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ABSTRACT

A multiscale method for the Elastohydrodynamic Lubrication (EHLUnef contacts is derived based on the
Heterogeneous Multiscale Methods. Periodicity applies to the topographical featutabrarzat flow, data is
homogenised over a range of variables at a micro-scale and coupled intoesoade modelThis is achieved
using flow factors as calculated from metamogdetsich themselveswlve with the solution procedure. Results
are given for an idealised topography and illustrate significant deviatiomssmooth surface assumptions as
quantified by the flow factors. Improvements in the accuracy aficieeicy with previous work and large
fluctuations due to micro-EHL are also presented. Validation of the multiscale metitiod deterministic
topography is provided demonstrating good accuracy and efficiency.

Keywords: EHL; micro-EHL; Surface Topography; Metamodelling.

1. INTRODUCTION

The Elastohydrodynamic Lubrication (EHL) of line contacts generatespnggsures which result in the
bounding surfaces being separated by a thin lubricanffinSurface topography can be of a similar stalkhe
film thickness and therefore has an effect on the performance tiliblogical system [2For example Etsion
et al. [ showed that surface features can reduce the contacting friction of andaittict and Greenwood and
Johnson [4] demonstrated that transverse waviness caused ripples présdlre distribution®econciling the
disparity in scales between surface topography and the contact regicimabenging computational problem for
which many authors have sought solutio&gviness in EHL has been modelled for example by HookarH8
Venner and Lubrecht [6] who investigated the amplitude reductiontefiet no such general method for
describing the influence of surface topography in EHL as yet edibts.level of discretisation necessary to
successfully solve fully deterministic problems, where both the contgodrr and surface topography are
modelled simultaneously, has led to the development of homogenisationrbadets [7]. In such models
information pertaining to the EHL of a topographical feature is characterisedaowrge of variables and
subsequently coupled into a model for the EHL of the contact regiommdRédy in the lubricant flow and
topographical features ensure that homogenisation of the solutionsedb#dithe smaller scale produces data
which represents the behaviour of the larger scale [8, 9]. Solutidhe 8HL problem which are deterministic
by nature also remain the subjetta significant amount of recent researtf-17].

Patir and Cheng [18] first developed a two-scale model to includefteets of surface topography in
hydrodynamic lubrication known as the flow factors method. Inapsoach the terms of the Reynolds equation,
which describes the lubricant flow in the contact under smooth surfacemsfil9], were multiplied by flow
factors which include the homogenised effects of surface topogr&alin, et al. 20 used flow factors to
develop a homogenisation method for analysing hydrodynamic beaxith periodic roughness which was then
extended to mixed lubricatio]], however Fluid-Structure Interaction (FSI) was not considered. de Kraker, et
al. [22] developed a model based on flow factors to investigate mogecodescriptions of lubricant flow than
the conventional Reynolds equation such as the Navier-Stokes equations, F&tlyasnsidered for the
contacting region and was not examined at the scale of the topographicalsfe@hare are a number of recently
published papers investigating other homogenisation techniques for Bi¢h span a range of applications
including examining the constitutive equations of lubricant flo8},[2avitation [24], non-conformal contact [25
and soft contact [26].

The Heterogeneous Multiscale Methods (HMM) [27] are a set of general teebnidpich allows a problem
to be described over multiple scales, the approach is applicable when thencifferescales is greater than an
order of magnitude and periodicity applies to the geometric and flomrésaof the smaller scale. Gao and
Hewson [28] first developed a framework for EHL and micro-Bbéised on the HMM, a pressure gradient
mass flux relationship was derived based on the homogenisation of periodheEHL simulations which was
subsequently used to solve the larger scale EHL problem. de Boer[28 a@pplied the HMM to the EHL of
tilted-pad bearings where three-dimensional topography and the NaviesSiguations were examined but the
pressures generated did not exceed 8 MPa. This approach coupled thefstegsrablem using Response
Surface Methods (RSM), with periodicity in the topographical featurescangsponding lubricant flow



facilitating the assumptions of the HMMe Boer, et al. 30] furthered the application of RSM to the method and
went on to optimise the surface topography to minimise frictionenctintacting region, and Gao, et &l1]
investigated the role of micro-cavitation using the method. The HMM alseerecently been used to examine
real roughnesi the pressure-driven flow through two surfaces [32] and intwtliie uncertainty of the results
due to the random nature of topography is investigated.

