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Abstract 

Suppose that one has a clinical dataset with only non-preference-based QOL data, and that 

one nevertheless would like to perform a cost/QALY analysis.  This study reports on some 

efforts to establish a “mapping” relationship between AQLQ (a non-preference-based QOL 

instrument for asthma) and EQ5D (a preference-based generic instrument).  Various methods 

are described in terms of associated assumptions regarding the measurement properties of the 

instruments.  This is followed by empirical mapping, based on regressing EQ5D on AQLQ.  

Six main regression models and two supplementary models are identified, and the regressions 

carried out.  Performance of each model is explored in terms of goodness of fit between 

observed and predicted values, and of robustness of predictions on external data.  The results 

show that it is possible to predict mean EQ5D indices given AQLQ data.  The general 

implications for methods of mapping non-preference-based instruments onto preference-based 

measures are discussed. 

 

Key words: EQ5D, AQLQ, mapping 

Abstract length: 148 words 
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Introduction 

 

What can be done when only after an important clinical trial is designed and after data 

collection is completed (or only after the last chance to re-design the trial has been missed), 

researchers realise the need to carry out a cost-effectiveness analysis, preferably a cost/QALY 

analysis?  It is very often the case that no suitable health classification instrument for deriving 

preference-based single indices is incorporated, and all that is available is either a condition-

specific or generic quality of life instrument that does not have a preference-based value set to 

go with it.  However, suppose there is an independent dataset in which the non-preference-

based instrument used in the trial has been administered alongside a preference-based 

instrument to patients with comparable conditions to the trial patients, would it not be 

possible to derive some relationship and thus an algorithm between the two types of 

instruments and apply this to the trial results in order to gain some insight regarding the net 

change in health gain that took place? 

 

These are the motivations that led to this paper, which deals with the derivation of a range of 

algorithms to convert non-preference information into preference-based- single-index-

equivalents.  The emphasis of the paper is mostly on practicality and feasibility, what can be 

done and said, rather than on the reasons why certain findings are obtained.  The conversion 

of non-preference-based instruments to preference-based indices should be a second best to 

incorporating preference-based instruments in the trial in the first place.  However, given that 

some major clinical trials take years from design to completion, and that the interest in 

incorporating cost/QALY studies into clinical trials is relatively recent, the kind of techniques 

explored here may be of great use for some time to come.  These techniques should also be 

useful in analysing old data where no preference-based instruments were used. 
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The paper is based on a dataset in which a disease-specific non-preference-based instrument 

was administered alongside a generic preference-based instrument: these instruments were the 

Asthma Quality of Life Questionnaire (AQLQ) (1, 2) and the EQ5D (3) respectively.  An 

algorithm for converting AQLQ information into EQ5D single indices are explored and 

compared.   

 

The AQLQ has 32 items, and each item has 7 levels, with 1 denoting extreme problems and 7 

indicating no problems.  The number of possible health states that can be distinguished from 

each other, in theory at least, is 732 = 1.1 × 1027.  The items in the AQLQ cover 4 domains 

(symptoms, activities, emotions, and environment).  Results can be reported in terms of 

domain scores (average score across the items within each domain), or in terms of overall 

score (average across all 32 items).  Neither scoring system is preference-based.  There are 

four different versions of the instrument, two of which are relevant here: the first five items of 

the original “individualised” version asks respondents to list five activities that they 

personally find most limited by asthma and to indicate how much they are affected; the first 

five items of the subsequent “standardised” version specifies five types of activities instead of 

asking respondents to list their own particular activities.  It is known that the individualised 

version results in higher rates of missing data for these five items (2) Appendix 1 lists the 32 

items of AQLQ.   

 

The EQ5D has five dimensions: mobility, self-care, usual activities, pain/discomfort, and 

anxiety/depression.  Each dimension has one item, and each item has three levels with 1 

denoting no problems and 3 denoting extreme problems.  The number of theoretically 

possible health states is 35 = 243.  EQ5D can be reported in terms of a 5-digit profile 
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indicating the level on each dimension, or in terms of a preference-based single index number.  

The latter is obtained by applying algorithms that link the 5-digit health state description with 

average valuations obtained from members of the public using the time trade-off method, or 

the visual analogue scale.  In this study, EQ5D indices are obtained using the so-called MVH 

A1 value set, derived from a population survey in the UK using 10-year time trade-offs (for 

further details, see (4, 5)). 

 

This paper is organised as follows.  Section 1 reviews different ways in which this problem 

may be addressed.  Then section 2 describes the regression models employed in this study and 

the data on which these models were applied.  Section 3 reports the results of the regressions.  

Section 4 is for discussion, and our conclusions regarding the feasibility and desirability of 

this approach to this approach to deriving preference-based measures of health states.  

 

1. Possible ways forward 

   

There are four different ways in which to obtain indices from a non-preference-based 

instrument such as the AQLQ, and the following is a brief exposition of each of them.   

 

1.1. Simple transformation 

 

The overall AQLQ score (which runs from 1-7) could be transformed to a preference-based 

quality of life weight using the formula 

 

Q = (A-1) / 6, 
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where Q represents the preference-based quality of life weight, and A represents the overall 

AQLQ score.  Whilst this is the simplest approach, this is probably also the one involving the 

most stringent of assumptions.  These are: 

 

(a) that the AQLQ item levels can be interpreted to represent preferences on an 

interval scale, with 1 for worst health and 7 for best health, 

(b) that the AQLQ items within a given domain carry equal weight, 

(c) that the AQLQ domains cover all the domains of health of relevance to the 

condition and its treatment, 

(d) that the 4 AQLQ domains carry equal weight, 

(e) that the worst state (i.e. answering 1 to all 32 items) is equivalent to being dead 

and that there are no health states worse than dead, and 

(f) that the best state defined by the AQLQ is equivalent to full health. 

 

The AQLQ is designed to satisfy (c), but none of the remaining assumptions.  

