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Search for new loci and low-frequency variants
influencing glioma risk by exome-array analysis

Ben Kinnersley1, Yoichiro Kamatani2, Marianne Labussière3, Yufei Wang1, Pilar Galan4, Karima Mokhtari3,5,
Jean-Yves Delattre3,5,6, Konstantinos Gousias7, Johannes Schramm7, Minouk J Schoemaker1,
Anthony Swerdlow8, Sarah J Fleming9, Stefan Herms10,11, Stefanie Heilmann10, Markus M Nöthen10,
Matthias Simon7, Marc Sanson3,5,6, Mark Lathrop2,5,12 and Richard S Houlston*,1

To identify protein-altering variants (PAVs) for glioma, we analysed Illumina HumanExome BeadChip exome-array data on 1882

glioma cases and 8079 controls from three independent European populations. In addition to single-variant tests we

incorporated information on the predicted functional consequences of PAVs and analysed sets of genes with a higher likelihood

of having a role in glioma on the basis of the profile of somatic mutations documented by large-scale sequencing initiatives.

Globally there was a strong relationship between effect size and PAVs predicted to be damaging (P=2.29×10−49); however,

these variants which are most likely to impact on risk, are rare (MAFo5%). Although no single variant showed an association

which was statistically significant at the genome-wide threshold a number represented promising associations – BRCA2:
c.9976A4T, p.(Lys3326Ter), which has been shown to influence breast and lung cancer risk (odds ratio (OR)=2.3,

P=4.00×10−4 for glioblastoma (GBM)) and IDH2:c.782G4A, p.(Arg261His) (OR=3.21, P=7.67×10−3, for non-GBM).

Additionally, gene burden tests revealed a statistically significant association for HARS2 and risk of GBM (P=2.20×10−6).

Genome scans of low-frequency PAVs represent a complementary strategy to identify disease-causing variants compared with

scans based on tagSNPs. Strategies to lessen the multiple testing burden by restricting analysis to PAVs with higher priors

affords an opportunity to maximise study power.
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INTRODUCTION

Gliomas account for ~ 40% of all primary brain tumours and are
diagnosed in around 26 000 individuals in Europe each year.1,2

Gliomas are typically classified as being either glioblastoma (GBM)
or non-GBM tumours (diffuse ‘low-grade’ glioma WHO grade I/II
and anaplastic glioma WHO grade III tumours).3 Most gliomas carry a
poor prognosis, with the most common type, GBM, typically having a
median survival of 15 months.2 The only environmental factor
consistently shown to influence glioma risk is exposure to ionising
radiation,2 which accounts for only a very small number of cases.
Evidence for genetic predisposition to glioma is provided by rare
inherited cancer syndromes including Turcot's and Li–Fraumeni
syndromes, and neurofibromatosis.2,4 Collectively however they
account for little of the 2-fold increased risk of glioma seen in relatives
of patients.5

Much of the variation in genetic risk of glioma appears to be
polygenic. Support for this proposal has come from genome-wide
association studies (GWAS) which have identified common single-
nucleotide polymorphisms (SNPs) at six loci influencing risk – 5p15.33
(TERT), 7p11.2 (EGFR, two regions), 8q24.21 (CCDC26), 9p21.3
(CDKN2A/CDKN2B), 11q23.3 (PHLDB1) and 20q13.33 (RTEL1).6–8

Despite the success of GWAS such studies are not optimally
configured to identify low-frequency variants with stronger effects.
Protein altering variants (PAVs), which alter the encoded amino acid
sequence, are proportionally less prevalent than synonymous variants;
however, such variants are a priori more likely to have a functional
impact. Coupled with the observation that Mendelian disease suscept-
ibility is generally caused by coding sequence changes9 suggests that
association studies formulated around a gene-centric approach may be
a powerful strategy for identifying disease-causing associations.
Although no rare recurrent PAV has thus far been shown to