This work develops the HMM approach for EHL [28in application to line contacts, which have not as yet
been investigated using the approach, nonlinearities introduced by iptemity, compressibility, and contact
mechanics are accounted for in the model representing a significanticalmkallenge. Results are presented
for line contacts in which the Hertzian contact pressures reach up to 0Oa36v#Pthe development solution
procedure using RSM to couple the scale of the problem becomifactiigoint of the work. fie EHL problem
is formulated into an equation including flow facttoslescribe the influence of surface topography in the contact
(micro-EHL), and from which the deviation from smooth surfacerapsions is quantified. These flow factors
are calculated as the solution procedure converges using a curvilinear discnetiettiod for selecting the
experiments required.

2. THEORY
2.1 Macro-Scale Model

The macro-scale model considers the EHL of a line contact in which presseratgd in the lubricant causes
deformation of the bounding surfaces, this interaction is fullypl=mlto reach a prescribed load carrying capacity
In this paper the lower surface of the contact is modelled as smoottagrke upper surface is modelled with
topography and curvature, the material of the lower surface is stifiigh than the upper such that only elastic
deformation of the latter is included. For the current model isothermadtogeconditions are specified and the
fluid film is assumed to carry the full load imposed such thadsperity contact or mixed lubrication occuks.
diagram of the macro-scale model for the line contact region is givEg.id.

Upper Surface W/L R,E,v,U
&E_/
y
H,, .
P,p,m Lubricant
Lower Surface 0 )E

Fig. 1- Diagram of the macro-scale EHL model.

2.1.1 Macro-Scale Fluid Flow

The macro-scale fluid flow is based on the Reynolds equatidhdatescription of lubricant transport, flow
factors are included which are used to tune the response to fit data as @eteienhomogenisation of the micro-
scale model. Eqg. (1) is the equation for mass flur the direction of motioi which including the continuity
equationdQ/dX = 0 becomes Eq. (2), the equivalent Reynolds equation for the macravsmddt 33,

P dp
Q=-¢, 1;(](;) H3, ax T @2p(P)UHR, 1)
d[ p(® ,dP] _d
X [@1 n(_P)H?“ d_X] = 12Ud_X [@2p(P)Hy,] 2

whereg,, ¢, are flow factorsP is the macro-scale pressupds the lubricant density is the lubricant viscosity,

H,, is the macro-scale film thickneds,s the entrainment velocity for whidh= (U; + U,)/2 whereU,, U, are

the velocities of the lower and upper surfaces respectizgly(2)is solved according to the boundary conditions:
P(—o) = P() = dP/dX(e) = 0. In the outlet region of the contact the lubricant will cavitate as pressure
sharply reduces to absolute zero, a further constraint is appliedis this effect? < 0, dP/dX = 0. The vapour
phase of the lubricant is not considered, for further work invest@geavitation and application of the HMM for
EHL see Gao, et aB[].

2.1.2 Macro-Scale Film Thickness
Eq. (3) describes the film thickness relationship for the macro-scaleaglthe sum of two terms,
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the firstH represents the film thickness in the contact as calculated from the bagsimetry and macro-scale
deformation and the secoRd/k represents the micro-scale deformation wirgrs the load per unit area akd

is the stiffness per unit area. The film thicknHss calculated for the line contact from Eqg. (4) in which Hertzian
contact mechanics describes the macro-scale deformation of the elastic ody [33
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whereH, is the separation, atlis the radius of curvatur&'’ is the reduced modulus as determined from the
Young’s modulus E and Poisson’s ratio v of the solid contacting bod¢/E’ = (1 — v?)/E. The termP* /k equals

the amount of deformation equivalent to that experienced by a sgrstffness per unit arela under load per
unit areaP”. This deformatioris comparable to that modelled at the micro-scale (see Section 2.2), thé term
thus represents the total film thickness of the macro-scale problem.

2.1.3 Load Per Unit Area

The load per unit are differs from pressur@ as a result of the multiscale approdthis used at the macro-
scale to determine deformation and load, whePeigsused at the macro-scale to solve the fluid flow problem. A
further flow factore, is introduced to relate these variables as given by Eg. (5

P* = 3P (5)

for a given speed and lubricant the flow faciprse,, @5 are homogenised functions of the variaklBgdX, P, H
as given from the micro-scale, see Section 2.2 and SezBoWheneo,, @,, @3 = 1 the multiscale problem
reduces to the case where no topography is considered and sorfexth assumptions apply.