Furthermore, there is empirical, though inconclusive, evidence indicating that different 

asthma symptoms cause different degrees of disutility to patients: Revicki and colleagues 

report that patients perceive shortness of breath as being worse than coughs and wheezes 

(6), while McKenzie and colleagues found that coughs and breathlessness are worse than 

wheezes and chest tightness (7).  Thus this approach is unlikely to be empirically robust. 

 

1.2. A valuation study of AQLQ 

 

A second approach is to obtain preference weights for items (i.e. individual questions) of 

AQLQ using preference elicitation techniques, such as standard gamble or time trade-off.  
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This approach has been successfully undertaken in three studies, one with a condition specific 

measure (8) and two others involving a generic instrument, the SF-36 (9, 10).  The estimation 

of preference weights using this approach involves three stages. The first is to derive a health 

state classification from the AQLQ that is amenable to valuation.  Given that AQLQ has 

millions of millions of possible combinations (or states) in all, obtaining a valuation for every 

one of them is impossible.  More importantly, it would be impossible for respondents to 

reliably differentiate health states containing 32 pieces of information.  Therefore, the health 

state classification used may be reduced to the four dimensions, with appeal to assumption (b) 

above, that the items within a given domain carry equal weight.  If so, since there are 7 levels 

on four dimensions, this reduced form will distinguish between 47 (=16,384) health states.  An 

alternative may be to derive a health state classification using a sample of items considered to 

best represent the descriptive system of the original instrument.  The second stage is to 

conduct a valuation survey of a subgroup of states defined by the classification, using 

standard gamble or time trade-off techniques.  The third is to estimate a regression model to 

establish the value set.  While a valuation study of AQLQ will be an interesting enterprise, it 

is unfortunately not feasible within the relevant resource constraints for our particular 

exercise. 

 

1.3. A priori mapping of AQLQ to a preference-based quality of life instrument 

 

In this approach components of AQLQ would be associated, by judgement, to specific 

domains and levels of another quality of life instrument for which preference-based weights 

exit (in this case, EQ5D).  This would involve an extension of assumption (c) to  
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(c′): that the AQLQ and the preference-based measure both cover all the domains of 

relevance to the condition and its treatment. 

 

This could be done in 2 different ways: by domains, or by items.  In either case, AQLQ scores 

would be judged to be equivalent to a given level on a given domain of EQ5D.  For instance, 

scores in the range 3 to 5 on the activity domain of AQLQ might be mapped to level 2 on the 

usual activities dimension of EQ5D, or levels 6 and 7 on item 14 might be equated to EQ5D 

anxiety/depression level 1.  Needless to say, mapping by domains involves assumption (b), 

that the AQLQ items within a given domain carry equal weight, but mapping by item does 

not. 

 

A variant of this would be to deal with the problem at the level of individual patients.  The 32-

item profile given by a specific patient would be taken as a whole and assigned a particular 

EQ5D profile, by judgement. 

 

The main criticism for this approach is its arbitrariness (11).   However, this could be 

overcome by testing empirically for the appropriateness of the judgements against real data (if 

there were any) to see whether or not patients who score between 3 and 5 on the AQLQ 

activities domain report themselves as being on level 2 for usual activities in EQ5D.  This 

could lead to some kind of regression between peoples’ self-reported AQLQ and EQ5D.  

Pushing this further is equivalent to the empirical mapping discussed in the following section. 

 

1.4. Empirical matching of AQLQ with a preference-based quality of life instrument 
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The essence of this approach is to explore the relationship between the two instruments by 

regression analyses.  This requires a real dataset in which patients have responded to an 

appropriate quality of life instrument (which will be the dependent variable in the regressions) 

alongside AQLQ (scores of which will be the independent variables).  This is the method 

employed in this paper, and is explained in more detail in the following section. 

 

 

2. Methods 

 

2.1. The regression models 

 

As summarised in table 1, there are at least six additive regression models, and two 

supplementary models, which could be used to estimate the relationship between AQLQ and 

EQ5D.  Each is briefly explained.  The notation used is as follows, where figures in square 

brackets indicate the potential range: 

 

Q: the preference-based EQ5D index [-0.59,1] 

A: the AQLQ overall score [1,7] 

Ad: the score of an AQLQ domain [1,7], where d = S, A, Em, Ev,  

Ai: the level of an AQLQ item [1,7], where i = 1, 2, … 32  

Ai.x: a dummy variable that = 1 when the level of an AQLQ item i is x 

Ed: the level of an EQ5D dimension [1,3], where d = M, SC, UA, PD, AD 

All regressions are run using STATA version 6.  Rather arbitrarily, “level” is used for AQLQ 

items and EQ5D dimensions, in other words, for discrete data; “score” is used for AQLQ 
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domains and overall scores, ie. for continuous data.  Scores are always treated as continuous 

variables in the regressions, but levels can be treated as either continuous or discrete variables. 

 

(1) Q = a + �$ + u, 

(2) Q = a + �1AS + �2AA + �3AEm + �4AEv + u, 

(3) Q = a + �1A1 + �2A2 + … �32A32 + u. 

These 3 models are estimated using ordinary least squares (OLS), and the independent 

variables are treated as continuous.  Model (1) requires assumptions (a) (b) (c') and (d), while 

model (2) requires (a) (b) and (c'), and model (3) requires (a) and (c').   

 

(3'): Q = a + �1A1 + … �32A32 +��i.iAiAi + … �i.nAiAn + … �n.nAnAn + u, 

where the subscript i.n represents item i and item n of AQLQ.  This is supplementary to 

model (3), and additional interaction terms are included.  In this study, the independent 

variables (i to n) used to form the interaction terms are selected according to the results of 

model (3) based on the criteria: (i) the sign for the estimator is positive (a positive sign is 

expected, since a higher AQLQ level should be associated with better quality of life and 

larger EQ5D indices), and (ii) its p value is less than 0.01.  The latter criterion is arbitrary.  

