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ABSTRACT  

Objectives. The Spondyloarthropathies (SpAs) are genetically and therapeutically 

linked to IL-23, which in turn regulates IL-22, a cytokine that has been implicated in 

the regulation of new bone formation in experimental models. We hypothesised that 

IL-22, a master regulator of stem cells in other niches, might also regulate human 

mesenchymal stem cell (MSC) osteogenesis. 

Methods. The effects of IL-22 on in vitro MSC proliferation, migration and osteogenic 

differentiation were evaluated in the presence or absence of IFN-け and TNF (to 

ascertain IL-22 activity in pro-inflammatory environments).  Colorimetric XTT assay, 

trans-well migration assays, quantitative real time-polymerase chain reaction (qRT-

PCR) for MSC lineage markers and osteogenesis assays were used. 

Results.  Combined treatment of MSC with IL-22, IFN-け and TNF resulted in increased 

MSC proliferation (p=0.008) and migration (p=0.04); an effect which was not seen in 

cells treated with IL-22 alone and untreated cells. Osteogenic, adipogenic but not 

chondrogenic transcription factors were up-regulated by IL-22 alone (p<0.05). MSC 

osteogenesis was enhanced following IL-22 exposure (p=0.03, measured by calcium 

production). The combination of IFN-け and TNF with or without IL-22, suppressed MSC 

osteogenesis (p=0.03).  

Conclusion. This work shows that IL-22 is involved in human MSC 

proliferation/migration in inflammatory environments with MSC osteogenesis occurring 

only in IFN-け/TNF absence. These effects of IL-22 on MSC function is a novel pathway 

for exploring pathological, post-inflammation osteogenesis in human SpA.                    
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INTRODUCTION 

The spondyloarthropathies (SpAs) including ankylosing spondylitis (AS) show a 

propensity for florid new bone formation following bouts of inflammation [1-3].  Bone 

formation at insertions occurs at sites of maximal entheseal tension and histologically 

may exhibit endochondral, intramembranous or chondroidal metaplasia [4]. The basis 

for the post inflammatory new bone formation at entheses in SpA remains poorly 

understood. However, in other skeletal diseases, such as rheumatoid arthritis, 

inflammation predictably leads to diffuse bone loss and periarticular erosion. A 

biological explanation for these observations is lacking [5] but a clue may lie in the 

observation that SpAs are genetically associated with SNPs in the common p40 

subunit of interleukin (IL)-12/23 and also IL-23 receptor SNPs [6]. Monoclonal 

therapies that target this pathway are associated with significant suppression of joint 

inflammation [7]. Two of the major effector cytokines downstream of IL-23R 

engagement are IL-17 and IL-22. Interleukin-22 is a pleiotropic cytokine produced 

solely by immune cells, functioning exclusively on non-immune cells [8]. The 

mechanism by which IL-22 influence bone formation is still not well defined [2].  

Of note, IL-22 regulates stem cell function in the intestine, liver and skin, and has been 

dubbed a master regulator of stem cell function [9], so we hypothesised that IL-22 

might likewise affect MSC function. Human MSC may play a major role in both bone 

repair and aberrant new bone formation at the entheses [10]. Based on these 

observations, we hypothesised that IL-22 may also regulate human MSC function; 

particularly, MSC osteogenesis in an inflammation-dependent context. In this work, 

we provide proof of concept that IL-22 is an important regulator of MSC function, which 

has implications for studying pathological bone formation in SpA. 

 

MATERIAL AND METHODS 

Isolation and expansion of human  MSC 

Samples were obtained following patients written consent. Sample collection was 

approved by the Yorkshire and Humberside ethics committee. Culture expanded MSC 

were isolated from bone marrow aspirates (n=10). After LymphoprepTM preparation 
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(Axis-Shield), bone marrow mononuclear cells were seeded at a density of 104 

cells/cm2 and MSC cultures expanded by 2-4 passages.  

Flow cytometry evaluation of MSCs IL-22 receptor expression. 

To optimise IL-22 receptor (IL-22R) expression on MSCs, flow cytometry of culture 

expanded MSC (105, passage 3, n=5) was evaluated following stimulation in the 

presence or absence of the following cytokines: IFN-け (10 ng/mL) and TNF (15 ng/mL, 

Miltenyi Biotec) or both combined.  For IL-ββRg1 detection, cells were fixed and 

permeabilized using Fix/Perm Buffer (eBioscience), washed once with 

permeabilization buffer (eBioscience) and stained with anti-IL-ββRg1 (clone γ05405; 

R&D systems) for 30 minutes on ice. Following staining, cells were washed and then 

resuspended in FACS buffer (Phosphate buffer saline (PBS) supplemented with 0.5% 

Bovine serum albumin (BSA), 0.5mM ethylenediaminetetraacetic acid (EDTA) and 

0.05% NaN3 (all Sigma). Analysis performed on BDTM LSRII flow cytometer using BD 

FACSDiva software version 6.0 against the corresponding isotype controls.  

