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Abstract: A simple model of the organization of atmospheric moist convection by cold out�ows is presented.
The model consists of two layers: a lower layer where instability gradually builds up, and an upper layer
where instability is rapidly released. Its formulation is inspired by Abelian sandpile models: instability and
convection are both represented in terms of particles that are coupled to a lattice grid. An excess of particles
in the lower layer triggers a particle release into the upper (cloud) layer. Particles in the upper layer also
induce particle movement in the lower layer: this reverse coupling represents the e�ect of precipitation and
the associated cold out�ows.
The model shows two behavioral regimes. Activity is scattered when the reverse coupling is weak, but when
it is strong, convection forms cellular patterns. Though this model does not contain a detailed representation
of physical processes in convection, it captures some key dynamical features of precipitating convection seen
in satellite observations and LES studies. These include the formation of open cells, temporal oscillations in
convective intensity, hysteresis, and the e�ect of precipitation on the scale of convection. We argue that an
object-based representation of convection may be able to capture properties of convective organization that
are missing in traditional parameterizations.
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1 Introduction
Satellite images of clouds show a wide variety of patterns, including scattered cumulus convection, open
cells, closed cells and lines. These patterns are important in determining cloud cover, and hence the radia-
tive budget of the atmosphere [e.g. 1]. One of the most prevalent patterns is open cellular convection. Figure
1a shows an example of the quasi-hexagonal cloud patterns which are typical for this type of convection.
These patterns are observed both over land and over the ocean [2, 3], and often occur due to the in�uence
of precipitation, both in cumulus [e.g. 4, 5] and stratocumulus [6] convection. Precipitation locally cools the
subcloud layer air and suppresses convection, but as this cool air spreads out it leads to convergence of warm
and moist air elsewhere.

The relative roles of forced lifting andmoistening by surface �uxes in open cellular convection have been
the topic of a number of previous studies [5, 7–10]. The availability ofmoist, unstable air is certainly important
to create convection at the edge of regions that have been cooled by precipitation (so-called cold out�ows or
cold pools). However, the convection that occurs at the cold pool edges is mainly distinct from other cumulus
clouds in the same domain because a) it is embedded in larger clouds and b) the larger role of dynamical
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(a) (b)

Figure 1: a) Open cellular convection as seen from the International Space Station. Source: Wikimedia commons, public do-
main. Courtesy NASA/JPL-Caltech. b) Pockets of open cells o� the coast of Peru, as seen by Moderate Resolution Imaging Spec-
troradiometer (MODIS) on NASA’s Aqua satellite. Source: Wikimedia commons, public domain. Courtesy: Je� Schmaltz, NASA
Earth Observatory.

lifting [5, 10], which is driven by convergence of boundary layer air into certain regions of the subcloud layer
due to the spreading of cold pools.

Open cellular convection shows a wide range of interesting behaviors, including dependence on initial
conditions. A previous study by Heus and Seifert [11] argues that both a regime with and a regime without
cold pool organization can be found in cumulus simulations with the same large-scale forcings, but di�erent
initial conditions. In the case described in Heus and Seifert, the clouds which generate the precipitation have
a horizontal dimension of a few hundred meters. These clouds are not explicitly resolved by current weather
and regional climate models, and will likely remain underresolved by global climate models for decades to
come. Heus and Seifert also show the di�erences in cumulus size statistics between the open cell and the
unorganized regime: signi�cantly larger clouds appear in the open cell regime.

In stratocumulus convection, pockets of open cells can sometimes also be embedded within areas of
closed cell convection [1, 12, 13]. In this case, both the open and the closed cells showadegree of organization.
Figure 1b shows an example of such a pocket of open cells. These pockets may indicate transitions from an
open cell to a closed cell regime and vice versa. A recent study by Feingold et al. [14] discusses the reversibility
of transitions between open and closed cell convection. In this study, it was found that the transition to open
cell convection occurs much more rapidly than the reverse transition. Wang et al. [15] and Yamaguchi and
Feingold [16] argue that the spacing between precipitation generating convective clouds is a key factor in
determining whether or not a transition to open cell convection takes place. They refer to this as a ‘remote
control’ mechanism.