The products of pairs of these items and squares of these items are added to the main effects 

model and estimated using OLS.  Like model (3), this model requires assumption (a) and (c'). 

 

(4) Q = a + �i.2Ai.2 + �i.3Ai.3 + …��i.7Ai.7 + … �n.7An.7 + u, 

where the subscript i.x represents level x on item i of AQLQ.  The independent variables are a 

selected subset of the AQLQ items.  In this study, this subset is selected according to the 

results of model (3) based on the criteria: (i) the sign for the estimator is positive, as expected, 

and (ii) its p value is less than 0.1.  The latter criterion is arbitrarily set lower than its 
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counterpart in model (3').  This model continues to use OLS, but now the independent 

variables are treated as categorical variables.  Thus, the number of independent variables will 

be 6 times the number of items selected (because each item has 7 levels).  This model requires 

assumption (c') alone. 

 

(4') Q = a + �i.2Ai.2 + �i.3Ai.3 + …��i.7Ai.7 + … �m.7Am.7 + u,         m < n. 

Here, the independent variables are restricted further by applying the same criteria again.  

Whole items will be excluded, as opposed to excluding individual variables.  This is because 

each variable represents different levels within a given item, and it becomes difficult to 

interpret if not all the levels of a given item were either included or excluded as one set.  An 

alternative at this stage would be to merge levels by imposing equality constraints on the ��

coefficients.  This was not done in this study. 

 

(5) regress the five EQ5D dimensions on the 32 AQLQ item levels so that  

EM = a + �1A1 + �2A2 + … �32A32 + u, 

ESC = a + �1A1 + �2A2 + … �32A32 + u, 

EUA = 

… 

Again, OLS is used, and both the dependent and the independent variables are treated as 

continuous.  Five regression functions, each for one of the EQ5D dimensions, are estimated.  

The required assumptions are (a) and (c').  Further, note that, while on the one hand the EQ5D 

algorithm for obtaining the preference-based single index is based on a series of coefficients 

to be applied to discrete numbers representing the level on different EQ5D dimensions, on the 

other hand the predictions obtained from this model for each of the EQ5D dimensions are on 

a continuous scale.  Thus, this model cannot be used to generate predictions, and performance 
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in terms of goodness of fit cannot be tested.  Rather, the objective of this model is to enable 

the selection of the independent variables used in the next model.  In addition, this is the best 

model to explore empirically the relationship between the descriptive content of the two 

instruments, which is explored in section 5 below. 

 

(6) regress the 5 EQ5D dimensions on a subset of the AQLQ item levels so that 

EM = a + �iAi + �jAj + … �nAn + u, 

ESC = a + �iAi + �jAj + … �nAn + u, 

EUA = 

… 

As in model (5), there is one regression function for each of the five EQ5D dimensions.  

Instead of OLS, multinomial logistic regressions are used where the levels within a given 

EQ5D dimension are treated as categorical variables (in other words, the dependent variable 

is now discrete).  The independent variables are also treated as categorical, and are selected 

based on the results of model (5), while the selection criteria are the same as those used for 

model (4).  The subset of independent variables will not necessarily be the same across the 5 

EQ5D dimensions.  The required assumption is (c') alone.   

 

2.2. The goodness of fit 

 

Given that the objective of the exercise is not to explain the relationship between AQLQ and 

EQ5D, the size of R2 is not an indicator of much importance (although it is reported).  The 

objective of the exercise is to predict the EQ5D index of a patient with a given AQLQ profile.  

Therefore the error of the prediction, or the goodness of the fit is taken as the criterion of 

performance of a model.  This is reported in terms of the mean squared error (MSE): the 
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smaller this value, the better is the performance.  Scatter plots between directly derived EQ5D 

indices and EQ5D indices predicted from the models will be examined (mostly not shown due 

to space constraints, but available from the corresponding author on request).  The range of 

the predicted values, and Pearson’s correlation coefficients between the observed and the 

predicted EQ5D indices are also reported. 

 

While obtaining predicted EQ5D indices for the OLS models is straightforward, doing this for 

model (6) requires some explanation.  The predictions generated from model (6) are the 

probability that a given respondent has a given level on each of the EQ5D dimensions (eg. the 

probability of level 1 for mobility, the probability of level 2 for mobility, etc).  Based on these, 

there are two ways in which to calculate an EQ5D index.  The first, “indirect” way, looks at 

these probabilities and determines the level for each of the five dimensions by choosing the 

level with the highest associated probability.  This leads to the identification of an EQ5D 

profile, to which the value set can be applied.  Since this approach makes no distinction 

between a probability distribution of 34%-33%-33% for the three levels of a given dimension 

and one of 90%-5%-5%, the method does not utilise all available information.  The second, 

“direct” way, uses the probabilities for different dimensions and levels, including the 

interaction term for extreme problems, and combines these with the value set to calculate an 

expected EQ5D index.  The shortcoming of this latter method is that it becomes almost 

impossible to have a predicted EQ5D index of 1.00.  Given the observed distribution of 

EQ5D responses in the estimation dataset (presented below), where a substantial proportion 

of respondents had EQ5D of 11111, the choice was made to obtain predicted values for model 

(6) using the indirect method. 

 



 
15 

2.3. Robustness 

 

The goodness of fit above is obtained for “within-sample” predictions.  In other words, the 

dataset on which the model is estimated and the dataset on which the predictions are fitted are 

the same.  In order to explore the robustness of the model, “out-of-sample” predictions are 

also obtained.  Here, the data on which the predictions are fitted are not the same as the data 

on which the model is estimated.  75% of the whole sample is randomly selected, the 

regressions run, and then the predictions calculated for the remaining 25% of the sample.  

This is repeated three times on different splits of the whole sample, and MSE is reported for 

each. 