2.1.4 Lubricant Properties
Lubricant compressibility is modelled using the barotropic DowsortHagginson equation, as given by Eg.
(6) [34],

D, + D, P

p(P) = po DerP (6)

wherep, is the ambient density, af), D; are constants. The lubricant viscosity is modelled using the Roelands
equation, the piezoviscous response is described by Eq. (7) [35],

N(P) =ngexp [ln (:—(r)) ((1 + g)z - 1)] (7)

wheren, is the ambient viscosityy, is the reference viscosity, is the reference pressure, ahds the
piezoviscous index. Eqgs. (6) and (7) were fitted for particular lubricemtdrave been chosen here to demonstrate
the performance of the multiscale method with regattie effects of compressibility and piezoviscosity in EHL
line contacts

2.1.5 Load Capacity

Solving Eq(2) for pressure and Eq. (4) for film thickness producessthetion to the macro-scale EHL
problem, a loa@V per unit depth. is required for the contact as described by Ef. (8

w_ ooP*dX 8
== | ®)

this is achieved by varying the separatifyof the contact until the required load is met.

2.1.6 Non-Dimensionalisation



Macro-scale variables are non-dimensionalised as is conventional for EHL fitaestcproblems using the

half-width of the Hertzian contaet= /8WR/E'L and the Hertzian contact pressysg = 2W/maL [33]. The
macro-scale variables are scaled according to Eq. (9), a full descriptibe abn-dimensional form of the
governing equations is given in Appendix A.
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2.2 Micro-Scale Model

The micro-scale model considers the EHL of a subdomain independbetaiintact regiora homogenised
pressure gradiemtP/dX, pressuréP, and film thicknessl from the macro-scale determine the parameters of the
micro-scale model. There is no constraint on the dimension of sn@lemsodel using HMM so long as periodic
conditions apply across all parameters and dimensions [3E],nicro-scale model is considered here as shown
in Fig.2. The micro-scale model employed is 3D in order to demonstratéhleavwumber of degrees of freedom
can be increased from the 2D macro-scale model by the HMM, and lasssideveloped toward representing
surface roughness data obtained experimentally in 3D.

Fig. 2— Diagram of the micro-scale EHL model.

The dimensions of the subdomajnly, 1, for the coordinate directions y, z depend on the separation of
scales in the problem: (ij andl, are required to be at least an order of magnitude or more smallereivaadto-
scale contact region; (ithe micro-scale thicknegds required to be at least an order of magnitude or more larger
thanl,, 1,. Case (i) defines the size of the micro- and macro-scales, and Case (ii$ desi@l thickness for the
micro-scale which represents the stiffness properties required at the snat&o-

The choice of the length scale representing the macro-scale contact region i) Gase important
consideration because this determines the size of applicable micro-scalesdanthihus topographies which
can be investigated. The full length of the contact includes regions whdegestiopography will have little
influence on the lubrication flow, i.e. toward inlet/outlet where the film thickisesaich larger than the size of
topography. Therefore it is applicable to use an argument based on theswgaumding the minimum film
thickness to represent the region where surface topography will havefiaaigimnfluence. Here we assume the
Hertzian contact regioRa to represent the length of the masmale contact region and from which the feasible
size of the micro-scalg can be determined (1) < 0(2a) — 1. This separation in scales is similar to that used
in deriving Reynolds equation, in which the near-parallel assumptidgheofontacting surfaces leads to the
negation of derivatives across the fluid film. The ofiplane depth at the micro-scale is constrained to be an
order of magnitude or more less than the macro-scale,déﬁ;}) < O(L) — 1. By definition of a line contact
the macro-scale depth is considered to be much larger than the lengéghanintacting region, leading toeth
negation of derivatives in this direction. Due to periodicity at the boundaribe micro-scale as the size of the
surface topography is reduced to zero then we arrive at the exact value as degdtibddeynolds equation for
a line contact, and conversely if the size of the surface topograpigreésised then we move further from the
assumption of two near-parallel surfaces in contact.



The thickness of the micro-scale domamepresents a column of solid material which deforms by an amount
equal to that given bastiffness per unit ardaunder a load per unit ar®a. By constraining the geometry such
thatt is greater thaiy, 1, by at least an order of magnitud¥t) > 0(l,, ly) + 1, the column of material can be
assumed to act in the z direction as an equivalent spring of stiffn@ée khickness t is subsequently derived
from the material properties of the solid column in the longitudinal direetiodescribed in Section 2.2.3.