In order to represent such examples of spatial pattern formation in clouds, we may want to explore sim-
pli�ed models of the dynamics of the clouds and the subcloud layer. Several pathways for such an approach
exist.Mapes andNeale [17], for example, introduced a single non-dimensional parameter to account for cloud
organization, whereas Grandpeix and Lafore [18] use a relatively extensivemodel of cold pool dynamics. Sev-
eral approaches try to explicitly model (stochastic) spatial and temporal variations in convection. Such ap-
proaches provide a form of memory, which is absent from traditional parameterizations, but may be needed
to reduce biases in global models. Ongoing work by Martin Willett at the UK Met O�ce highlights this is-
sue. A damped-driven oscillator has been used as a model for temporal variations in convection by Davies
et al. [19], whereas Khouider et al. [20] used a Markov Chain lattice model to represent convective regimes
at the subgrid scale and in particular the temporal transition probabilities between these regimes. Here, the
Markov Chains were only coupled through the mean state of the grid cell. Spatial models have also been
used: Randall and Hu�man [21], for example, introduced a model of so-called cumulus clumping. This is a
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two-dimensional model, where the presence of initially randomly distributed convection in�uences subse-
quent time development through a distance-dependent stabilization/destabilization function. Feingold and
Koren [22] described pattern formation in stratocumulus in terms of spatially coupled oscillators. Building on
earlierworkbyPalmer [23], Shutts [24] useda lattice based (cellular automaton) approach tomodel convective
variability by perturbing the vorticity �eld on the grid scale. Bengtsson et al. [25, 26] used cellular automata
to introduce subgrid-scale variability, and the latter article introduces a representation of (cold pool) life time
to represent the e�ects of out�ows on convection. Cellular automaton models have the advantage that they
can be trained using data from observations or cloud-resolving models, see e.g. Dorrestijn et al. [27].

Here, we will be exploring a di�erent approach, which includes a description of the behavior of individ-
ual convective cells as objects with an associated location and life time. Such an object-based approach has
previously beenused to develop parameterizations of deep and shallow cumulus convection by e.g. Plant and
Craig and Sakradzija et al. [28–30]. In these previous studies, the cloud population was drawn from a distri-
bution, rather than determined dynamically, and there was no horizontal communication except through the
mean state.

The currentwork is distinct fromprevious approaches in that it prognostically determines a cloud sizedis-
tribution in a precipitating regime, and can therefore serve as a simple model for the formation of open cells.
Although themodel only has a limited set of rules that determine its dynamics (it can be coded e�ciently in a
fewhundred lines), it is able to represent anumber of phenomena that are present in cellular convection, such
as quasi-hexagonal cell formation and di�erent cloud sizes in precipitating and non-precipitating regimes. It
is important to stress that this simple model is not a complete parameterization, but rather an exploration of
the types of feedbacks that could be captured in an object-based parameterization. The model could be used
as an ansatz for developing parameterizations, or as a crude way to introduce perturbations of which the
length scale depends on rainfall in a weather or climate model. For models with mostly parameterized con-
vection, current approaches include the cellular automaton approaches mentioned above and perturbation
of physical tendencies [31, 32]: these approaches have been very successful, but it remains hard to represent
di�erent organizationalmodes of convection and long-range interactions. For convection-permittingmodels,
introducing perturbations which depend on the boundary layer state is a path that is actively being explored
[e.g. 33].

Other possible applications of our simple model include a testbed for convective-scale data-assimilation
[c.f. 34, 35], or a simple representation of error-growth in precipitating and non-precipitating regimes [36, 37].
In futurework, someof theprocesses couldbe replacedby representations that are closer to the actual physics
of moist convection. In particular, the behavior of clouds could be described bymodels akin to those used for
thermals and plumes in the �uid dynamics literature, and the subcloud layer could include a physical model
of cold pool propagation (e.g. a shallowwatermodel). Here, we aremainly interested in presenting aminimal
model and showing it captures some key dynamical properties.

A python version of this model, using the scipy, matplotlib and pyqtgraph libraries, is freely available
on gitlab (https://gitlab.com/sboeing/opencell, this version also contains some more recent work on linear
organization in sheared convection).