 

2.4. The data 

 

The data used in this study comes from a randomised controlled trial that looked into the 

effectiveness of computerised decision support in primary care, covering a wide range of 

patients with asthma.  A sample of 3000 patients was identified from general practice 

morbidity and prescribing registers and were surveyed in three rounds roughly 12 months 

apart (n diminishes with round).  Amongst other information, AQLQ and EQ5D were 

collected using posted questionnaires.  The original AQLQ was used for round 1, and due to 

significant levels of item non-response to the individualised items in round 1, the standardised 

AQLQ was used for rounds 2 and 3.  For further details, see Eccles et al (12). 

 

There are three datasets to work on: 

“R1”: all responses to round 1; n = 3059; AQLQ items 1-5 are individualised, 

“R23”: all responses to rounds 2 and 3; n = 3880; items 1-5 are standardised, and 
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“R123”: items 6-32 from rounds 1,2, and 3; n = 6939 (items 1-5 are excluded because of 

the lack of comparability of data from round 1 vs. rounds 2 and 3). 

 

Across the three rounds, each EQ5D dimension has around 2-3% missing data.  There are 

more missing data in AQLQ: 12-24% for items 1-5 of original AQLQ; and 2-11% for items 1-

5 of the standardised questionnaire.  For other items, 1-4% of responses are missing.   

 

Mean EQ5D index in dataset R123 is 0.73.  27% of respondents report full health (11111).  

Other common states are 11121 (10%), 21222 (7%), 11112 and 11122 (6% each).  75% of 

respondents do not report any impairment at level 3 on any dimension.  Further, some EQ5D 

dimensions have very few patients in level 3 (0.2% for mobility, 0.3% for self care).   

 

Mean AQLQ overall score in dataset R123 is 4.94.  Domain scores range from 4.81 

(environment) to 5.10 (activities).  The distribution of AQLQ responses is somewhat more 

uniform, so that the least frequently endorsed level (which always is the worst level) usually 

has over 3% responses, and at the least 1%.  91-97% of respondents (depending on dataset) 

have a “unique” response so that there is no other respondent sharing the same AQLQ 

response across all 32 items.  Around 1% have one other respondent with the same response 

profile.  1-3% of respondents have no problems across any of the 32 AQLQ items (i.e. 

endorse level 7 on all 32 items).   

 

The overall skewness of the data from both instruments is problematic.  It means that data are 

thin regarding the more severe health states, and the ability of the model to predict with 

precision such states should be carefully observed.  In an explanatory, or descriptive context, 

the skewness of the data would call for transformation of the data into a more symmetric 
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distribution before running the regressions.  However, given that the objective of this exercise 

is to estimate a model for prediction, as opposed to explanation, and given also that the same 

skew of the AQLQ responses may not apply to the data to which the mapping algorithm is 

applied, data are not transformed. 

 

2.5. The choice of regression models 

 

There are three issues here: the inclusion of patient background characteristics, the use of 

generalised linear models, and the use of random or fixed effects models. 

 

The independent variables of the regression models used are limited to AQLQ scores, and 

exclude patient background characteristics, such as age and sex, despite the possibility of 

misspecification.  Preliminary analyses using dataset R1 and models (1) (2) (3) and (4) 

indicate that when age, age squared, and sex are included, these variables result in statistically 

significant coefficients.  However, the other coefficients are hardly affected (maximum, 

minimum, and average change are: 0.010, -0.007, 0.000, and average absolute change is 

0.000).  Note moreover that, given that the final objective of the exercise is to apply the 

estimated mapping algorithm to trial data and to calculate net benefit of treatment, whatever 

variables included in the additive model that do not change between baseline and follow up 

observations will simply be cancelled out.  Therefore, background characteristics are 

deliberately excluded from the regression models. 

 

Given that the EQ5D indices used as the dependent variable in the OLS models are bounded 

to 1.00, the use of simple linear models risks the predicted values being larger that this limit.  

An alternative is to use a generalised linear model (GLM), wherein the dependent variable is 
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transformed into an s-shaped non-linear variable that approaches 1, but does not reach it.  The 

obvious shortcoming of this in our context is that there are many responses with observed 

EQ5D index of 1.00, and the transformation will imply dropping these observations (because 

the transformed values approaches infinity).  This can be accommodated by standardising the 

raw EQ5D indices to the range [0, 1], based on an artificial range, say, [-0.5, +1.1], and then 

transforming this.  A preliminary analysis was carried out using dataset R1 and models (1) (2) 

(3) and (4), and applying a logit transformation to the thus standardised EQ5D indices.  In 

terms of Pearson’s correlation between the observed and predicted EQ5D indices, 

performance of GLM and the simple linear model are roughly the same (correlation 

coefficients of GLM are better by less than 1%).  However, GLM for models (1) and (2) do 

markedly worse than the simple linear model in terms of MSE (>0.08 as opposed to <0.05), 

and maximum predicted value for those with EQ5D index = 1 is much smaller (around 0.65 

as opposed to 1.00 ± 0.02).  With models (3) and (4), GLM is comparable to the simple linear 

regression, but not better.  Given the additional complication, the arbitrary nature of the 

standardisation and the transformation, and the fact that the maximum predicted EQ5D 

indices of the simple linear models hardly exceed 1.00, the associated benefits of GLM do not 

seem to outweigh its costs.  Therefore the decision was made not to use GLM. 

 

Finally, given that the datasets R23 and R123 are composed of repeated observations, there is 

theoretical scope to consider the use of either random or fixed effect models.  Indeed, using 

dataset R123 and model (3), the Breusch-Pagen test indicates that there are individual effects.  

A subsequent Hausman test rules out the use of fixed effects model in favour of the random 

effects model.  However, on the one hand, a requirement for the use of random effects models 

is that the independent variables and the individual effects are independent.  On the other, the 
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independent variables being self-reported AQLQ, the two are unlikely to be independent.  