influence glioma risk the low-frequency variants NM_007194.3
(CHEK2):c.1100delC, p.(Thr367Metfs), NM_000059.3(BRCA2):
c.9976A4T, p.(Lys3326Ter) and NM_000038.5(APC):c.3920T4A,
p.(Ile1307Lys) confer 2- to 3-fold risks of breast, lung and colorectal
cancers (CRC) respectively.10–12 Additionally the observation that the
NM_001128425.1(MUTYH):c.536A4G, p.(Tyr179Cys) and NM_0011
28425.1(MUTYH):c.1187G4A, p.(Gly396Asp) variants cause recessive
polyposis and CRC13 provides a precedent for rare recurrent variants
having substantive effects on cancer risk.
The advent of next generation sequencing is allowing the

cataloguing of recurrent coding variation, making the search for
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disease-causing PAVs on a genome-wide basis a viable proposition.
Here we have investigated the contribution of recurrent coding
variants to glioma by analysing 1882 cases and 8079 controls
genotyped using the Illumina HumanExome BeadChip. To increase
our power to identify disease-causing variants, we jointly tested groups
of variants in a gene and incorporated information on the predicted
functional consequences of PAVs. In addition we restricted our
analysis to sets of genes with a higher likelihood of having a role in
glioma on the basis of somatic mutation profile.

MATERIALS AND METHODS

Subjects
We analysed three non-overlapping case–control series of Northern European
ancestry: the UK series comprised 605 glioma cases (63% male; mean age at
diagnosis 46 years) ascertained through the INTERPHONE Study14 with 5964
individuals from the 1958 Birth Cohort (1958BC;15) with no known personal
history of cancer serving as a controls; the French series comprised 906 incident
cases of glioma ascertained through the Service de Neurologie Mazarin, Groupe
Hospitalier Pitié-Salpêtrière, Paris6 and 699 controls from the SU.VI.MAX
(SUpplementation en VItamines et MinerauxAntioXydants) study of 12 735
healthy subjects (women aged 35–60 years; men aged 45–60 years);16 and the
German series comprised 902 patients who underwent surgery for glioma at the
University of Bonn Medical Centre, between 1996 and 2008,6 with 2400 healthy
individuals from the Heinz–Nixdorf Recall study serving as controls.17 The
study was conducted with ethical review board approval. Written informed
consent was obtained from all subjects. DNA was extracted from EDTA-venous
bloods using conventional methodologies and quantified using PicoGreen
(Invitrogen Corp., Carlsbad, CA, USA).

The exome array
Briefly, the Illumina HumanExome-12v1_A Beadchip (Illumina, San Diego,
CA, USA) includes 247 870 markers focused on protein-altering variants
identified from whole-exome sequencing DNA from 412 000 individuals of
multiple ethnicities and with multiple diseases/traits. In addition to 203 310
PAVs, the array also features 4761 GWAS trait-associated SNPs, 2061 HLA tags,
3015 ancestry-informative markers, 4896 identity-by-descent estimation
markers and 4139 random synonymous SNPs. Comprehensive details about
the exome array are available at http://genome.sph.umich.edu/wiki/Exome_
Chip_Design.

Exome array data availability
Illumina HumanExome-12v1_A Beadchip array genotypes for individuals from
the 1958BC are available from the European Genome-phenome Archive (EGA,
http://www.ebi.ac.uk/ega/) under accession number EGAD00010000234. Simi-
larly, array genotypes and phenotypes for the remaining datasets in this study
have been deposited to EGA and are available under accession number
EGAS00001001258.

Genotyping and quality control
Genotyping was conducted using Illumina HumanExome-12v1_A Beadchips in
accordance with the manufacturer’s recommendations (Illumina). Calling of
genotypes was performed using Illumina GenomeStudio version 2011.1 soft-
ware. Cluster boundaries were determined by calling study samples simulta-
neously. Probes were excluded if monomorphic in all datasets, had a call rate
o0.99 in cases/controls in a series, the difference in uncalled genotypes
between cases and controls was statistically significant (Po0.05), if Hardy–
Weinberg in controls Po0.001, or if non-autosomal (Supplementary Table 1).
Samples were excluded if the call rate was o0.99, outlying heterozygosity (43
SD), or if a discrepancy was observed between manifest sex and X-chromosome
genotype. To assess the fidelity of genotyping we examined the concordance in
493 individuals from the 1958BC,15 which had also been sequenced18 using
TruSeq capture in conjunction with Illumina HiSeq2000 technology, and a
GATK2ref. 19 pipeline according to best practices.20,21 Genotypes were compared
at genomic positions for which allele codings could be unambiguously assigned,
excluding 257A/T and C/G SNPs with MAF40.40.

