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An Extens ion Of Ste in’s  Lemma For The Skew Normal Dis tribution 
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Summary 
 

When two random variables have a bivariate normal distribution, Stein’s lemma, 
Stein(1973, 1981), provides, under certain regularity conditions, an expression for the 
covariance of the first variable with a function of the second. This result plays an 
important role in the modern theory of finance. When returns on financial assets have a 
multivariate normal distribution, Kallberg and Ziemba(1983) show that all well 
behaved utility functions lead to a point on Markowitz’ mean-variance efficient 
frontier, Markowitz(1952). The implication of this result is that, under normality, it is 
pointless to seek a better utility function. However, it is well known that returns on 
financial assets are not normally distributed. They exhibit both skewness and kurtosis. 
As well an appropriate model for the multivariate probability distribution of asset 
returns, the general issue of the choice of utility function is therefore open. This short 
paper describes an extension of Stein’s lemma for the multivariate skew normal 
distribution, which was introduced by Azzalini and Dalla Valle(1996). The extension of 
the lemma shows that, under this distribution, investors who are expected utility 
maximisers will be located on a single mean-variance-skewness efficient surface, 
regardless of their choice of utility function. 
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1. Introduction 
 
When two random variables, X and Y say, have a bivariate normal distribution, Stein’s 
lemma, Stein(1973), states that, under certain regularity conditions on a function g(), 
cov{X, g(Y)} = cov(X,Y)E{g’(Y)}.  In a later paper, Stein(1981), he provides a proof 
of an underlying result, namely cov{X, g(X)} = var(X)E{g’(X)}. 
 
These results play an important role in modern finance. The theory of portfolio 
selection developed by Harry Markowitz, see for example Markowitz(1952) and 
Markowitz(1987),  assumes that investors minimise the variance of portfolio returns 
subject to achieving a given target expected return. Varying the target expected return 
generates a set of mean-variance efficient portfolios whose expected returns and 
variances lie on a parabolic curve known universally in finance as the efficient frontier. 
This method is equivalent to assuming that investors maximise the expected utility 
when the utility function used is quadratic in portfolio return. The use of quadratic 
utility functions in finance, however, is criticized, see for example Pratt(1964), on the 
grounds that there must be circumstances in which an investor appears to prefer less 
wealth to more wealth. This criticism, coupled with the natural desire to achieve higher 
portfolio returns or lower portfolio volatility or both, has lead to the search for what 
might be called better utility functions. The role that Stein’s lemma plays is as follows. 
When returns on financial assets have a multivariate normal distribution, the 
consequence of the lemma is that all well behaved utility functions, U(R) say where R 
denotes the return on a portfolio, will lead to a point on Markowitz’ mean-variance 
efficient frontier. In this context, well behaved means that U() is differentiable at least 
twice, U’() > 0 and U’’() < 0, and that the expected value of U() exists. This result, 
which is described in more detail in Kallberg and Ziemba(1983) and which is also 
credited independently to Rubinstein(1973),  means that it is pointless to seek a better 
utility function. The only issue, when returns are normal, is the choice of location on 
the efficient frontier. However, it is well known that returns on financial assets are not 
normally distributed. They exhibit both skewness and kurtosis. As well as the choice of 
an appropriate model for the multivariate probability distribution of asset returns, the 
issue of the choice of utility function is therefore open.  
 
The purpose of this short paper is to describe an extension of Stein’s lemma for the 
multivariate skew normal. This multivariate distribution, which was first introduced by 
Azzalini and Dalla Valle(1996), is an attractive model for applications in finance. 
Adcock and Shutes(2001) describe some of the theoretical aspects of the model when 
it is used for portfolio selection and related applications. In a recent working paper, 
Harvey et al(2002) report an empirical study of portfolio selection for American stocks 
which uses the distribution. As a coherent multivariate probability distribution, it is 
suitable for portfolio selection in the presence of skewness and offers a number of 
different insights into the sources of expected return and risk in a portfolio. It is also a 
parsimonious model for skewness; a not insignificant advantage if one is considering a 
portfolio of several hundred stocks. As is shown in section 4, the multivariate skew 
normal distribution admits a result which is an extension of Stein’s lemma. The 
implication of this is that when returns follow the multivariate skew normal distribution 
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there is a single efficient surface. All investors who are expected utility maximisers will 
be located on this surface, regardless of their choice of utility function. 
 