Therefore, the decision was made to not to use random or fixed effects models. 

 

 

3. Results 

 

3.1. Regression coefficients, p-values and MSE. 

 

Model (1) 

This indicates a positive correlation between EQ5D index and AQLQ overall score, and there 

is very little difference in the coefficients across the three datasets.  Adjusted R2 = 0.33 for all 

datasets, and MSE is 0.049 to 0.053. 

�overall   0.12,  p < 0.01,   

 

 

Model (2): 

As already outlined, AQLQ domain scores should be positively correlated to EQ5D indices 

(i.e. the larger the score the better the quality of life).  AQLQ symptoms and activities 

domains have expected signs (� > 0), but emotions and environment domains have the 

opposite sign and p < 0.1, except for emotions for dataset R1 (where ��>0 but p = 0.77).  

Adjusted R2 across the three datasets ranges from 0.35 to 0.37, and MSE ranges from 0.044 to 

0.049. 

�symptom  0.04 to 0.05,  p < 0.01 

�activities  0.10 to 0.11, p < 0.01 

�emotions   -0.02 to 0.00,  p = 0.01 to 0.77 
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�environment   -0.03,  p < 0.01 

 

 

Model (3): 

There are certain AQLQ items that persistently have the reverse, or wrong sign (� < 0) with p 

< 0.1, across the three datasets.  The “well behaved” items (� > 0 and p < 0.1 in at least two 

datasets) are: 

Symptoms:  6, 16, 29, 30 

Activities:  3, 5, 25, 28, 31, 32 

Emotions: 15, 27 

Environment: 26 

The “badly behaved” items (� < 0 and p < 0.1 in at least two datasets) are: 

Symptoms:  none 

Activities:  22, 24 

Emotions:  21 

Environment:  23 

There are larger differences across datasets than with models (1) and (2), which is expected, 

due to the treatment of items 1-5.  Adjusted R2 across the three datasets is in the range 0.36 to 

0.39 and MSE ranges from 0.042 to 0.048. 

 

Model (3') 

The AQLQ items selected to form the interaction terms are as follows: 

dataset R1:      3, 5, 25, 27, 31 

dataset R23:  2, 4, 5, 6, 16 

dataset R123:  6, 16, 25, 27, 29, 31, 32 
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The five items selected for dataset R1 form 15 interaction independent variables (item 3 

squared, item 5 squared, …; product of items 3 and 5, product of items 3 and 25, …), and 

similarly, there are 15 interaction terms for dataset R23, and 28 for dataset R123.  Of these, 

six, six and 14 items respectively had regression coefficients with the expected sign (� > 0).  

For dataset R1 none of these had p < 0.1, for R23 two (product of items 2 and 4, product of 

items 2 and 16) had p < 0.1, and for R123 three (square of item 29, product of items 16 and 27, 

and product of items 16 and 29) had p < 0.1.  Adjusted R2 for the three datasets is between 

0.37 and 0.40, and MSE is between 0.041 and 0.047. 

 

Model (4):  

The AQLQ items selected for this model based on model (3) are:  

dataset R1:  1, 3, 5, 6, 25, 26, 27, 29, 31, 32 

dataset R23: 2, 3, 4, 5, 6, 14, 16, 25, 28, 30, 31 

dataset R123: 6, 16, 25, 26, 27, 28, 29, 30, 31, 32 

 

Not many ��coefficients have the wrong sign: there are five to 10 variables depending on 

dataset.  Not all ��coefficients have p < 0.1: coefficients with p > 0.1 tend to be clustered by 

items (eg. some AQLQ items have none or one variable with p > 0.1, while other items have 

more than four).  Further, not all coefficients are “consistent within an item”, in other words, 

ordering of coefficients within an AQLQ item do not match the ordering of the levels, so that 

for instance an improvement in AQLQ item (i.e. a higher level) results in an decrease in 

EQ5D index, other items being equal.  Adjusted R2 ranges from 0.37 to 0.40, and MSE from 

0.041 to 0.048. 

 

An additional model (4'):  
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Given that there remain in model (4) several items with the wrong sign, a further subset of 

items are selected.  Selection criterion is that the number of � coefficients within the item with 

p > 0.1 is equal to or less than one.  The AQLQ items used are: 

dataset R1:  5, 6, 27, 31 

dataset R23:  2, 5, 6, 16, 31 

dataset R123:  6, 16, 27, 31, 32 

This results in all coefficients having the expected sign, where most coefficients have p < 0.1 

(one to three exceptions per dataset).  Moreover, most coefficients are consistent within an 

item (two exceptions per dataset).  Adjusted R2 ranges from 0.37 to 0.39, and MSE is 0.043 to 

0.048.   

 

Model (5): 

Given that there are three datasets (R1, R23, R123), 5 × 3  = 15 regressions are run.  The 

results indicate which AQLQ items are correlated with the EQ5D dimensions, and thus are of 

interest.  The list of well-behaved items is given below for model (6).   

 

Model (6): 

The independent variables selected from model (5) are: 

 

R1, mobility:  3, 5, 25, 28, 29, 31, 32 

R23, mobility:  2, 4, 25, 31 

R123, mobility:  6, 8, 25, 27, 28, 30, 31, 32 

 

R1, self care:  18, 25, 31, 32 

R23, self care:  2, 3, 4, 11, 25, 32 
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R123, self care: 6, 18, 25, 28, 31, 32 

 

R1, usual activities:  1, 2, 5, 8, 25, 27, 31, 32 

R23, usual activities:  2, 3, 4, 16, 28, 30, 31, 32 

R123, usual activities:  6, 8, 16, 25, 28, 29, 30, 31, 32 

 

R1, pain/discomfort:  1, 3, 5,6, 11, 12, 14, 16, 25, 27, 29, 31 

R23, pain/discomfort:  2, 4, 5, 6, 12, 14, 16 

R123, pain/discomfort:  6, 8, 11, 12, 14, 16, 25, 26, 29, 31, 32 

 

R1, anxiety/depression:  3, 6, 15, 26, 27 

R23, anxiety/depression:  5, 7, 13, 14, 16, 26, 27, 31 

R123, anxiety/depression: 6, 7, 13, 14, 16, 25, 26, 27, 29, 31 

 

The sign and p-values of the � coefficients are mixed: not all of them have the right sign, and 

many of them have p > 0.1.  The sign and p-values are not strongly clustered by items.  This 

is likely to be affected by the uneven distribution of the EQ5D responses, especially the small 

proportion of those in level 3.  MSE for the three datasets is in the range 0.072 to 0.077. 