Statistical and bioinformatic analysis
The main statistical and bioinformatics analyses were performed using PLINK
v1.07(ref. 22) (Cambridge, MA, USA) and R v3.0 software (Vienna, Austria).
Using the EIGENSOFT v4.2 smartpca package23,24 (Cambridge, MA, USA) we
performed PCA to ensure comparability of case and controls. Individuals with
non-Western European ancestry were identified and excluded by merging case
and control data with 1000 Genomes project data. 100 000 ld-pruned post-QC
probes were used to compute eigenvectors in each cohort. Samples exhibiting
significant deviations (6 SD) from the main case/control cluster up to the first
10 eigenvectors were classified as outliers and flagged for exclusion. Outlying
population structure on the pruned data set was examined using
fastSTRUCTURE25 if subsequent non-comparability was apparent between
cases and controls. For first-degree relative pairs, the control from a case–
control pair was removed; otherwise, the individual with the lower call rate was
excluded. Associations were tested under an additive model. The adequacy of
the case–control matching in each series and the possibility of differential
genotyping of cases and controls was evaluated using quantile–quantile (Q–Q)
plots of test statistics, restricting to variants with MAF40.005 to derive
reasonable inflation estimates. Meta-analysis P-values and odds ratios (ORs)
were calculated from per-study logistic regression beta values, under a fixed-
effects model. We used Cochran's Q statistic to test for heterogeneity; restricting
the reporting of novel associations to those with Phet 40.05. We visually
inspected genotype cluster plots for all reported variants. To explore variability
in associations according to tumour histology, we derived ORs for all glioma,
GBM and non-GBM. For the gene-based analysis, in addition to using the
burden test which counts the number of minor alleles per gene per individual
summed for all cases and controls, the sequence kernel association test (SKAT)
was applied.26 Burden and SKAT gene-based tests were based on all post-QC
non-monomorphic probes mapping to RefSeq genes imposing default weights
and MAFo0.05. Tests were implemented in plink-seq v0.09, and adjusted for
study-specific effects by incorporating study as a covariate (using covar option).
A single-variant association was declared significant if Po1.40× 10− 7 (Bon-
ferroni correction for 118,815 PAVs, three tumour types). Gene-based
association tests were considered significant if Po2.49× 10− 6 (10 045 genes,
two tumour types). The power of our study to demonstrate an association for
alleles with different MAFs was calculated assuming a multiplicative model. In
all analyses a P-value of 0.05 was considered as representing statistical
significance, after adjustment for multiple testing. Gene-set enrichment analysis
(GSEA) of pre-ranked SKAT P-values, was performed on gene sets catalogued
by the MSigDB v4.0 database (updated 31 May 2013) using GSEA software27

adopting default settings. Linkage disequilibrium (LD) r2 metrics were
estimated from UK10K whole-genome data. To restrict our analysis to genes
with a higher likelihood of having a role in glioma on the basis of somatic
mutation profile in tumours, we used MutSigCV version 1.4ref. 28 to identify
genes harbouring more non-synonymous mutations than expected by chance
given gene size, sequence context and mutation rate. Thresholding at false
discovery rate Qo0.1 as advocated,28 MutSig scores were obtained for GBM
and non-GBM tumours by interrogation of TCGA (The Cancer Genome Atlas)
provisional data sets using cBioPortal.29 The Variant Effect Predictor (VEP;
version 74)30 was used to predict impact of variants on canonical Ensembl gene
transcripts and functional consequences of missense variants according to
SIFT,31 PolyPhen-2ref. 32 and CONDEL.33 Computational modelling of the
effect of amino acid changes on protein structure was carried out using the
project HOPE server.34 To assess sequence conservation we used GERP35 and
Phast_cons36 metrics.