The structure of this paper is as follows. Section 2 summaries the multivariate skew 
normal distribution and such properties that are required in the rest of the paper. 
Section 3 present some preliminary results that are used in section 4, which contains 
the extension to the Stein’s lemma. Section 5 shows how this is applied to portfolio 
selection under the multivariate skew normal distribution. 
 
2. The  Multivariate  Skew Normal Dis tribution 
 
The multivariate skew normal distribution was introduced by Azzalini and Dalla 
Valle(1996). It is an extension of the univariate skew normal distribution which was 
originally due to Roberts(1966) and, separately, O’Hagan and Leonard(1976) and 
which was developed in articles by Azzalini(1985, 1986). The standard form is 
obtained by considering the distribution of a random vector, X say, which is defined as: 
 
 X = Y + λU. 
 
The vector Y has a full rank multivariate normal distribution with mean vector µ and 
variance-covariance matrix Σ. The scalar variable U, which is independent of Y, has a 
standard normal distribution that is truncated below at zero. The vector λ is a vector of 
skewness parameters, which may take any real values. For applications in finance, a 
modification of this distribution is employed, as reported in Adcock and Shutes(2001). 
The vectors X, Y and λ are defined as above. The scalar variable U has a normal 
distribution with mean τ and variance 1 truncated below at zero.  This modification 
generates a richer family of probability distributions. In particular, it gives more 
flexibility in modelling skewness and kurtosis. The idea of adding a skewness shock to 
a multivariate normally distributed vector is not new. It is suggested in Simaan(1993), 
which predates Adcock and Shutes. The probability distribution of X is multivariate 
skew normal with parameters µ, Σ , λ and τ, denoted as X ∼ MSN(µ, Σ, λ, τ). The 
probability density function of this distribution is: 
 
 

( )
)(

v),;x(n)x(f T
R τΦ

Φ
λλ+Σλτ+µ= ,      (1) 

 
where: 
 

( ) 2
1

1T1T )1(,)x(v
−−− Σ+=αµ−Σλ+τα= λλ ,     (2) 

 
and where Φ(x) is the standard normal distribution function evaluated at x. The 
notation n(x; ω, W) denotes the probability density function, evaluated at x, of a 
multivariate normal distribution with mean vector ω and variance covariance matrix W. 
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This density function is essentially Azzalini and Dalla Valle’s(1996) result with a 
change of notation and generalization to accommodate a non-zero value of  τ.  The 
distribution of any sub-vector of x, including the scalar variable xi, is of the same form, 
based upon the corresponding sub-vectors of µ and λ and sub-matrix of Σ.  
 
The vector of expected values and variance covariance matrix of X are, respectively: 
 

{ }

{ } say,)(1Σ)Xvar(

say,)()X(E

2
T

1

Ω=τξ+λλ+=

γ=τξ+τλ+µ=
 ,      (3) 

 
where the function ξk() is defined as: 
 

,...2,1k,
x

)x( k

k

k =
∂

Φ∂
=ξ

(x)log  

 
3. Pre liminaries  
 
The results that follow are concerned with the scalar random variable V which is 
defined at (2) above and with expected values of functions of V of the form 

)v()v(k)v(h 1ξ= . The results  use the notation defined above. First: 
 
 ),;x(n)()x(f)v( 1R1 Σµταξ=ξ       (4) 
 
The proof  is by re-arrangement of the left hand side.  
 
Secondly, using equation (4) gives: 
 

 }]Z)1({k[E)()]V()V(k[E 2
1

2
Z11 α−+ατταξ=ξ     (5) 

 
where EZ denotes expectation over the standard normal distribution. To prove this, the 
integrand in the expectation may be written as: 
 

);x(n)v(k)(1 Σµταξ ,  
 
Under the N(µ, Σ) distribution, the scalar variable:  
 

)x()( 1T2
1

1T µ−ΣλλΣλ −−− , 
 

is distributed as N(0,1). Noting that V may be written as: 
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Z)1(V 2
1

2α−+ατ= , 
 
completes the proof. 
 