 

3.2. Goodness of fit 

 

Goodness of fit is summarised in Table 2.  While the OLS models (1) to (4') do better in terms 

of average predicted EQ5D compared to model (6), these models struggle to produce EQ5D 

indices that are negative.  The improvement in moving down the list of OLS models can be 

seen in the minimum predicted EQ5D indices.  The predicted individual EQ5D indices and 
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the observed indices have a correlation coefficient ranging from 0.56 (model 6, dataset R123) 

to 0.65 (model 4, dataset R1).  Models (1) and (6) tend to be worse while models (3') and (4) 

perform better.  In terms of prediction error, there is little difference between the OLS models, 

but models (3') and (4) perform slightly better than the others.  Model (6) performs markedly 

worse compared to the OLS models.  Figure 1 is a scatter plot between the observed and 

predicted EQ5D indices with model (6), using dataset R1, where the straight line drawn is the 

trend line through the plots.  The figure illustrates the low concentration of the predicted 

EQ5D indices and their biased structure.  Figure 2 illustrates the case of model (4), using 

dataset R1.  Here, a higher concentration of the predicted values is observed, and the trend 

line coincides with the 45° diagonal, representing the unbiased nature of the prediction. 

 

3.3. Robustness 

 

For the OLS models, increase in error by going from within sample predictions to out of 

sample predictions is very small (less than 0.003), and the variation across the three trials is 

smaller (less than 0.002), thus implying the robustness of the models.  Dataset R1 tends to 

have slightly smaller errors than R23 and R123.  Again, model (6) does not perform well, 

suggesting that this is less robust than the others.  Examination of scatter plots (not shown) 

suggests that the patterns of prediction and of errors are roughly the same between the split 

samples and the corresponding whole samples. 

 

 

4. Discussion 

 



 
25 

This section will address three issues.  The first is, given the results, which model should be 

recommended when EQ5D indices are to be estimated based on AQLQ data.  The second is 

an exploration of the relationship between the two instruments given the results above.  The 

last is the implications for mapping non-preference-based measures onto a preference-based 

one. 

 

4.1. Recommended model 

 

In terms of goodness of fit, models (3') and (4) do best.  We favour model (4) for two reasons. 

Firstly, model (3') involves additional variables to model (3), not all of which have the 

expected sign or significance level, while model (4) performs only marginally worse.  

Secondly, model (3') requires the additional assumption (a) that the AQLQ item levels satisfy 

the interval property (see section 1.1 above).  The regression coefficients of model (4) 

demonstrate that this assumption does not hold.  While model (4) involves some inconsistent 

coefficients, accounting for these (as in model 4') does not lead to improvements in goodness 

of fit.  Further, given that the number of items involved is not small, model (3), with fewer 

independent variables, may be seen as more practical.  It will be advisable therefore to use 

model (4) for the main prediction, but to employ models (3), (4') and/or (3') as sensitivity 

analyses.  When the AQLQ version in question is the original individualised version, then the 

coefficients based on R1 is recommended.  When the standardised version is used, there is 

little to choose between the coefficients based on R23 and those based on R123. 

 

4.2. The relationship between the two instruments 
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This sub-section will discuss the relationship between the descriptive content of EQ5D and 

AQLQ.  If the relationship between EQ5D and AQLQ is stable, one would expect the same 

set of independent variables to be selected for model (4) across the three datasets.  If on the 

other hand, there was no stable relationship, then the particular AQLQ items selected for one 

dataset may not apply to another dataset.  Ignoring AQLQ items 1 to 5 (since they are not 

directly comparable between datasets R1 and R23 and were dropped from dataset R123), 

there are three AQLQ items with β coefficients that demonstrate the expected sign and good 

significance level across all three datasets: 6, 25, and 31.  Six more items (16, 27, 28, 29, 30, 

and 32) are selected in two datasets, and there is only one item that is selected in one dataset 

alone (14).  All this seems to indicate that the set of AQLQ items that are selected for model 

(4) is reasonably stable across the three datasets, implying a stable relationship across the two 

instruments. 

 

Another way in which to explore this matter is to look at the results of model (5).  While the 

results of this model are not expected to yield an algorithm with which to estimate EQ5D 

indices based on AQLQ data, it offers empirical information on the relationship between 

EQ5D dimensions and AQLQ items.  Table 3 shows those AQLQ items where the association 

between the item and an EQ5D dimension is in the expected direction (β > 0) and p < 0.1, and 

Table 4 shows items with the reverse association (β < 0) and p < 0.1.  The AQLQ items are 

grouped by their domains.  From the first table, it can be seen that: the AQLQ items from the 

activities domain affect all EQ5D dimensions; the AQLQ items in the symptoms domain 

affect the EQ5D pain/discomfort and anxiety/depression dimensions most; and the emotions 

and the environment domains affect the anxiety/depression dimension.   
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However, Table 4 illustrates that for a number of AQLQ items the association with EQ5D 

dimensions is opposite to that expected, and that some of them are also persistent across the 

three datasets.  Again, this suggests a stable relationship (albeit not in the expected direction) 

between the two instruments.  It is not clear why AQLQ items such as 10 or 24, which are 

straightforward questions on asthma symptoms (“did you experience a wheeze in your chest?” 