2.2.1 Micro-Scale Fluid Flow

The micro-scale fluid flow is described by Reynolds equaiiotie lower surface of the subdom&gnwhere
0<x<l, 0<y<l, z=0. The governing equations and lubricant properties of the micro-scale model can
take different forms which differ in assumptions from the merale model, such as the Navier-Stokes equations
and shear-thinning behaviour, as investigated by de Boer, et hlif28is work we have chosen to keep the
assumptions the same as the macro-scale model, with the lubricant densitycasdy described by Egs. (6)
and (7) respectively. EqLQ) is the Reynolds equation for lubricant transport in the micro-scale model,

9 [p(p) ;0p] 9 [p(p) 3 2P

a
F = D) a_y] = 12U&[p(p)h] (10)

n(p) 0dx| dy

wherep is the micro-scale pressure, amds the micro-scale film thickness. Eq. (10) includes the additional
leakage term in which gradients in the of#plane directiony must be considered to account for mass
conservation at this scale, this is not modelled in the macro-scale biidefof the line contact and instead the
solution is based on the mass conservation of homogenised soluteiedrby the micro-scale. The solution
to Eq. @0) is achieved by specifying boundary conditions for the micro-saasspre at the extents of the
subdomain. In the direction of motion a quasi-periodic conditiomposedp,, = po, + Ap and in the cross-
flow direction a standard periodic condition is ugg = pg,. The variableAp is the pressure difference over
the subdomain in the direction of motion and is determined fromah®dgenised pressure gradient using Eq.
(1),

d—P = ap 11

dX I

the pressure profile for each set of opposing boundaries will be eqtrad, direction of motion the magnitude is
shifted byAp. These periodic boundary conditions combined with a point constrathe isubdomain for the
pressurep(0,0) = P + sgn Ap - |Ap|/2, satisfy the necessary conditions for the HMM. The following conssraint
are also applied to model the effect of lubricant cavitation in the micro-stalersainp < 0,dp/ dx, dp/ dy =

0. In the case wherB + sgn Ap - |Ap|/2 < 0, the constraint pressure is set to zero. From the periodicity and
constraints specified, if the dimensions of the micro-scale fluid dopal, are reduced to zero the solution
becomes the exact corresponding solution of Reynolds equatithefealues ofiP/dX, P, H specified.

2.2.2 Micro-Scale Film Thickness
Film thicknessn the micro-scale model is described by Eq)(12

h=H+h +w (12)

whereh; is the function describing surface topography, anid the micro-scale deformation in thalirection
The function describing surface topography must be periodic at the estéiméssubdomain in both theandy
coordinate directions, such that,, = hig,, hyg, = hg,. In this workh, is chosen such that the mean value
must be zero, this condition ensures that for the inclusion of any pediesliciption of surface topography the
change in volume over the subdomain is zero.

2.2.3 Micro-Scale Equivalent Spring

Deformation in the micro-scale model is determined from the structurak@nafya column of solid material
representing a spring with stiffness per unit ded@he amount of deformation which this equivalent spring
produces is that required by the macro-scale mBg&t. It is assumed that the solid column thicknegs an
order of magnitude larger than the remaining dimensions and aghsudbngitudinal properties of the solid
material can be used to represent the thickness of material required ing82 t spring of stiffnesk. The
thicknesg is derived according to Eq. (13



(13)

t_M
Tk

whereM = E(1 —v)/(1 + v)(1 — 2v) is the longitudinal modulus of the solid material.

2.2.4 Micro-Scale Structural Mechanics

A 3D linear elastic model is used to determine the deformation of theadent spring, the solid domain is
defined by0 <x <1,,0 <y <I,,H + h; <z <1, such that the topography forms the lower surface of the solid.
The inclusion of topography does not change the volume of the dsmiidin meaning that the magnitude of
deformation of the equivalent spring will be consistent with the assumptidims HMM. The deformation vector
u = (u,v,w) is determined by the solution to Eqs.)1416) [36],

V-6=0 (14)
o = 2ue + Atr(e) (15)
€= %[Vu + (Vu)T] (16)

whereg is the stress tensat s the strain tensor, and= E/2(1 + v) andA = Ev/(1 + v)(1 — 2v) are the shear
modulus and La#s first parameter of the solid material respectively. The boundary conditions retpugelde
the micro-scale structural problem are defibgdhe following, wheren is the normal vector to the surfaeg;, -
ng, = —pg,Ngq.; Ug, = Uq, = Vo, = Vg, = 0; ug, = ug, = vq, =vq, =0;uy = 0. These constraints load
the solid from the lower surface, the sides are all constrained to zerd facdepthez direction, and the upper
surface is fully constrained. As such the material moves as a spring undef hith the stiffness per unit area
is k. The pressure used to load the surface representing topogragksrimided from the micro-scale fluid flow
at the lower surface of the subdomaihe deformatiorw used to calculate the film thickness in Eq. (12) relates
to thez component on the surface representing topography, the sudtrendtions under load are mapped to
the stationary coordinates of the lower surface to provide deformatiothevarea of the micro-scale fluid flow
domain.