2 Model description

2.1 Convective life cycle

The model consists of a lower layer (indicated with subscript low, subcloud) and an upper layer (subscript
upp, cloud/rain). Both layers contain particles, which represent air that is becoming unstable with respect
to moist convection (lower layer) or undergoing moist convection (upper layer). In order to determine when
convection is released, the particles are coupled to a doubly-periodic grid of square cells with dimensions Nx
and Ny in both layers. The cell edges are de�ned to have non-dimensional length 1. Particle velocities (to be
introduced later) will be non-dimensionalized by time step length.
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Particles are initiated in the lower layer. This represents the e�ects of radiative cooling and surface �uxes
in gradually increasing moist convective instability. We do this by randomly drawing two real numbers from
a uniform distribution, xp ∼ U([0, Nx]) and yp ∼ U([0, Ny]), that indicate where a particle is initially placed.
The number of particles to be seeded in each time step is drawn from a Poisson distribution with mean
rseedNxNy, where rseed is the average number of particles drawn per grid box per time step. Besides the
random location of particle initiation, the model is deterministic. If the instability in a lower layer grid cell
becomes too large, i.e. if the cell contains a number of particles larger than some critical threshold nc, parti-
cles are moved to the upper layer. In atmospheric terms, this corresponds to convective initiation, either by
dynamical e�ects or because the level of free convection has been reached.

For the purely non-precipitating regime, we use an approach similar to an Abelian sandpile model in-
troduced by Bak et al. [38, hereafter BTW], which is an existing model for representing phenomena with
self-organized criticality. Such phenomena, which include earthquakes and certain types of avalanches, are
characterized by a distribution of event magnitude which is a power-law over a certain range [e.g. 39]. It has
been found in a number of studies that atmospheric convection also exhibits certain characteristics of self-
organized criticality [e.g 40–42, the last of these studies also shows thermodynamic control in a way similar
to homeostasis may be important], and it has been suggested that a sandpile model or alternatively a so-
called Bak-Sneppen model [43] could be used as an analogue for convection. The current work is inspired by
sandpile models, but also includes the e�ects of organization of convection by cold pools on the cloud size
distribution. Though small cumulus cloud sizes and convective cluster sizes may follow such power-law scal-
ing [11, 44–46], distributions of updraft mass-�uxes in cumulus convection seem to correspond better to an
exponential or (mixed) Weibull distribution [29, 47, 48]. The model that develops here di�ers from the BTW
sandpile model in some ways, and gives the latter type of distributions for cloud sizes in a regime with no
organization (this may be because of the di�erent way active cells can trigger their neighbors, see below).

We hypothesize a distribution of cloud size arises because cloud formation induces a positive feedback
in the subcloud layer: in particular, the rising air leads to a low pressure below cloud base (Bernoulli suc-
tion), which leads to convergence around the area where the cloud appears and stimulates further ascent
[e.g. 49]. In the BTW sandpile model, the coupling between cells is realized by moving unstable particles to
neighboring grid cells (for that model, nc = 4):

if n(x, y) ≥ 4: (1)
n(x, y)→ n(x, y) − 4
n(x ± 1, y)→ n(x ± 1, y) + 1
n(x, y ± 1)→ n(x, y ± 1) + 1

In our case, the domain is periodic and we would like to remove instability by moving particles to the upper
layer, rather than to neighboring cells. At the same time, we want to keep a coupling which induces con-
vection in neighboring cells. We achieve this by introducing a variable slow which indicates if neighbors are
undergoing convection, and lowering the threshold for instability to a lower value nn if this is the case. A
di�erence to the BTW sandpile model is that a cell cannot ‘receive’ additional instability when two or more
of the cells around it, rather than one, become unstable.

slow(:, :) = 0 (2)

if nlow(x, y) ≥ nc:
nupp(x, y)→ nlow(x, y)
nlow(x, y)→ 0
slow(x ± 1, y)→ 1
slow(x, y ± 1)→ 1
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if (nlow(x, y) ≥ nn) and (slow(x, y) = 1):
nupp(x, y)→ nlow(x, y)
nlow(x, y)→ 0
slow(x ± 1, y)→ 1
slow(x, y ± 1)→ 1

We refer to the transport of particles from the lower to the upper layer in a set of connected (4-connected,
i.e. involving x ± 1, y or x, y ± 1) cells as a trigger event. Multiple such trigger events may take place in the
domain during a single time step. During the simulation, we keep track of the number of particles associated
with each trigger event Mt, and the area (number of grid cells) associated with trigger events At.