“were you woken at night by your asthma?”), should result in this unexpected association.  

However, items 9, 17, and 23 merit some discussion.  These items are worded as “did you 

experience asthma symptoms as a result of being exposed to cigarette smoke? / as a result of 

being exposed to dust? / as a result of the weather or air pollution outside?”.  The reason for 

the reverse association between EQ5D and these items may be that, if the patient (for 

whatever reason) has problems with mobility, self care, or usual activities, and thus does not 

go out, then this individual will not be exposed to cigarette smoke, outdoor dust or air 

pollution, and therefore as a result will not experience asthma symptoms in this way.  In other 

words, better AQLQ levels can be associated with worse EQ5D levels.  The only other AQLQ 

item worded similarly (item 26) has no association (expected or reverse) with EQ5D.  This 

interpretation, if correct, throws light on the different conceptualisations of quality of life 

behind the two instruments.  While on the one hand EQ5D targets problems in different 

dimensions of health regardless of their cause, on the other hand AQLQ looks into not only 

the experience of asthma symptoms but different causes and triggers for the symptoms, and 

how potential or anticipated symptoms affect patient behaviour.  This relates to assumption 

(c'). 

 

4.3 Implications for mapping 
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This study has shown that it is possible to estimate a robust relationship between EQ5D 

indices with AQLQ.  Thus, it is not impossible to obtain changes in quality of life in terms of 

preference-based single indices in a clinical trial where no direct observation is available.  

However, given that non-preference-based condition specific instruments and preference-

based generic instruments are designed to measure different concepts of quality of life, one 

cannot substitute completely for the other, and mapping from one to the other is a second best 

strategy. 

 

Given the large error associated with the prediction of EQ5D indices, none of these 

coefficients can be used to predict EQ5D indices of an individual patient.  This study can be 

understood as a modelling exercise, where the observations are not systematically assigned to 

respondents, but are naturalistically determined by respondents’ self-reported health.  The 

obvious shortcoming compared to a more experimental setting is the skewed distribution of 

health states for which data are available. (This does not mean that the original data comes 

from a biased sample, but simply reflects the natural pattern of variability and skew in health 

status in the population of interest.)  In the context of a modelling study, the ideal distribution 

of states would be evenly spread, with a good number of observations for each state: but the 

available information only covers an extremely small portion of all the possible AQLQ health 

states, and most respondents give the only available observation regarding the particular state 

they are in.  This has two drawbacks: firstly, there are simply not enough data on the worst 

levels; and secondly, the data fed into the model is not rich enough to say what is the average 

EQ5D index of a group of patients with a given AQLQ response, because there are only a 

couple of patients at the most with any given AQLQ response. 

 



 
29 

There may be those who expect this kind of approach to replace the need to include 

preference-based instruments in a clinical trial altogether: if EQ5D indices can be predicted 

from AQLQ, or from any other instrument that is more widely accepted in the medical 

community, why bother arguing with medical colleagues over the necessity of burdening the 

patients with yet another instrument that provides information that could be derived through 

the instruments already included?  Our findings, however, suggest that the derivation of 

preference values is only a poor second best: while the functional relationships are stable, the 

predictions have wide margin of error and the method is totally inappropriate for predicting 

EQ5D indices at the individual level.  The costs of taking this approach (although not exactly 

quantified) are no doubt much larger than the marginal cost of including an EQ5D or other 

preference-based measure in the trial. 
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Table 1: Summary of regression models 

 

 

model dependent variable D/C † independent variables D/C †  

(1) 

(2) 

(3) 

(3') 

(4) 

(4') 

(5) 

(6) 

EQ5D index 

EQ5D index 

EQ5D index 

EQ5D index 

EQ5D index 

EQ5D index 

EQ5D dimension-level 

EQ5D dimension-level 

C  

C 

C 

C 

C 

C 

C  

D  

AQLQ overall score 

all AQLQ domain scores 

all AQLQ item levels 

all AQLQ item levels + interactions 

selected AQLQ item levels 

further selected AQLQ item levels 

all AQLQ item levels 

selected AQLQ item levels 

C 

C  

C  

C 

D 

D 

C  

D  

 

† D/C indicates whether the variable is treated as Discrete or Continuous. 
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Table 2: Summary of regression results across the three datasets 

 

 average maximum minimum correlation ‡  MSE §  

observed 

predicted (1) 

predicted (2) 

predicted (3) 

predicted (3') 

predicted (4) 

predicted (4') 

predicted (6) 

0.719 to 0.734 

0.719 to 0.736 

0.721 to 0.736 

0.732 to 0.743 

0.732 to 0.743 

0.729 to 0.740 

0.724 to 0.733 

0.808 to 0.814 

1.000 

0.940 to 0.987 

1.004 to 1.021 

0.994 to 1.029 

0.994 to 1.016 

0.931 to 0.956 

0.913 to 0. 927 

1.000 

-0.480 to -0.320 

0.241 to 0.292 

0.212 to 0.290 

0.178 to 0.241 

0.051 to 0.139 

-0.032 to +0.068 

0.002 to 0.174 

-0.239 to -0.157 

-  

0.57 to 0.58 

0.60 to 0.61 

0.61 to 0.63 

0.62 to 0.64 

0.61 to 0.65 

0.61 to 0.63 

0.56 to 0.60 

-  

0.049 to 0.051 

0.044 to 0.048 

0.042 to 0.048 

0.041 to 0.047 

0.041 to 0.048 

0.043 to 0.049 

0.072 to 0.077 

 

† Predicted EQ5D indices cannot be calculated for model (5). 

‡ Range of Pearson’s correlation coefficient between observed and predicted EQ5D indices, across the three datasets. 