Due to fluctuations in pressure in the fluid domain the deformatiovill not be uniformly distributed and as
such the film thickness also varies at the micro-scale, this restits solution moving away from the periodic
assumptions used in defining the micro-scale geometry (see Section Bt Jariation inw over the micro-
scale solid domain can be assumed small enough in comparison tdrigeceprmn deformatio®” /k such that
the resulting deviation from a periodic film thickness is an order of iaor more smaller than the total film
thickness. This assumption holds so long as the separation in scal@atasl with defining the thickness of the
solid column of material such that it is an order of magnitude largerttfe domain length is maintained (see
Section 2.2.3). Therefore the solid column thickness t must be an érdagnitude larger thahy such that the
deformed film thickness is as close to periodic as possible and that theaksfordoes not effect the boundary
conditions of the micro-scale model. For a given definition of sutimegraphy the value of the stiffness per
unit area k is chosen in order to satisfy this criteria alone.

2.2.5 Homogenisation

The micro-scale EHL problem is solved by coupling the solutmrmpressure from Eq.10) with the
deformation from Eqgs. (14) - (16), a quasi-static approach is sal@nthat pressure and deformation are solved
iteratively. In order to couple the micro-scale model with the macro-sofdemiation is homogenised for the
micro-scale subdomain and mapped to the solution at the macro-scalermbgenised micro-scale mass flux
Q' and load per unit arg&’ are determined in the micro-scale fluid domain from Eqgs. (17]X8)despectively,

ly

(4P _1 P ;P 17
Q<&,P,H)—lyf< 12n(p)h o +p(p)Uh>Qy dy (17)
lY Ix
dp 1
"y _ 1 18
p (dX , _l ffpdxdy (18)

and are functions of the variables used to characterise the micradB¢dle P, H. The linex = 0 is chosen to
determine the homogenised mass flux arbitrarily frers 1,. The micro-scale variable' and P*' are
approximated at the macro-scale to divandP* by calculating the flow factore,, @,, @5 in Egs. (1) and (5)
respectively. Studying Eqgs. (17) and (18) reveals that the multisettteod introduces fluctuations in the mass



flux and load per unit aréa the macro-scale model which are functions of the variables solved fis atdhe
These fluctuations are caused by the homogenised micro-EHL eff¢ioe oficro-scale model in which 3D
topography has been introduced.

Further variables are introduced into the moHg}; is the minimum pressurg;,,, is the maximum pressure;
H* is the volume per unit areH,,;, is the minimum film thickness; arid,,., is the maximum film thickness.
Each of these variables are given by Egs. (19)-(23) respectivegrewhe variables followed by dashes are
assessed in the micro-scale domain and are subsequently calculated actbescale using the flow factors
®4_g. Whene = (@4, ..., 9g) = 1 smooth surface assumptions apply, and wiper 1 deviations from the
smooth surface assumptions due to the effects introduced at the mierarscenodelled. It is also possible to
derive variables investigating the fluctuation in other parameters at the snalmand assess them at the macro-
scale, such as viscosity or density. Here we do not look individuatlyeae effects and so they have not be
defined, but it is of note that they can be invedtgusing the multiscale method.

dP
Poin’ (G P H ) = min(®) P = 0P (19)
dP
Pmax, (&' P, H ) = mx?lx(p) l:)max = (PSP (20)
ly Ix
dP 1
H*’(d—X,P,H) = — f hdxdy H* = qgH,, (21)
4P Xy 00
) : (22)
Hmin (&’ P, H) = I’I)’(llyl’l(h) Hpin = @7Hm
dp (23)

I'lmax, (ﬁ' P, H) = mxa;,x(h) Hpax = @gHm

2.3 Flow Factors

To couple the micro- and macro-scale models flow factors were calcukitelRSM in a similar approach
to that derived by de Boer, et alB0]. The Moving Least Squares (MLS) method is used to craate
multidimensional metamodelf the macro-scale variables= (dP/dX, P,H) for each of the flow factorg.
Underlying the calculation of flow factors described here was that the mideoraodel can onlye assessed
over a range of predetermined experiments for the variabl@sd the corresponding responses of the micro-
scale model constructedhis is the metamodel building stage in which a Design of Experiments (BQ&gd
to choose the set of micro-scale models to include over the range of vanabthe data subsequently collected.