Quality control and array characteristics and performance
We submitted 2413 cases and 3099 controls for genotyping. Twelve cases and
eight controls failed genotyping (call rateo0.95). Five hundred and nineteen
cases and 807 controls were excluded for the following reasons: outlying
heterozygosity in rare (47 cases, 28 controls) and common (44 cases,
10 controls) SNPs; duplicates/close relatives (15 cases, 16 controls); sex
discrepancies (29 cases, 10 controls); and non-European ancestry (49 cases,
5 controls; Supplementary Table 1 and Supplementary Figure 1A). Genotypes
from 5964 individuals were available from the 1958BC (UK) series. We further
excluded 169 individuals because of personal history of cancer (105),
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outlying heterozygosity (16), sex discrepancy (22), duplicates/relatives
(2) and non-European ancestry (24) (Supplementary Table 1). After excluding
technical failures and imposing marker-level quality control, 90.2% of
attempted markers were successfully genotyped (223 564/247 870). Concor-
dance between genotype calls was assessed at 55 955 sites in the 493 individuals
for whom exome-chip and whole-exome sequence data were available
(Supplementary Table 2). Overall the concordance was: 99.7%, with 96.5%,
96.0% and 99.8% when comparing minor homozygotes, heterozygotes and
major homozygotes respectively. Restricting our analysis to 219 771 autosomal
probes, 84 502 markers were monomorphic (38.5%). Q–Q plots of association
test statistics showed there was minimal inflation in the UK and French series
(λ= 1.04 and 1.05; Supplementary Figure 2A and B). In the German series, λ
was 1.17 (Supplementary Figure 2C). Using fastSTRUCTURE25 to impose two
populations within the German series and retaining only individuals with
480% membership of the larger population (2083 individuals, 488 cases and
797 controls; Supplementary Table 1 and Supplementary Figure 1B) λ was
1.058 ensuring subsequent analysis was less biased by any ancestral discordance
between cases and controls (Supplementary Figure 2D). Post-QC data on 1882
cases and 8079 controls were available for analysis.

RESULTS

Single-variant associations
In total 135 269 variants (MAF40.0) were taken forward for
association testing in 1882 cases and 8079 controls. Genotypes for
previously identified glioma GWAS risk SNPs or their proxies
(ie, r240.8) were available for 5p15.33, 7p11.2, 8q24.21, 9p21.3,
11q23.3 and 20q13.33 risk loci.6–8 OR and tumour subtype-specific
associations were consistent with those previously documented
(Supplementary Table 3).
To assess the impact of recurrent variants exerting a putative effect

on protein function, we restricted our analysis to 118 815 variants;
110 625 missense, 5324 splice-site altering, 2616 stop gain, 168 uRNA
targets and 82 indels. The MAF distribution was highly skewed
towards very low-frequency variants (Supplementary Figure 3), with
80.4% (n= 95 488) of variants successfully genotyped having a control
MAF≤ 0.005; 4.0% (n= 4,764) with MAF= 0.05–0.01; 6.4%
(n= 7546) with MAF= 0.01–0.05; and 9.3% (n= 11 017) with
MAF40.05.
In the combined analysis of all PAVs the strongest association for

risk of glioma was provided by rs593818 responsible for the
XM_006722850.1(CYP4F12):c.1117A4G, p.(Ser373Gly) amino acid
change (P= 1.24× 10− 5), albeit non-significant on a genome-wide
basis (Supplementary Table 4). Similarly in the stratified analysis no
single variant showed a globally significant association with either
GBM or non-GBM tumours (Supplementary Table 4).

Figure 1 Relationship between effect size and minor allele frequency
of PAVs.
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Figure 1 shows the relationship between effect size (measured by
OR, taking the reciprocal or ORs o1.0) and MAF for 118,815 PAVs,
those SNPs characterized by low MAF tending to have a higher
probability of conferring more substantive risks.
To restrict our analytical space, we analysed the data set incorpor-

ating information on the predicted functional consequences of these
PAVs. Of the 104 321 PAVs genotyped by the exome array for which
CONDEL annotations could be obtained, the majority (64.1%) are
predicted to be neutral (n= 66 841), and 35.9% deleterious (n= 37-
480). Fifteen PAVs predicted to be deleterious showed an association
with glioma risk at the Po10–3 threshold (Table 1). To investigate
whether PAVs predicted to be functionally deleterious were enriched
for stronger effects on glioma risk, we compared the distribution of
effect size (as measured by ORs) in the two CONDEL prediction
categories (Table 2). There was strong evidence of a relationship