The following standard result is reproduced here for convenience. It is essentially a 
result described in Azzalini and Dalla Valle(1996), with a modification to 
accommodate the use of non-zero value of τ. If X is partitioned into sub-vectors X1 
and X2, with corresponding partitions for λ and Σ, the conditional distribution of X1 
given X2 = x2 is MSN(µC, ΣC, λC, τC) where: 
 
 )}x({ 2

1
22

T
2CC µ−Σλ+τα=τ −

2  
  
 )( 2

1
22121CC λΣΣ−λα=λ −  

 
21

1
221211C ΣΣΣΣ=Σ −-  

 
 )x( 2

1
22121C µ−ΣΣ+µ=µ −

2      
 

 2
1

2
1

22
T
2C )1(

−− λΣλ+=α , 
 
and the conditional expected value of X1 given X2 = x2 is: 
 

 
.)λλΣ)(λλΣ(Ψ

)()x(]x|X[E

1T
2222

T
2112

C1C2221121

−++=

τξλ+τλ−µ−Ψ+τλ+µ=
 

 
When X1 and X2 are both scalars, the expected value of X1 given X2 = x2 is: 
 
 ( ) )(x]x|X[E C1C222C1121 τξλτλµψτλµ +−−++= ,   (6) 
 
where: 
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.)}/(1{

/)(

})/({

)}x)(/({

2
1

2
2

2
2C

2
22112

2
CC

2
2
2121CC

22
2
22CC

−
σλ+=α

σλλ+σα=ψ

λσσ−λα=λ

µ−σλ+τα=τ

      (7) 

 
Finally, for the univariate case, the first derivative of the probability density function 
with respect to x2 is: 
 

 ),;x(n)x(f
)x(

)x('f 2
2222

2

2
C2

22
2

222
2
C

2 σµ
σ
αλ

+
σ

τλ−µ−α
−=    (8) 

 
4. Extens ion of Ste in’s  Lemma 
 
When X1 and X2 have a bivariate skew normal distribution and assuming that the 
expected values and derivatives exist, the covariance between X1 and a function g() of 
X2 is given by: 
 

)}]X(g{E)}X(g{E)[()}X('g{E)()}X(g,Xcov{ 22N112211221 −τξλ+λλ+σ= , (9) 
  
where EN denotes expectations taken over the distribution N(µ,σ2).  
 
The proof is in two stages. The first is to take expectations over the distribution of X1 
given X2 and then to take expectations over the distribution of X2. After the first stage, 
the required covariance may be written using (6) as: 
 

  )]X(g)}()()X([{E)}X(g,Xcov{ 211C1C222CX21 2
τξλ−τξλ+τλ−µ−ψ=  

                    (10) 
       =  T1 + T2 + T3, say. 
 
The expected value of T3  is: 
 
 )}X(g{E)()T(E 2113 τξλ−= . 
 
For term T2, the integrand in the expected value integral is: 
 

)x(f)x(g)( 22C1C τξλ , 
  
where f() denotes the probability density function of X2. Using equation (4) this is: 
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),,x(n)x(g)( 2

22221CC σµτξλα . 
 
Hence, on using the definitions in equation (7): 
 
 )}X(g{E)(})/({)T(E 2N12

2
2121

2
C2 τξλσσ−λα= , 

 
where, as above, EN denotes expectation over the normal distribution N(µ,σ2). For 
term T1, integration by parts is used. The integral in the first part vanishes. The 
integrand in the second part is: 
 









τΦ
τφ

σ
λα

+
τΦ

τΦ
λ+σλτ+µλ+σψ

)(
)(

)x(g
)(
)(

)x('g),;x(n)( C
2
2

2C
2

C
x

2
2

2
22

2
2

2
2C  

 
Denoting the two terms as T11 and T12 and using the definition of ψC at equation (7) 
gives: 
 
 ( ) )}X('g{E)T(E 2211211 λλ+σ= . 
 
Using equations (4) and (7) , the integrand for term T 12 is: 
 
  

( )
),;x(n)x(g

)( 2
22222

2

1
2
C22112 σµ

σ
τξαλλλ+σ , 

and so: 
 

 ( )
)}x(g{E

)(
}T{E 2N2

2

1
2
C22112

12 σ
τξαλλλ+σ

= . 