2.3.1 Moving Least Squares

Egs. (1), (3), (19)-(23) show that for each output varidi@elbw factors are each written as the coefficients
terms in a series summation, where the terms on the right-handidiue equations are only functions of the
variablesx multiplied by the corresponding flow factogs It follows that after the metamodel building stage
can be obtained kyregression type analysis of the known experiments and corresgpandput data using these
equations as basis functions

MLS is a form of least squares regression where the coefficients of the semmation do not remain
constant but are instead functions of the space in which the output iedspessp (x). In MLS a decay function
is assigned to weight the influence of terms in the regressaysis) associated with the weighting is a parameter
6 known as the closeness of fit. Typically a Gaussian decay fangéised on the Euclidean distance between
known experiments and the assessment location is used for the wemghtdescribed by Eq. (24),

P;(x) = exp(—0r?),i=1,..,N (24)

wherer? is the squared normalised Euclidean distance betwlgeith known experiment and assessment
locationx, andN is the number of known experiments. The normalised Euclidetandésis obtained from Eq.

(25),

j=D
r2(x) = Z()—(i,j —%) (25)
=1



whereD = 3is the number of dimensions ®fZ; is the normalised j’th component dimension of X, andx;;; is the
normalised j’th component dimension of x for the i’th known experiment. The normalisation for each of the

component dimensions &fis calculatedoy: [x;;, %;] = ([xi,]-,xi] - m_in(xi_j)) / (max(xi‘j) - m_in(xi_j)).
1 1 1
The MLS metamodel for the mass flQxto give the flow factorg; ande, in Eq. (1) is determined by Egs.
(26)— (29),

Ay — bl =0 , (26)
p(R) Pr\* /dP P

W ) (B A P L0 27

O (Hl += ) (q). 45z = ~wpu <H + ) @7)

Y1 = P1uY2 = P2 (28)

b; = ;iQ;’ (29)

whereA is the weighted matrix of term¥, is the weighted vector of responses, ang the vector of MLS
coefficients. Eqg. (26) is solved by minimising the sum afasgd errors in the over-determined system of
equations, this leads to the value of the MLS coefficigntghose components are the flow factors in Eq. (1),
namelyp; andg,. The remaining flow factors can be calculated by generating MLS baseachouls for Egs.
(5), (19) - (23) using the same formulation of Eqgs. 26)9) for Eq. (1) as described in this subsection.

2.3.2 Closeness of Fit

The closeness of fit parametecontrols the rate of decay of the weights in the MLS metamdlgierefore
provides a method for calibrating the metamodel to reduce the error bethegrediction and known
experiments [37]. Whef = 0 all weights are unity and MLS reduces to the least squares prablémyg case
the coefficients do not change as functions of the variablés 6 — oo the influence of known experiments
reduces to zero and the metamodel does not provide a response anywhedermiheofx.

The value oB must be determined for the metamodel, this is calibrated to produce st Ewor at known
experiments when they are and are not included in the building prexrseud/approaches for this procedure such
as k-fold or leave-one-out cross-validation, see Loweth et al. R¥].the calibrated value &f the MLS
metamodel provides the minimum error between the approximationnawehlexperiments. Once this is known
the coefficients for each metamodel can be determined as functions ofuhearnpblesg = @(dP/dX, P, H),
thus providing the method of flow factors for the multiscale approach

2.3.3 Design of Experiments

The flow factorap = @(dP/dX, P, H) are calculated from MLS metamodels of homogenised micro-scale data
which are updated as the macro-scale solution procedure progress&edser 3.1), each time a pressure
distribution is obtained an additional check is made to the DOE. This check aetermtiether more experiments
are needed within the known set in order to accurately describe the flove ferctbe current region of interest.

At any given time in the solution procedure the distributions ofitireogenised variables= (dP/dX, P, H)
describe a curve within the design space of the componexrisfdhis curve is far enough away from the set of
known experiments then the additional experiments are added to the DQReaswresponding micro-scale
models assessed. In the case of the first check when no vaisies éte DOE, the entire curve is added. The
curve is described by Eq. (BO

j=D

COEDYCHS (30)

j=1

wheres is the curve length. The curve is divided into 50 discrete points wainicbvenly spaced alosgand the
normalised distance to all known experiments determined, if this distagrater than 1 % then the requirement
for adding experiments is satisfied. The DOE used therefore evolvesheittolution based on a curvilinear
discretisation method.