The particles are moved to the upper layer and classi�ed as non-precipitating during a time tdelay. The
presence of a non-precipitating phase allows larger clouds to develop without immediately introducing a
negative feedback due to cold pool formation. Subsequently, particles are relabeled as rain, and removed
after a number of time steps tdur. In the current work, the life time of particles in the upper layer is a constant
number of time steps, though it may be physically more realistic to couple life time to cloud size [29]. The
life cycle of particles and the mechanism by which particles are moved to the upper layer are illustrated in
Figure 2.

(a) (b)

Figure 2: a) Schematic of the life cycle of particles in the model. b) Illustration of the way in which trigger events are diagnosed
using thresholds for instability (the darkest cells) and for instability triggered by neighbors (one shade lighter).

2.2 Rain clusters

Once signi�cant precipitation is initiated, a feedback between the cloud layer and the subcloud layer leads to
organization into cellular patterns.We represent this feedback as the divergence of boundary layer instability
away from regions where precipitation occurs.

A rain cluster is a 4-connected set of grid points in the upper layer that have rain particles in them (this
de�nition is re�ned below). In order to determine these clusters, rain particles in the upper layer are counted
on the grid as well: the number of rain particles in each cell is denoted as nrain. Each cluster has a magnitude
M, which is the number of particles in it, an area A and perimeter p (the number of cell edges at the border
of the cluster). Each cluster is also associated with a center of mass of particle locations. In determining this
center of mass, we use a mean of circular quantities to take into account the periodic boundary conditions.

The cloudpatterns that develop in these simulationsmay consist of hexagonal cells that are connectedvia
their edges, which would lead to very large detected cluster size. In order to identify the individual clusters of
precipitation in such a pattern, the clustering algorithm looks at the relation between area A and perimeter
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p. Starting from a seed cell (which are evaluated in the order in which upper layer particles appeared on
the grid), clusters are grown using a �ood �ll algorithm (this is also known as a paint-bucket �ll, in this
algorithm clusters of 4-connected points are determined). A bu�er is kept with the cells added during the
previous iteration, which initially contains the seed cell. During each iteration the cells neighboring those
in the bu�er are added, provided these new cells hold precipitating particles. At the start of each iteration,
an additional criterion p < 4c

√
A, with c a scaling parameter is checked in order to continue (c = 1 would

correspond to square cells, we use c = 5). This prevents elongated structures from appearing as a single rain
cluster.

2.3 Precipitation feedbacks

The key feedback that needs to be captured is that the presence of precipitation locally suppresses convection
in the sub-cloud layer, but leads to convergence and enhanced precipitation elsewhere. This is achieved by
adding a velocity to the lower layer particles which moves them away from the precipitating convection. As
a consequence, the release of instability is forced to occur over a small part of the domain. The velocity with
which the particles move away from a rain cloud is given by a function f which operates on the vector ~r
between the rain cluster center of mass and the particle and the magnitude of the rain cluster M.

~v = f (~r,M) (3)

Froman implementationperspective, the crucial property f has tohave is that it is isotropic. The following
implementation is used in the results we discuss:

if (M > m): (4)

~v = α
√
M − m
|~r| + d

~r
|~r|

Here, α is a scaling constant,m is theminimum size of a rain cloud and d serves to limit themaximumve-
locity. Theappearanceof a square root in thenumerator is inspiredby scaling laws for gravity currents, but the
formulation could be re�ned using theoretical results [50–52]. For simplicity and computational e�ciency,
only the rain cluster that corresponds to the smallest value of theweighted distancew = (|~r|+d)/

√
M − m acts

on each particle, taking into account the periodicity of the domain (wmonotonically increaseswith distance).
This approach has been inspired by earlier work in computer-aided architecture [53].

(a) (b)

Figure 3: Illustration of the mechanisms by which a) convergence of air due to clouds acts on the lower layer, which leads to b)
triggering of new convective cells.