To support the idea that pro-inflammatory cytokines activated MSCs, their HLA class 

I and II expression levels were determined using anti-HLA class I antigen (clone 

W6/32; Sigma-Aldrich) and anti-HLA-DR (clone G46-6; BD Biosciences) according to 

manufacturer’s instructions. 

Cell proliferation assay: 

MSC proliferation was determined using the cell proliferation kit II (XTT; Roche 

Diagnostics). Briefly, MSC were seeded at a density of 103 cells/well in 96-well flat 

bottom cell culture plates, and grown in Dulbecco's modified eagle medium (DMEM; 

Thermo Fisher) supplemented with 5% heat-inactivated foetal calf serum (FCS; 

Sigma-Aldrich). Cultured MSC were treated with different combinations of 

recombinant human cytokines with optimal concentration being used:  IL-22 (10 

ng/mL, PeproTech), IFN-け (10 ng/mL) and TNF (15 ng/mL) or concomitant IL-22, IFN-

け and TNF. DMEM with either 5 or 10% FCS was used as negative and positive 

controls respectively. After six days, the cells were incubated with XTT labelling 

mixture and absorbance at 450nm recorded. 
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Migration assay: 

MSC were serum deprived in DMEM with 0.4% FCS as a basal medium overnight. 

After trypsinization, 104 cells were seeded into the upper chamber of Falcon® cell 

culture inserts with an 8.0µm pore polyethylene terephthalate membrane (BD 

Biosciences) in triplicate. In the lower chamber, media containing either: 1) IFN-け (10 

ng/mL), TNF (15 ng/mL) and IL-22 (10 ng/mL); 2) IFN-け and TNF or 3) IL-22 alone 

was added. DMEM with 10% FCS and basal medium with no additional cytokines were 

used as positive and negative control media respectively. The plate was incubated for 

4 hours at 37ºC, 5.0% CO2. 

Following removal of non-migrated cells using a cotton bud, migrated cells were fixed 

in 3.7% paraformaldehyde for 24 hours and stained with Mayer’s haematoxylin and 

eosin Y, membranes were cut out and mounted on slides using DPX mountant, DBP 

Free (Solmedia). To quantify migrated cells, Nikon E-1000 Eclipse light microscope 

(Nikon, Japan) was used to capture six fields of view and the average number of 

migrated MSC per field was calculated. 

Quantitative real-time (qRT) PCR 

Standard TaqMan® assays were used to quantify gene expression of MSC tri-lineage 

markers in response to cytokine stimulation. MSCs were plated at a density of 105 

cells/25 cm2 flask for four days, then starved in serum free medium for 24 hours, prior 

incubation for 72 hours in DMEM with 5% FCS containing either: 1) IFN-け (10 ng/mL), 

TNF (15 ng/mL) and IL-22 (10 ng/mL); 2) IFN-け and TNF; 3) IL-22 alone or 4) No 

cytokines. MSCs were harvested and total RNA was extracted using Animal t-RNA 

Tissue kit (Norgen Biotek). Single-stranded cDNA was synthesized using High 

Capacity Reverse Transcription kit (ThermoFisher). TaqMan® assays for: ACAN, 

ALPL, BMP2, COL10A1, COL1A1, COL2A1, FABP4, HPRT, PPARG, RUNX2, SOX9, 

TNFRSF11B were used with 2x Gene expression mix (ThermoFisher). Gene 

expression was normalized to HPRT and calibrated to un-stimulated control (2-〉〉Ct). 

Only mean fold changes greater than two were considered.  

Osteogenic differentiation assay. 
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MSC were seeded at a density of 104 cells per well in 12 well tissue culture plates and 

expanded in osteogenic differentiation medium (ODM); DMEM with 5% FCS 

supplemented with 100 たM ascorbic acid, 10 mM く-glycerophosphate and 100 nM 

dexamethasone; (all from Sigma-Aldrich). MSCs were cultured for 14 days in ODM 

containing either 1) IFN-け (10 ng/mL), TNF (15 ng/mL) and IL-22 (10 ng/mL); 2) IFN-け 

and TNF; 3) IL-22 alone or 4) No cytokines as a control. 

Mineralization of the extracellular matrix was quantified by measuring the acid soluble 

calcium using the cresolphthalein complexone method (Sentinel Diagnostics). Briefly, 

cells were washed twice with calcium free PBS and calcium was solubilised with 0.5N 

HCl at 4°C for four hours . Calcium was measured colourimetrically following the 

manufacturer’s instructions.  

Statistical analysis.   