§ Range of mean square error across datasets.   
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Table 3: EQ5D dimensions and AQLQ items: AQLQ items with the expected association in model (5) (p<0.1, bold if across two datasets) 

 
 

dimensions M SC UA PD AD 

R1 29      18             6 12 14 16 29      

R23       6      6 30      6 12 14 16   14 16 18  symptoms 

R123 6 8 30    6 18     6 8 16 29 30   6 8 12 14 16 29 6 14 16 29 

R1 3 5 25 28 31 32 25 31 32    1 2 5 8 25 31 32 1 3 5 11 25 31 3 6   

R23 2 4 25 31   2 3 5 11 25 32 2 3 4 28 31 32  2 4 5    5 31   activities 

R123 25 28 31 32   25 28 31 32   25 28 31 32    11 25 31 32   25 31   

R1             27       27      15 27   

R23                          7 13 27  emotion 

R123 27                         7 13 27  

R1                          26    

R23                          26    environment 

R123                    26      26    
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Table 4: EQ5D dimensions and AQLQ items: AQLQ items with the reverse association in model (5) (p<0.1, bold if across two datasets) 

 
 
 

dimensions M SC UA PD AD 

R1 6 24                  24      10    

R23             10 24            8 10 24  symptoms 

R123 24      14      14 24      22      9 10   

R1 11                         11    

R23       1                   19 32   activities 

R123                          11 19   

R1 13 21                  21          

R23       7      15       7          emotion 

R123 13 21           15 21      21          

R1 17      23      23                 

R23 17      9 23            17          environment 

R123 17 23     9 17 23    17 23      17          
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Figure 1: The performance of model (6) dataset R1 
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Figure 2: The performance of model (4) dataset R1 
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Appendix 1: The EQ5D instrument 

 

Mobility 

No problems in walking about 

Some problems in walking about 

Confined to bed 

Self-Care 

No problems with self-care 

Some problems washing or dressing oneself 

Unable to wash or dress oneself 

Usual Activities (e.g. work, study, housework, family or leisure activities) 

No problems with performing one’s usual activities 

Some problems with performing one’s usual activities 

Unable to perform one’s usual activities 

Pain/Discomfort 

No pain or discomfort 

Moderate pain or discomfort 

Extreme pain or discomfort 

Anxiety/Depression 

Not anxious or depressed 

Moderately anxious or depressed 

Extremely anxious or depressed 

 

A statement with no problems is referred to as level 1, and a statement with inability or extreme 

problem is referred to as level 3, so that for example, health state 21232 means: 
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some problems in walking about, 

no problems washing and dressing oneself, 

some problems with performing one’s usual activities, 

extreme pain or discomfort, and 

moderately anxious or depressed. 

 

This 5-dimension descriptive system can identify 35=243 different health states. 
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Appendix 2: The Asthma Quality of Life Questionnaire (the original individualised version) 

 

[Each of the following questions is followed by a 7-point scale with appropriate labels to do with degrees of 

limitation, or frequency of the problem, etc.  The smaller the level, the more severe.  Items are marked here 

with S (symptoms), A (activities), Em (emotions), En (environment), to represent the 4 domains.] 

 

[A list of 26 activities such as bicycling, dancing, carrying out DIY, doing housework, gardening etc. is first 

given, and respondents are asked to write out “the 5 most important activities in which you have been 

limited by your asthma during the last 2 weeks” on 5 spaces linked to Q1 to Q5.]   

 

A  1-5  How limited  have you been during the last 2 weeks in these activities?   

S  6 How much discomfort or distress have you felt over the last 2 weeks as a result of chest tightness? 

In general, how much of the time during the last 2 weeks did you: 

Em 7 feel concerned about having asthma? 

S 8 feel short of breath as a result of your asthma?       

En  9 experience asthma symptoms as a result of being exposed to cigarette smoke?   

S  10 experience a wheeze in your chest?        

A 11 feel you had to avoid a situation or environment because of cigarette smoke?   

S  12 How much discomfort or distress have you felt over the last 2 weeks as a result of coughing?  

 In general, how much of the time during the last 2 weeks did you: 

Em 13 feel frustrated  as a result of your asthma?       

S  14 experience a feeling of chest heaviness?        

Em 15 feel concerned about the need to use medication for your asthma?    

S  16  feel the need to clear your throat?        

En 17 experience asthma symptoms as a result of being exposed to dust?    

S  18 experience difficulty breathing out  as a result of your asthma?     
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A  19 feel you had to avoid a situation or environment because of dust?    

S  20 wake up in the morning with asthma symptoms?      

Em 21 feel afraid of not having your asthma medication available?     

S  22 feel bothered by heavy breathing?        

En  23 experience asthma symptoms as a result of the weather or air pollution outside?  

S  24 were you woken at night by your asthma?       

A  25 avoid or limit going outside because of the weather or air pollution?    

En 26 experience asthma symptoms as a result of being exposed to strong smells or perfume?   

Em 27 feel afraid of getting out of breath?        

A  28 feel you had to avoid a situation or environment because of strong smells or perfume?  

S  29 has your asthma interfered with getting a good night’s sleep?     

S  30 have a feeling of fighting for air ?        

 How limited have you been during the past 2 weeks? 

A  31 Think of the overall range of activities that you would have liked to have done during the last 2 

weeks.   How much has your range of activities been limited by your asthma?   

A  32 Overall, among all the activities that you have done during the past 2 weeks, how limited have you 

been by your asthma?          

 

 [In the standardised version, the first five items (all of them S) are changed to:] 

 

How limited  have you been during the last 2 weeks in these activities as a result of your asthma? 

1 strenuous activities (such as hurrying, exercising, running up stairs, sports) 

2 moderate activities (such as walking, housework, gardening, shopping, climbing stairs) 

3 social activities (such as talking, playing with pets/children, visiting friends/relatives) 

4 work related activities* (tasks you  have to do at work) 

5 sleeping 

* If you are not employed or self-employed, these should be tasks you have to do most days, for example, 

housework. 
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