Particles tend to gather in regions of strong convergence, and form structures which resemble Voronoi
cells. An illustration of thismechanism and how it leads to triggering is given in Figure 3. As particlesmove in
the course of a time step, the rain cluster that corresponds to the smallest wmay change during the time step
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and there is some sensitivity to time step length. This can be noticed in e.g. the width of lines where particles
converge, which is narrower for smaller time steps. In order to obtain narrow convergence lines, without
increasing the computational cost by too much, we integrate particle movement with time steps which are
smaller than those used in the main procedure and have decreasing length (0.4, 0.3, 0.2 and 0.1 ∆t, where ∆t
is the full time-step length). For each of these time substeps and for each of the particles, we solve for its �nal
position by integrating equation 4 over the substep. For the simpli�ed case of a particle at x > 0moving away
from a cloud at x = 0 in one dimension, the solution after a time δt is:

x(t0 + δt) =
√
2α
√
M − mδt + (x(t0) + d)2 − d (5)

Due to this approach, a small value for d can be chosen without introducing large numerical errors. This
completes the description of the model. An overview of the parameters and the values we used for these in
our default setup is given in table 1.

2.4 Implementation

In the most straightforward implementation, where the velocity generated by each rain cluster is evaluated
for each particle, the computational cost of the algorithm scales as the product of the number of particles in
the lower layer and the number of rain clusters nlow,domainNclusters. This makes the computation expensive
on large grids. In order to speed up computation, ‘candidate rain clusters’ are �rst computed on an inter-
mediate grid, in the computations here this intermediate grid has dimensions 64 × 64, whereas simulations
are executed on a 640×640 domain. The computational cost is now determined by two factors, �rst the cost
of calculating the candidate clusters on the intermediate grid, which scales with the number of cells on the
intermediate grid and the number of rain clusters, and then second the cost of the step in which the rele-
vant cluster is selected from these candidates. This second step scales as the number of candidate clusters
per intermediate grid cell and the number of particles. For the �rst 1000 time steps of the ‘Low_Threshold’
simulation (see below), for example, the speedup is a factor 20 (the faster version ran in 255 seconds here).

For each intermediate grid cell, we �rst determine an upper bound on w for each rain cluster c, wub,c. In
order to do this, we consider amaximumdistancewithin the intermediate grid cell for each rain cluster. Here,
we use the distance to the grid center and add half a grid cell length in each direction. The minimum of each
of these upper bounds is an upper bound on w for all particles in the intermediate grid cell, and is referred to
as wub (the minimum is used since we consider the smallest weighted distance). Subsequently we determine
a lower bound for each intermediate grid cell and each cluster wlb,c by considering a minimum distance to
the rain cluster within the grid cell, and only retain rain clusters for which wlb,c < wub. Currently, a single
intermediate grid is implemented, but in principle a number of gridswith increasing level of re�nement could
be used to improve e�ciency on large domains.

Figure 4: Illustration of the determination of the maximum (black diamond) and minimal (grey diamond) distance to a rain clus-
ter (grey circle) within an intermediate grid cell (black circle indicates center).
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Table 1: Overview of model parameters and variable names, default values, and related atmospheric phenomena/scales.

Symbol Value Meaning Related scales/phenomena in atmo-
spheric simulations

rseed 0.03 Particle seeding rate Rate of instability creation
nc 4 Number of grid cell particles which trig-

gers convection
Energy needed to overcome CIN

nn 3 Number of grid cell particles which trig-
gers when a neighbor is triggered

Bernoulli suction

tdur 25 Time steps during which divergence in
the lower layer is activated by rain parti-
cles

Rain duration

tdelay 15 Time steps until upper layer particles
are labeled as rain (after triggering)

Lag time for rain formation

α 1.0 Prefactor that determines lower layer
particle propagation speed

Relation between cloud mass-flux and
downdraft propagation speed

Nx, Ny 640 Domain size in grid cells Domain size
c 5 Threshold value in recursive cluster al-

gorithm (see text)
Spacing between cloud cores in linear
convective structures

m 30 Minimum number of rain particles in
precipitating cluster

Minimummass-flux that corresponds to
cold pool formation

tm 1 Time to reach maximum m Regime transitions
d 1 Constant which determines maximal

lower layer particle propagation speed
(see text)