Friedman’s test was used to compare between different matched group data following 

cytokine treatment of MSC in proliferation and migration experiments. Wilcoxon 

matched-pairs signed rank test was used to compare each MSC cytokine treatment to 

the untreated MSCs in osteogenesis and gene expression experiments. GraphPad 

Prism 6 (GraphPad Software) was used to generate all graphs. All bar charts show 

mean (bar height) and standard error of mean. 

RESULTS 

MSC identity was verified in representative samples using flow cytometry according to 

ISCT phenotypic criteria [11] (data not shown). MSC functionality was confirmed for 

cells used in subsequent experiments using in vitro tri-lineage MSC differentiation 

assays in representative samples (n=6) as previously described [12] (data not shown). 

IL-22 drives pro-inflammatory stimulated MSCs proliferation and migration: 

Culture expanded MSC expressed the IL-22 receptor (IL-22Rg1) indicating that MSC 

were permissive to IL-22 signalling. IL-22R expression was detected intracellularly and 

increased approximately 1.5 fold following optimised concentrations of combined IFN-

け and TNF stimulation for 72 hours.  The pro-inflammatory effect of this panel was 

confirmed by the by up-regulation of HLA class II and I) (Fig. 1A and 1B). 
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 MSC proliferation was significantly increased by combined stimulation of IL-22, IFN-

け and TNF (p=0.008), compared to unstimulated MSCs (Fig. 1C-E), while IL-22 alone 

or the IFN-け and TNF combination showed a non-significant increase in proliferation 

compared to un-stimulated MSCs. 

As shown in (Fig. 2A-C), MSC migration was also significantly increased by combined 

IL-22, IFN-け and TNF stimulation (p=0.037), compared to unstimulated MSC (negative 

control), while IL-22 alone or (IFN-け and TNF) combination showed non-significant 

increases in migration compared to unstimulated MSCs. 

 

Gene expression of MSC lineage markers in response to cytokine stimulation 

Using qRT-PCR to test whether IL-ββ has any influence on MSC’ adipo-, osteo- or 

chondro-genic potentials and whether inflammation altered this, it was found that the 

transcription factors; PPARG, RUNX2 and SOX9 were up-regulated by IL-22 alone 

(p=0.0313, p=0.0313 & p=0.0625 respectively) (Fig. 2D). Osteogenic markers ALPL, 

BGLAP and COL1A1 all showed upregulation following IL-22 stimulation, while ACAN 

also showed slight upregulation.  

Inflammatory stimuli (IFN-け +TNF±IL-22) did not affect chondrogenic or adipogenic 

transcription factor expression in DMEM media but did hinder the increase of pro-

osteogenic RUNX2. Mature bone markers, particularly BGLAP/osteocalcin were rarely 

detectable in the presence of inflammation. The pro-inflammatory milieu also 

downregulated all tested mature chondrogenic markers ACAN, COL2A1 and 

COL10A1 compared to unstimulated and IL-22 stimulated MSC. Adipocyte marker; 

FABP4, did appear downregulated (but not statistically significant) by inflammation 

though remained stable in the presence of IL-22 (Fig. 2D).  

IL-22 enhances, while combined IFN-け and TNF inhibit MSC osteogenesis 

In osteogenic conditions, IL-22 alone significantly increased the calcium production of 

MSC compared to untreated MSC (p=0.0313). To mimic the effect that a severe 

inflammatory environment may have on IL-22 mediated osteogenesis, we treated 

MSC with IFN-け and TNF supplemented osteogenic media in the presence or absence 

of IL-22. We found profound suppression of osteogenesis in both conditions compared 

to untreated MSCs (both p=0.0313) (Fig. 2E). 
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DISCUSSION 

IL-22 is a master regulator of stem cell niches in the intestine, liver, endometrium and 

skin but to the best of our knowledge, no data on its influence upon human 

osteoprogenitors or MSC has been described [13-16]. This is especially relevant since 

the human SpAs are linked to IL-22 via the IL-23 pathway [6]. The pathogenesis of 

aberrant new bone formation in SpA is poorly understood including why anti-TNF 

therapy does not completely block this process [5]. Given that IL-22 is downstream of 

the IL-23 pathway and its role in stem cell function elsewhere [9], we explored the 

effects of IL-22 on normal MSC function. We found consistent effects on MSC 

proliferation, migration and osteogenic differentiation, with the latter being blocked in 

a pro-inflammatory milieu. 

In this work, IL-22 enhanced the osteogenic capacity of MSC in vitro.  To recreate a 

pro-inflammatory environment, the combined use of IFN-け and TNF effectively 

prevented aforementioned IL-22 enhanced osteogenesis. This is in line with previous 

work showing that IFN-け blocked osteogenesis [17]. Additionally, the effect of IL-22 on 

MSC proliferation and migration was tested in the presence and absence of pro-

inflammatory cytokines (IFN-け and TNF).  Notably, IL-22 acting in conjunction with 

IFN-け and TNF, increased MSC proliferation and migration more than IL-22 alone or  

IFN-け and TNF without IL-22. This indicates a potentially important role for IL-22 in the 

maintenance, proliferation and migration of MSC and MSC topography in an 

inflammatory environment. Collectively, these findings suggest that IL-22 is a hitherto 

unappreciated regulator of the MSC niche in bone. 

