.08) �2.2 (�79.6, 6.8) �0.55 (�20.00, 12.16) 0.52 (0.19, 1.55)

CNR 12.0 (4.5, 30.1) 10.2 (4.4, 22.8) 8.5 (4.3, 18.9) 17.4 (6.9, 35.8)

All data are presented as the median (95% confidence interval).
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points happen to be at two distal ends of the first-pass
peak resulting in inaccurate calculation of the hemody-
namic parameters. For the Parker input function, the full-
width half-maximum is 8.4 s corresponding to the sudden
changes in percentage error at the temporal sampling of
around 8 s (Fig. 3). The improved computational effi-
ciency for the linear CTU model has also been shown in
the linear versions of the Tofts and extended Tofts models
(11,25) and 2CXM (12).

Implications

One major weakness of nonlinear fitting algorithms is
the problem of supplying a sensible initial guess in
order for the algorithm to converge to the global mini-
mum. It has been shown that simply using one set of
initial guess parameters at the center of the parameter
spaces is insufficient and will result in considerable
errors in the fits, and therefore multiple start points are
recommended (26). Because the linear CTU model iden-
tifies the global minimum directly, a concatenated
scheme where the linear CTU model initializes the
guess for the nonlinear CTU model may improve speed,
accuracy, and precision. In our simulations, we deliber-
ately chose the initial guess for NLLS to be the true val-
ues to avoid convergence to a local minima. In practice,
the true values are never known and it would require
multiple initialization for robust estimation of the phar-
macokinetic parameters. This in turn means that the
speed improvement of LLS over the NLLS noted here
would in practice, be higher.

With the current level of MR scanner technology, CNR
and temporal resolution, the linear CTU model may by
itself be the most suitable method of obtaining hemody-
namic parameters. However, in low enhancing tissue
regions (with low CNR), the linear CTU model should be
complemented by the nonlinear CTU model to obtain
sufficient accuracy and precision.

Limitations

A well-known limitation of any linear formulation of a
nonlinear problem is the incorrect accounting of experi-
mental noise contributions. Where the nonlinear formu-
lation (Eq. [4]) may correctly assume a normally
distributed noise profile, once formulated in linear form
(Eq. [8]), this may no longer be valid. Similar observa-
tions have been addressed in the linear calculation of T1
relaxation times, which results in a general overestima-
tion of T1 values compared with the nonlinear formula-
tion. Numerous ways of improving upon this bias have
been proposed by multiplying appropriate weights to
both sides of Equation [8] (27,28) and have recently been
successfully implemented for the 2CXM (12), resulting
in improved accuracy and precision. However, the
authors note that choosing the optimal weighting scheme
is a nontrivial task and deserves a more in-depth study.
Further investigation in this direction may potentially
improve the precision of the hemodynamic parameters
estimated by the linear CTU model. Finally, the return of
unrealistic values of the extraction fraction and the
plasma volume fraction from the LLS resulted in exclu-
sion of a considerable number of voxels from the final

comparison of NLLS and LLS. In these regions, it is pos-
sible that the constrained NLLS would be able to extract
more plausible kinetic parameter estimates, especially
under noisy conditions. Conversely, the constrained
NLLS could also mask problems, such artifacts in the
data and unsuitable model choice, and create a false
sense of confidence in the results.

CONCLUSION

In this study, we have derived the linear version of the
CTU kinetic model and compared its performance with
the nonlinear CTU model, with varying noise and tempo-
ral downsampling. The linear CTU model has precision
and percentage error comparable to the nonlinear within
clinical achievable ranges of CNR and temporal resolu-
tion. The linear CTU model is computationally more effi-
cient and more stable to temporal downsampling,
whereas the nonlinear model is more robust to variations
of noise.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this
article.
Supporting Figure S1. Improved speed of LLS over NLLS as a function off the
temporal resolution for three different combinations of Fp, PS and vp.
Supporting Figure S2. Overview of the voxel exclusion process. The initial pool
of candidate voxels were excluded if the distribution volume (vd) was negative
or if the CNR was within 95% of the baseline noise. Of the remaining voxels, a
further subset was excluded if they had negative vp (LLS) or if E (LLS) was not
inside the interval 0 and 1.
Supporting Figure S3a–S3n. Center slice through tumor comparing estimated
hemodynamic maps and goodness-of-fit using both NLLS and LLS (Patient 1–
14).
Supporting Figure S4. Example curves excluded from the comparison of
NLLS and LLS. (a) Typical data excluded when E (LLS) < 0. (b) Typical data
excluded when E (LLS) > 1. (c) Typical data excluded when vp (LLS) < 0. For
comparison, we also included the fit of the one-compartment model
(CðtÞ5caðtÞ � ðFpe2t�Fp=vp )).

10 Kallehauge et al.


	l
	l