Initial cold pool radius, propagation
speed at origin

xp , yp Particle location Subcloud layer warm air
nlow Grid particle count, lower layer Convergence
nupp Grid particle count, upper layer Clouds
nrain Grid particle count, raining Rain
slow Neighbors state, lower layer Bernoulli suction
M Size of rain cluster (number of particles) Cloud mass-flux
A Size of rain cluster (number of grid cells) Cloud area
p Perimeter of cluster (number of cell

edges at its border)
Cloud perimeter

Mt Size of trigger (particles) Bernoulli suction
At Size of trigger (grid cells) "
~r Distance to rain cluster with maximum

|~v|
Distance to cold pool origin

~v Particle propagation speed Speed of air pushed out by cold pools
w Weighted distance to a rain cluster Inverse velocity, see text

3 Model behavior

3.1 Size distributions, hexagonal cell formation, scale growth

Figure 5 shows the distribution of the size of trigger events (both in terms of At and Mt) in two simulations
without precipitation feedback. These statistics are sampled over 200 time steps (between time step 800 and
1000, there is an initial spin-up of about 100 time steps). The two simulations use the same value for the
threshold for convection triggered by neighbors (nn = 3) but di�erent values for the threshold of convec-
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Table 2: Overview of model settings in di�erent simulations

Simulation name nc nn mend tm Perturb*
Trigger_4_3 4 3 ∞ 1 No
Trigger_6_3 6 3 ∞ 1 No
No_Threshold 4 3 0 1 No
Low_Threshold 4 3 30 1 No
High_Threshold 4 3 48 1 No
Hysteresis 4 3 48 200 No
POCS 4 3 46 1 No
Pert_growth 4 3 30 1 Yes
* A single rain cluster is displaced by 0.01 cell length in the 1000th time step

(a) (b)

(c) (d)

Figure 5: Statistics of the area and magnitude of trigger events in the ‘Trigger_4_3’ (top) and ‘Trigger_6_3’ (bottom) simula-
tions, in which precipitation feedbacks are absent. Note di�erent scales are used for the x-axis.

tion without neighbors (nc = 4 and nc = 6, respectively). Table 1 and table 2 provide more details on the
simulations, these results correspond to the ‘Trigger_4_3’ and ‘Trigger_6_3’ simulations.

The distributions of At appear approximately exponential in both cases, but show some �uctuations at
higher values as the distribution becomes undersampled. There are additional �uctuations in Mt, but these
can also be explained. When nc = 4 and nn = 3, for example, trigger events with a particle count nc + knn,
with k ∈ Z≥0 occur relatively frequently. Other values occur only because multiple particles are added to the
grid during each iteration.

The threshold parameters determine the distribution of trigger events in the lower level, and relatively
high values of nc compared to nn lead to larger clusters. In the current formulation, the control parameters
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nc and nn are integer numbers, but this constraint could be removed in principle, for example by giving each
of the particles a weight drawn from a probability distribution.

(a) (b)

Figure 6: Example of model behavior in the ‘No_Threshold’ simulation a) lower-level particles and rain clusters b) gridded
upper-level rain particle counts (shading) and rain clusters after 1000 time steps. Only part of the domain is shown. Rain clus-
ters are shown as circles with size proportional to M. See Figure 7 for color shading.

We now consider the precipitating model. The case where the minimum rain cluster size m = 0
(‘No_Threshold’ simulation in table 2) is discussed �rst. Figure 6 shows the particle locations in the lower
layer and the rain clusters after 1000 time steps in part of the domain. The rain clusters are numerous but
remain relatively small (in terms of the associated number of grid cells) and the quasi-hexagonal cells that
form in both the upper and the lower layer tend to be small as well.

In the remainder, simulationswith a higher choice of theminimumcluster sizemwill be considered. This
seems the relevant case for understanding atmospheric cold pools, as very small clouds do not create cold
pools on the ground. A choice of higher m makes rain clusters occur less frequently, and enables the �eld to
organize. As there are fewer rain clusters,~r needs to be evaluated fewer times, which increases computation
speed. Figure 7 shows the location of particles as well as rain clusters for the choicem = 30 (‘Low_Threshold’
case) after 1000 time steps. The clusters aremuchbigger in this simulation than in the ‘No_Threshold’ simula-
tion. In Figure 7a, both precipitating and non-precipitating particles in the upper layer are shown. This Figure
shows the location of non-precipitating particles is shiftedwith respect to the precipitating ones: the location
of the rain clusters evolves over time. Figure 7b shows the detected rain clusters, which now widely vary in
scale. In the lower layer, particle numbers are very low in the vicinity of precipitation clusters (Figure 7c) and
the pattern of open cells is largely similar over the entire domain (Figure 7d).