Several human diseases have been genetically linked to the IL-23 signalling pathway, 

which, in turn, has been linked to stem cell function.  For example, intestinal damage 

leads to IL-23 dependent production of IL-22 by group 3 innate lymphoid cell (ILC3), 

with subsequent stem cell induction and mucosal protection [14]. In an IL-23 

dependent murine SpA model, increased IL-22 production may contribute to bone 

repair via a murine ILC3 like population, but the basis for this is still unclear [2]. IL-22 

is one of the members of IL-10 cytokine superfamily [18]. It  has the unique feature of 

being produced by various immunological cells but  exerts its effects on non-immune 

cells resulting in either pro-inflammatory, anti-inflammatory, or both effects, depending 
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on the microenviornment [19, 20]. Our finding that IL-22 had no effect on MSC 

osteogenesis in an inflammatory environment is consistent with its initial pro-

inflammatory role, but a bone-forming role in the post inflammatory phase of the 

disease. Indeed, this is exactly what happens in vivo, in SpAs including AS, where 

new bone occurs in the post-inflammatory environment. However, it remains to be 

seen what the role of this pathway is on MSC from diseased tissue. Differentiation of 

MSC under the effect of cytokines was not performed for all lineages (fat and cartilage) 

here because IL-22 did not promote transcripts indicative of fat and cartilage maturity.  

However, following IL-22 stimulation, mature bone transcripts, including ALPL and 

COL1A1 were enhanced. 

In conclusion, this work shows that IL-22 regulates MSC function, including 

proliferation, migration and osteogenesis in an inflammation-dependent context. 

These findings on the physiological effects of IL-22 on MSC open up new avenues for 

investigating inflammation and new bone formation in AS and SpA. Although anti-TNF 

therapies have failed to arrest new bone formation in axial SpA, it will be interesting to 

note what effects blockade of the IL-23 pathway, or its downstream partner, IL-17, has 

on these diseases. 

Key messages:  
 

 IL-23 is genetically and therapeutically linked to AS and SpA. 

 IL-23 regulates IL-22 expression and, IL-22 is a master regulator of skin and 

gut stem cell niches. 

 This study showed that IL-22 regulates human mesenchymal stem cell 

migration, proliferation and osteogenesis. 
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FIGURE LEGENDS: 
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FIG. 1: IL-22R expression and impact of pro-inflammatory cytokine 

combinations on MSCs proliferation. (A) Flow cytometry showing intracellular IL-22 

receptor expression with IFN-け and TNF stimulation (Blue histogram) and without 

stimulation (Red histogram), grey histogram shows isotype control. (B) Graph showing 

the geometric mean fluorescence intensity (MFI) of IL-22 receptor expression in none 

treated and IFN-け/TNF cytokine treated MSCs. Error bars represent biological 

replicates (n=3). (C) Unstimulated cultured MSCs in control DMEM and 5% FCS 

media. D. Cultured MSCs after 6 days stimulation with combined IL-22, IFN-け and 

TNF. (E) Graph showing the impact of IL-22, IFN-け and TNF on MSCs proliferation. 

**p= 0.008. Error bars represent biological replicates (n=4). 

 

FIG. 2: Impact of IL-22 and pro-inflammatory cytokines on MSCs migration, 

transcription and osteogenesis. (A and B) Transwell membranes showing that 

MSCs migrate towards DMEM containing 0.4% FCS and DMEM containing 0.4% FCS 

supplemented with IL-22, IFN-け and TNF respectively. (C) Graph shows the effect of 

IL-22, IFN-け and TNF on MSCs migration with the triple cocktail increasing MSC 

migration *p= 0.037. Error bars represent biological replicates (n=4). (D) Changes in 

relative gene expression under the influence of cytokines, data normalised to 

unstimulated MSCs (n=5). TF= transcription factor, BD = below detection, LD = low 

detection rate (1 or 2 samples). (*= significant difference, p=0.313)  (E) Osteogenic 

differentiation of MSCs after treatment with different cytokines. MSCs were cultured 

for 2 weeks in osteogenic medium with under differing cytokine combinations (no 

cytokines, IL-22 alone, IFN-け and TNF, and combination of IL-22, IFN-け and TNF). IL-

22 alone increased calcium production compared to untreated MSCs, while IFN-け and 

TNF with or without IL-22 suppressed osteogenesis in all MSCs donors compared to 

untreated MSCs. *p=0.03 for all (Wilcoxon test). Errors bars represent biological 

replicates (n=6). 

 