between increasing effect size and prediction of the PAV being
deleterious. For PAVs with control MAF40.005 predicted to be
deleterious there was an OR increase of 1.22 compared with neutral
PAVs (95% confidence interval (CI): 1.19–1.26, Ptrend= 2.29× 10–49,
Table 2). Overall, PAVs classified as damaging by CONDEL were 1.43-
fold more likely to be associated with effect sizes ≥ 1.5 than PAVs
classified as neutral (P= 4.59× 10–4, OR= 1.43, 95% CI= 1.17–1.74).
We further stratified our analysis to variants in genes that are

significantly mutated in GBM and non-GBM glioma, as well as being
nominally associated with glioma risk (Po0.05). This identified 11
variants also significantly associated with GBM and five with
non-GBM glioma (Table 3). Of interest is NM_002168.3(IDH2):
c.782G4A, p.(Arg261His) (rs118101777, non-GBM OR= 3.21,
P= 7.7 × 10− 3), which is predicted to be deleterious by
CONDEL and is highly evolutionarily conserved (PhastCons= 1.00,
GERP= 5.84).
A number of rare variants recognised to have pleiotropic effects on

cancer risk are featured on the Illumina Exome Array (Table 4).
For example, NM_000059.3(BRCA2):c.9976A4T, p.(Lys3326Ter)
(rs11571833), which increases breast and lung cancer risk,10,37

NM_007194.3(CHEK2):c.470T4C, p.(Ile157Thr) (rs17879961),
which increases breast cancer and CRC risk but decreases lung
cancer risk,10,12,38 and NM_032043.2(BRIP1):c.139C4A, p.(Pro47Ala)
(rs28903098), which has been implicated in familial breast and ovarian
cancer.39 Given that such variants are a priori strong candidates for
influencing the development of cancer, we examined the relationship
between rs11571833, rs17879961 and rs28903098 and glioma
(Table 5). For all glioma, BRCA2 p.(Lys3326Ter) carrier status
conferred an OR of 1.76 (P= 0.0026), principally associated with
GBM (OR= 2.3, P= 4.0x10− 4). Although no association was shown
for CHEK2 p.(Ile157Thr), BRIP1 p.(Pro47Ala) carrier status conferred
an OR of 3.83 (P= 0.048) (Table 4).

Table 3 Protein altering variants (PAVs) in genes significantly mutated in GBM and non-GBM Gliomas

GBM Non-GBM

dbSNP rsid HGVS genomic description Gene Mutsig Q Control allele frequency P Odds ratio P Odds ratio

GBM
rs72658163 chr7:g.94049588G4A COL1A2 0.0157 0.00204 0.0191 3.00 (1.20–7.52)

rs11569729 chr4:g.70592915G4A SULT1B1 0.00279 0.00159 0.0208 3.22 (1.19–8.68)

rs121908919 chr2:g.167138296T4C SCN9A 0.0623 0.00233 0.0229 2.76 (1.15–6.64)

rs12364102 chr11:g.56949691G4A LRRC55 0.0223 0.126 0.0244 0.82 (0.69–0.97)

rs201984007 chr2:g.167128917A4G SCN9A 0.0623 5.10×10−4 0.0263 5.97 (1.23–28.9)

rs112884419 chr1:g.158582637C4A SPTA1 1.85×10−9 0.00210 0.0318 2.64 (1.09–6.38)

rs144312303 chr5:g.67586574G4T PIK3R1 0.000 2.84×10−4 0.0320 20.8 (1.30–334)

rs149858889 chr7:g.94050334C4T COL1A2 0.0157 1.70×10−4 0.0336 13.6 (1.23–150)

rs140336416 chr7:g.93116243A4G CALCR 0.0079 2.27×10−4 0.0336 13.6 (1.23–150)

rs140857588 chr5:g.19571925T4C CDH18 4.15×10−5 2.27×10−4 0.0401 5.93 (1.08–32.5)

rs71428908 chr2:g.167160752G4C SCN9A 0.0623 0.00181 0.0440 2.70 (1.03–7.10)