Figure 8 shows the growth of the scale of these cells during the initial phase of the simulation. Cells start
out small, but after some time an equilibrium scale is developed. This scale is determined by the speed at
which particles propagate away from rain clusters.

3.2 Overshoots, meso-scale fluctutations and lags

Figure 9a shows the statistics of gridded particle number during the �rst 400 time steps. It shows the mean
particle numbers in both layers, for the full domain (solid lines) as well as for the smaller domain indicated
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(a) (b)

(c) (d)

Figure 7: Example of model behavior in the ‘Low_Threshold’ simulation (see text/table 2) a) upper-level particles and rain clus-
ters b) upper-level particle counts and rain clusters and c) lower-level particles counts and rain clusters d) lower-level particle
counts and rain clusters after 1000 time steps. Panels a-c show only part of the domain. The square window indicates the sub-
domain on which further statistics are calculated (see text). Only rain clusters with M > m are shown.

in Figure 7 (dashed lines). It also shows the fraction of cells in the lower layer with particles in them (dotted
line). The number of particles in the lower layer initially grows linearly as the number of particles added
per time step, subsequently it overshoots and it settles at a relatively low value, with only a minority of grid
cells containing any particles in the lower layer. At this point, lower layer particles are e�cientlymoved to the
upper layer in the convergence zones, which allows the system to remain in a state with fewer particles. There
is an atmospheric analogy to such initial overshooting behavior: after the onset of cold pools, the subcloud
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(a) (b)

Figure 8: Scale growth in the ‘Low_Threshold’ simulation: lower-level particle counts and rain clusters after a) 100 and b) 400
time steps.

layer dries and cools [see, e.g. Figure 4 in reference 8] and convection is able to sustain itself with a subcloud
layer that is on average colder and drier.

Figure 9b shows the same statistics, but during a later phase of the simulation. The subdomain statistics
now show relatively large temporal �uctuations, similar to those observed in time-series of rain rate in the
presence of cold pools [54]. The particle number in the upper layer clearly follows the particle number in the
lower layer with a lag, which indicates particles that enter the subdomain tend to be locally removed from
the lower layer.

3.3 Hysteresis, pockets of cells

If a high value of m is used, there may be too few and too weak rain clusters to force a transition to open cell
behavior. An example of the model behavior in a simulation with a high value of m (48) is shown in �gure
10a. Although rain events occur, they rarely lead to the onset of convergence zones. However, if the threshold
m is introduced gradually during the initial 200 time steps, an irreversible transition to open cell behavior
takes place. Figure 10b shows the lower layer particle counts and rain clusters after 1000 time steps in a simu-
lation where the value ofm is linearly increased from 0 to 48 over the �rst 200 time steps. Open cell behavior
reinforces itself once it has been initiated, and can persist under conditions where it would otherwise not be
initiated. The open cell regime corresponds to much bigger rain clusters (�gure 11). In both case the tails of
the distributions look exponential, but for the lower values in the organized regime a power law distribution
may be more appropriate (as demonstrated by the the log-log plots in �gure 11). In the precipitating case, the
number of small clouds is higher than expected from an exponential distribution, which may indicate the
distribution is composed of two modes, as in the study by Sakradzija et al. [29].

When a value of m is chosen that is close to the critical value that distinguishes presence or absence of
open cells, initiationmay be relatively rare and large parts of the domainmay transition to open cell behavior
starting from a single point in the domain. This leads to the formation of a pocket of open cells. Figure 10c
shows an example of this behavior (here m=46). This simulation eventually returned to a state without open
cells, which suggests the behavior may be transient. A simulation with slightly lower m, however, continues
to develop into open cell convection. The gradual formation of pockets of open cells only occurs in a small

Brought to you by | University of Leeds
Authenticated

Download Date | 12/15/16 12:08 PM



An object-based model for convective cold pool dynamics | 55

(a)

(b)

Figure 9: Normalized particle counts in the upper and lower layer, and fraction of cells with particles in them in the lower layer
during a) the �rst phase and b) between 1000-1400 time steps in the ‘Low_Threshold’ simulation.

part of the parameter space sampled in our sensitivity experiments. They may, however, also appear in case
the underlying model parameters were to vary slowly in space and time.