2.3.4 Metamodel Calibration

After adding experiments to the DOE the MLS metamodels must be calibratecbbabednewly obtained
micro-scale data, if no values are added then no further calibration is redusise®-one-out Cross Validation
[37] was used in order to determine the closeness @fféit each of the metamodels, in this method a ran@e of
is chosen and the minimum error between the metamodel prediction@and &xperiments found over this range.
The error is given by removing each set of values in the DOE iranharbuilding the metamodel based on the



reduced sets. The difference between the metamodel prediction and knoevatwhle removed set are averaged
over all sets. A range @ < 6 < 2000 was found to be sufficient to find a minimum value of the eiwpall
metamodels investigated. Ongés calibrated for all metamodels the flow factors are determined as functions of
the homogenised variableg = @(x) and used in the macro-scale solution procedure, the calibration for the
metamodel ofP* is undertaken first because this parameter is used in the definitiormef @bthe other
metamodels.

3. METHODS AND MATERIALS
3.1 Macro-Scale EHL Solution Procedure
3.1.1 Smooth Surface Assumptions

In order to obtain solutions to the macro-scale problem under Bnsootace assumptiond, = 0, an
operating load per unit depWi/L was specified and the flow factors setg@o= 1. The load per unit depth wa
obtained by solving Eqgs. (2) and (4) together for the pressuriarntlickness at a given value of the separation
H, and subsequently incrementing this parameter until the required vaNid.ofias reached (Eg. B At each
increment an initial value for the pressure distributi@s needed which takes the solution from the previous step,
for the first step a separationldf = 0.5 um was chosen and the initial values for the pressure distribution take
the Hertz distributiorP, over the domain, see E@®1). The size of the increment 8, was chosen aaH, =
—0.05 um, once the load reachedhs greater thaiv/L a method of bisectomas used to achieve the required
separation. The EHL line contasts specified from the half-width of the Herztian contact-da < X < 2a
which was chosen to represent a large enough space for the contacting regitionSdor the macro-scale
pressure and film thickness from Eqgs. (2) and (4) were obtained Esiite Elements, the contact regiwas
divided into a number of elements and the equations discretised over thesuldions to the macro-scale EHL
problem were calculated using the software Comsol Multiphysics [38] imotii@&limensional form as described
in Appendix A. The CPU used for this and all remaining calculations Bacbee 3.3 GHz processor with 16 GB
RAM.

P, ={Pn 1_a_2 —a<X<a (31)
0 X<—-a X=a

3.1.2 Micro-Scale Effects

To obtain solutions inclusive of micro-EHL effects the sametismluprocedure for achievin$V/L as
described in Section 3.1.1 was used, the initial separation and pressurerafeogiemooth surface assumptions
at the sam@&V/L or a previously investigated /L inclusive of micro-EHL effectsnlEgs. (2) and (4) the flow
factors became functions of the variables solvedpfer @ (dP/dX, P, H). Two additional steps were required as
a result of the lattei) Convergence of load per unit area and film thickness; and (ii) Cgenee of pressure
with metamodel building. In (i) there is a circular dependency of timetfiicknessH in Eq. (4) with the load per
unit areaP™ as defined in Eq. (5). Therefore an iterative appreashtaken for the value & used when solving
Egs. (2) and (4) together, on each increment the solutiBhvas relaxed by a factor of 0.5 until convergenée
the film thicknesd was reached. In (ii) the metamodels used to determine the flow fagtme generated as the
macro-scale solution progresses which means that the pressure distobtaioed from the solution of Egs. (2)
and (4) in the contact region depends upon the metamodel building jphadditional experiments were added
to the set of known experiments in the DOE then the metamodels will prdifierent results and therefore the
solution procedure must be repeated, using the previous solutitre &sitial values The macro-scale EHL
problem inclusive of micro-scale effeatss also calculated using Comsol Multiphysics [38] by application of
Finite Elements in conjunction with Matlab [39] to give the flow factérélow chart of the macro-scale EHL
solver including flow factors is given in Appendix B.

3.2 Micro-Scale EHL Solution Procedure

Micro-scale EHL solutions were parameterised by the variables of the matrorgseldP/dX, P, H such
that for any combination of these variables and definition of topogtaplalues of variable®’, P*', Pyin', Pmax »
H*', Hpin', @andH . Were given. In order to solve the micro-scale EHL model Eqan@)10) for the pressure
and film thickness respectively were fully coupled with the deformationlaslaged from Eqs. (14} (16) using
a quasi-static approach. Pressure calculated in the fluid domain was mathesbial domain, and deformation
in the solid domain was mapped to the stationary coordinates of theldlumain by linear interpolation. Each of
the fluid and solid problems were solved sequentially until convergenioe préssure distribution was achieved.
The initial value for pressure was setpte= P and the problem was solved by application of Finite Elements to



each of the fluid and solid problem respectively. Comsol Multiphysids§as used to calculate the solutions for
the micro-scale EHL problem.