Non-GBM
rs12442879 chr15:g.57524982G4A TCF12 7.04×10−4 0.0323 2.35×10−4 1.65 (1.26–2.14)

rs118101777 chr15:g.90630704C4T IDH2 2.01×10−12 0.00147 0.00767 3.21 (1.36–7.57)

rs72470545 chr2:g.74759825G4A HTRA2 1.01×10−4 0.00335 0.0126 2.32 (1.20–4.49)

rs140596855 chr15:g.90628584C4T IDH2 2.01×10−12 2.84×10−4 0.0284 22.3 (1.39–357)

rs114905908 chr4:g.162577630A4T FSTL5 0.0078 3.40×10−4 0.0493 11.1 (1.01–123)

Shown are genes with meta-analysis P-valueso0.05 and MutSig false discovery rate Q valueso0.1 for the relevant tumour type. HGVS, human genome variation society. Odds ratios and allele
frequencies derived with respect to underlined allele in HGVS genomic description. All genomic variant descriptions based on genome build hg19.

Table 2 Classification of PAVs with MAF40.005 by Condel

prediction, stratified by effect size in glioma

Condel prediction

Effect sizea Neutral Deleteriousb Unknown Total

o1.05 6687 (44.2%) 1762 (34.9%) 1389 (44.9%) 9838 (42.3%)

1.05–1.10 3603 (23.8%) 1125 (22.3%) 788 (25.5%) 5516 (23.7%)

1.10–1.20 2648 (17.5%) 1086 (21.5%) 500 (16.2%) 4234 (18.2%)

1.20–1.50 1868 (12.4%) 932 (18.5%) 352 (11.4%) 3152 (13.6%)

1.50–2.00 287 (1.9%) 136 (2.7%) 59 (1.9%) 482 (2.1%)

2.00–3.00 19 (0.1%) 8 (0.2%) 6 (0.2%) 33 (0.1%)

43.00 0 (0.0%) 1 (0.02%) 1 (0.03%) 2 (0.0%)

Total 15 112 5050 3095 23 257

aMeasured by odds ratio (taking the reciprocal for ORo1.0).
bPtrend=2.29×10−49 (Deleterious vs neutral; ORtrend=1.22, 95% CI: 1.19–1.26).
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Gene and gene-set-based tests
As the majority of individual variants typed are very rare (median
MAF= 3.7 × 10− 4), we assessed the burden of 70 526 variants across
10 045 genes. HARS2 showed an exome-wide significant association
with GBM (Burden P= 2.00× 10− 6, SKAT P= 1.03× 10− 5, Table 5).
Although not attaining exome-wide statistical significance, further
gene-based tests revealed a number of genes that were both
significantly mutated in glioma tumours as well as possessing a
germline variant burden (Table 5).
To gain further insight into the nature of the biological pathways

impacting on glioma susceptibility, we performed GSEA using SKAT
association P-values (Supplementary Table 5). This revealed a number
of gene sets that were positively or negatively enriched for genes
associated with glioma (ie, PGSEAo0.05). GBM glioma showed
positive enrichment for genes involved in amino acid and nucleotide
metabolism, and non-GBM glioma showed positive enrichment for
genes involved in cell growth and development, however the majority
of gene sets had an FDR Q40.25.

DISCUSSION

GWAS have become a powerful tool to identify susceptibility variants
for cancer. However since the tagSNPs used in GWAS are generally
not themselves candidates for causality, identification of the functional
variant at a locus generally poses a significant challenge. An alternative
approach is to target sequence variation, which a priori, is more likely
to impact on disease status. Alleles that are functionally deleterious will
tend to be selected against and thus underrepresented at high
frequencies, an assertion supported by the observation of a relation-
ship between putative functionality and MAF. Hence, it can be argued
that at least some of the variants impacting on cancer risk including
glioma will be rare. Although the association between the rare variant
BRCA2:c.9976A4T, p.(Lys3326Ter) and glioma did not attain
statistical significance such an assertion is supported by the established
relationship between CHEK2:c.1100delC, p.(Thr367Metfs) and
MUTYH:c.536A4G, p.(Tyr179Cys) and MUTYH:c.1187G4A,
p.(Gly396Asp) variants which influence the risk of breast and CRC
respectively.12,13