  
Combining this with E{T2} above gives the result at equation (9). When λ is a zero 
vector this reduces to Stein’s result.  
 
Stein(1981) presents a more rigorous proof of the key component of his lemma. If X2 
is N(µ2, σ2

2) then lemma 1 of Stein(1981) states that )}X('g{E)}X(g,Xcov( 2
2
222 σ= . 

This result is proved using Fubini’s theorem and requires in essence that the function 
g() is differentiable and that E{|g(X2)|} is bounded. For the multivariate skew normal 
distribution, the analogous result is: 
 

)}]X(g{E)}X(g{E)[()}X('g{E)()}X(g,Xcov{ 22N122
2
2

2
222 −τξλ+λ+σ= .           (11) 

 
The proof of this follows the same steps in the proof of lemma 1 of Stein(1981). It may 
be shown that the expected value of g’(X2) is given by: 
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∫
∞

∞−

−−= 2222 dx)}0(g)x(g){x('f)}X('g{E . 

 
Using the expression for f’() at equation (7) gives the result at (11) Application of (11) 
to relevant terms on the right hand side of equation (10) gives (9).  
 
An interesting corollary arises from the fact that this result holds for all values of σ2. 
When σ2 = 0, the variable X2 is, apart from a shift of location, proportional to an 
N(τ,1) variable truncated below at zero.  Calling this variable U, as in section 2, the 
corollary is )}]U(g{E)}U(g{E)[()}U('g[E)}U(g,Ucov{ N1 −τξ+= . 
 
5. Application To Portfolio Selection 
 
To exemplify the lemma, consider portfolio selection. A portfolio is a set of investment 
weight or proportions {wi}, i = 1(1)n, defined such that an investor invests 100wi% of 
wealth in asset i. It is conventionally assumed that the weights sum to one. If the return 
on asset i is denoted by the random variable Ri, i = 1(1)n, then return on the portfolio 
with weights {wi} is: 
 

 RwRwR
n

1i

T
iip ∑

=

== , 

 
where w and R are vectors of length n containing the investment weights and asset 
returns, respectively. For portfolio selection, the investor conventionally chooses the 
portfolio weights to maximise the expected utility of portfolio return. For a general 
utility function, U(Rp) say, the expected utility is 
 
 say ,wdr)r(f)r(U... p )(Ξ=∫ ∫ . 
 
Following Kallberg and Ziemba(1983), the investor who is an expected utility 
maximiser solves: 
 

1)wu()w(max T -w η−Ξ , 
 
where, in the equation above, u is a vector of length n containing ones and η is the 
Lagrange multiplier of the budget constraint. Ignoring this constraint for simplicity, the 
first order conditions for the weight for asset i are: 
 

dr)r(f)r('Ur...
w pi

i
∫ ∫=

∂
Ξ∂ . 

 
This may be written as: 
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)}R('U{E)E(R)}(RU',Rcov{dr)r(f)r('U]}R[Er{...)}R('U{E)E(R pipipiipi +=−+ ∫ ∫

 
When returns follow the multivariate skew normal distribution, application of the 
extension to Stein’s lemma gives the vector of first order conditions for all assets: 
 

( ) )}'U(E)'U(E){()''U(EλλΣ)'U(E N1
T −τλξ+++γ  w . 

 
This may be re-expressed in terms of  Ω, the VC matrix of returns as: 
 

)]''U(E)()}'U(E)'U(E){([)''U(E)'U(E 2N1 τξ−−τξλ+Ω+γ  w . 
 
This equation is the same for all investors, except for the scalar quantities which are 
functions of certain expected values of U’ and U’’. When all elements of the vector λ 
are equal to zero, asset returns have a multivariate normal distribution and Kallberg 
and Ziemba’s(1983) result is obtained. That is, the portfolios of all investors who are 
expected utility maximisers are located on Markowitz’ mean-variance efficient frontier. 
Under the multivariate skew normal distribution, investors’ portfolios are located on 
the mean variance-skewness-efficient surface. 
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