3.4 Perturbation growth

As a last example,we showa result froma simulationwhere one of the rain clusters in the upper layer appears
displaced by 0.01 cell length during a single time step. This perturbation is introduced in the calculation of
lower layer velocities, otherwise the simulation is identical to the ‘Low_Threshold’ simulation (note that this
requires the random number generation to be reproducable). This experiment demonstrates the use of the
model as a convective scale laboratory, which could be used to learn about error growth and test convective
scale data assimilation techniques. Figure 12a shows the di�erence in lower layer gridded particle counts
between this perturbed simulation and the ‘Low_Threshold’ simulation 100 time steps after the perturbation
is introduced. The perturbed simulation develops in a di�erent way, with cells initiating in slightly di�erent
positions,whichgives rise to thedouble cell patterns visible in�gure 12a. Theperturbation is initially local but
subsequently spreads over thedomain, andalso thedi�erence inpositionof the cells between the simulations
gradually increases. At a later stage, the cells are no longer simply shifted, but a truly di�erent evolution has
occurred (�gure 12b).

4 Conclusions
A simple model for the behavior of open cellular convection was presented. Both convective destabilization
and convective events were represented by particles. Themodel describes two-way feedbacks between desta-
bilization and convective events. By including an object-based description of convective events, it was pos-
sible to include long-range interactions that are similar to those provided by cold out�ows in atmospheric
convection. The object-based model can reproduce a range of behaviors that have an analogy in convection,
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(a) (b)

(c)

Figure 10: Lower layer gridded particle counts nlow and rain clusters (circles, size proportional to M) in a) the ‘High_Threshold’
simulation after 1000 time steps b) the ‘Hysteresis’ simulation after 1000 time steps c) the ‘POCS’ simulation after 400 time
steps. See text for details.

including scale growth, open cell formation, hysteresis and pockets of open cells. The analogues are not
exact, but the model shows that an object-based approachmay be a good pathway towards including organi-
zation in convective parameterizations. The fact that all these behaviors occur suggests that these result from
the long-range interactions in the system, which con�rms the earlier ‘remote control’ hypothesis of Wang et
al. [15] and Yamaguchi and Feingold [16]. It also suggests these behaviors may be found in a wide range of
regimes.

These results encourage further work into object-based methods. Previous studies have, for example,
used subgrid models based on cellular automata to determine updraft fraction and mass-�ux in a convective
parameterization [26]. A key property of the current approach is that it explicitly predicts the local cloud size
population, which couldmake it useful formodels that use a cloud size distribution, which is currently either
assumed [e.g 28, 55] or prognosed with di�erent approaches like a Lotka-Volterra equation [56]. Care would
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(a) (b)

(c) (d)

Figure 11: Statistics of rain magnitude M in the a) ‘High_Threshold’ and b) ‘Hysteresis’ simulations after 1000 time steps. c,d)
idem, but on a log-log plot. Note di�erent scales are used for the x-axis.

(a) (b)

Figure 12: Di�erence in lower layer gridded particle count between the ‘Low_Threshold’ and perturbed simulation, a) 100 time
steps and b) 300 time steps after the perturbation is introduced. Only part of the domain is shown. Cells appear on slightly
di�erent positions in the two simulations, which leads to the shifted positive and negative di�erences seen here.
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have to be taken that the cloud size statistics that result from the new framework are not too di�erent from
those resulting from previous approaches. The framework presented here lends itself to incorporating more
accurate physical models of updrafts in particular. Bringing in a more physically-based model of downdrafts
that describes both downdraft dynamics and thermodynamics may be more di�cult. Recent studies on the
bulk behavior of downdrafts [52] or shallowwater models could serve as guidance here. Formulating approx-
imate conservation laws for an object-based framework, as well as the interaction between updraft properties
and the near-environment pro�les of temperature,moisture andwindwill also be key to further development
of object-based parameterizations [48].
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