To our knowledge we have conducted the largest study of the
relationship between recurrent PAVs and glioma risk to date.
Population stratification is a source of bias in association studies,
and although adjustment of test statistics for principal components
generated on common SNPs can be applied to genome scans,
confounding of rare variants in spatially structured populations is
not necessarily corrected by such methods.40 Hence a major strength
of our study is that it is based on three independent case–control
series, thereby minimising biases as a consequence of spatial differ-
ences within one data set impacting on conclusions.
No single-variant associations with glioma attained statistical

significance after correction for multiple testing. However, we did
observe a significant association between variant effect size and
predicted functional effect. In this study we have been limited to
detecting alleles conferring ORs of 1.6 provided MAF 40.05 (80%
power stipulating Po10–7) or those with frequencies of ~ 0.01
conferring ORs 42.5. Hence it is possible that PAVs do have an
appreciable contribution to glioma risk but at lower individual effect
sizes than previously anticipated, therefore requiring much larger
case–control sample sets than we have used herein to identify them.
Testing for a burden of PAVs across genes revealed a significant

association between HARS2 and GBM. HARS2 encodes a mito-
chondrial histidyl tRNA synthetase, mutation of which causes
ovarian dysgenesis and sensorineural hearing loss.41 Although notT
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attaining an exome-wide significant burden of germline variants,
additionally of note is CDH18 and GBM risk. CDH18 is also
significantly mutated in GBM tumours and encodes a cadherin
protein involved in cell–cell adhesion. The gene is expressed
specifically in the nervous system and has been proposed to
regulate neural morphogenesis.42

By restricting our analysis to genes implicated in glioma by virtue of
somatic mutation or variants recognised to increase risk of other
cancers, we constrained the multiple testing problem and upweighted
the prior probability for association with glioma. From these analyses
we have provided evidence to implicate BRCA2 p.(Lys3326Ter) as well
as IDH2 p.(Arg261His) as determinants of glioma risk. IDH2 encodes
for the mitochondrial NAD(+)-dependent isocitrate dehydrogenase
which is involved in the citric acid cycle.43 While IDH2 p.(Arg261His)
is not mutated in glioma, IDH1 or IDH2 are commonly mutated in
glioma tumours and always involve the arginine residue.44 IDH2 is in
chromosome 15q26.1, the location of a previously reported glioma
linkage peak.45 Modelling of the IDH2 p.(Arg261His) change is shown
in Supplementary Figure 4. This amino acid change is predicted to
disrupt several salt bridge interactions, which may affect protein
activity.
In our study, none of the PAVs genotyped in any of the previously

identified glioma GWAS regions showed evidence of association with
glioma (n= 240; P41.37× 10− 3). While accepting that we are
constrained by the content of PAVs on the array, this argues against
a rare coding variant that is tagged by a SNP contributing significantly
to any of the GWAS signals identified.
While aiming to provide a comprehensive survey of recurrent PAVs

it is apparent from our analysis that there are a number of issues that
will impact on the utility of the Illumina Exome Array. Firstly, a high
proportion of the featured SNPs are either monomorphic in Eur-
opeans or have a MAF o0.005. Secondly, as illustrated by comparison
with data from the UK10K sequencing project, 22% of missense
variants with allele counts45 are not featured on the array (11 894 of

54 463 variants; Supplementary Table 6). Additionally, only ~ 36% of
PAVs on the array are predicted to be functionally deleterious. Finally,
indels are not well represented on the array. Collectively, these
observations cast doubt on the ability of the array to provide a
comprehensive assessment of the contribution of PAVs to disease risk,
highlighting the value of sequence-based approaches to discover new
disease variants.
In conclusion, there is increasing evidence that cancer susceptibility

is in part mediated through low-frequency variants affecting the amino
acid sequence of expressed proteins. Hence genome scans of PAVs
represent a complementary strategy to identify disease-causing variants
compared to scans based on tagSNPs. Strategies to lessen the multiple
testing burden by restricting analysis to PAVs with higher priors
affords an opportunity to maximise study power.
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