3.3 Geometry and Operating Conditions
3.3.1 Macro-Scale Conditions

The parameters listed in Table 1 define the operating conditions archhilproperties of the macro-scale
models investigated. Three values of the load cap¥¢itly = 100, 125, 150 kN/m were selected to demonstrate
the response over a range of conditions, these loads represent a lightlyclmatdetlin which good convergence
was achieved. For high loads a more stable solution procedure thasetidtere would be suitable, such Habchi
et al. 0] or Ahmed et al.41], these methods would need to be combined with flow factordinteal here in
order to incorporate micro-EHL effects.

Parameter | Value Unit
Dy 0.59 GPa
D, 1.34 1

E 100 GPa
k 1.333 GPa/um
o 0.198 GPa
R 20 mm
U 1 m/s
Z 0.4486 1

Ny 6.31x10° Pa.s
Mo 1 Pa.s
v 0.3 1

Po 850 kg/m?
W/L 100, 125, 150 kN/m
a 0.215, 0.241, 0.264 | mm
Ph 0.296, 0.331, 0.362 | GPa

Table 1- Macro-scale EHL operating conditions and lubricant properties.

The number of finite elements chosen to discretise the macro-scasndeas 1000, these were evenly-
spaced and were found to produce grid independent results as shBection 4.2.. The elements used in the
macro-scale solution procedure were assigriéar@ler shape functions. The solver tolerances were set%o 10
and computed until this level of convergence was satisfied.

3.3.2 Micro-Scale Conditions

The micro-scale operating conditions and lubricant properties originatettieo macro-scale, however there
are additional definitions required which results from the scale separatidaces topography and stiffness
properties.

The micro-scale model represents a periodically repeating surface topogvhighyis considered to be
constant over the length of the macro-scale contact region, furthemgiaresation of the homogenised variables
with those which control the definition of topography is neededvistigate cases where the periodic topography
changes along the length of the contact region. An idealised surface topagraphsidered as described by Eq.
(32),

o4 21X 2y
h, = 7 [cos( I ) + cos (l—)] (32)

y

wherea is the topography amplitude. The values defining the size of the microssialemain and topography
are listed in Table 2, which show that the scale separation requiremerdd teadtisfy the assumptions of the
HMM are met (See Section 2.2). The micro-scale subdomain size is an ondegrifude or more smaller than
the macro-scale contact region, and the stiffness per unikasednosen from the separation of scales. Wien
= 0 um the topography is zero and smooth surface assumptioys kpe important to note that any given
definition of the shape and size of topography can be used in gl#ue idealised topography investigated so
long as the definition is periodic. For real surfaces the funttiomould be generated from the Fourier analysis
of rough surface data, an idealised surface topography has leekin tisis study to demonstrate the performance
multiscale method developed.



Parameter | Value Dimension
1y 10 pm
ly 10 um
t 100 pm
a 0.1 pm

Table 2- Micro-scale model parameters.

A 2D grid of 500 x 50 (25000 total) evenly-spaced quadrilateral elsmeare used for the fluid computational
domain and a 3D grid of 50 x 10 x 10 (5000 total) evenly-spgaadrahedral elements were used for the solid
computational domain, these resolutions were found to produce grid inéepeadults as demonstrated in
Section 4.11. For both fluid and solid simulations the solver tolerances were s@€tartl the elements assigned
2" order shape functions. The micro-EHL solver reached convergéraeaudifference of 1®was observed in
the pressure distributions obtained from the last two iterations.

4. RESULTS AND DISCUSSIONS
4.1 Micro-Scale EHL Simulations

Micro-scale EHL results are presented to demonstrate: (i) a study of theaselshion; and (ii) an example
of the micro-EHL solutions calculated as part of the macro-scale solutions.

4.1.1 Mesh Resolution

In order to determine the level of discretisation required in the micro-spalatbns a grid convergence test
was performed, in this test the number of elements useldediuid and solid domains was varied parametrically
according to Table 3 and the mass fliixproduced for a specific set of conditions recorded. The resultds giv
for the case wheréP/dX = -32.14 GPa/mmP = 0.5317 GPal = 1.726 um in Fig. 3 and demonstrates that as
the number of elements was increased the valu@’ afonverged to a value of 139 g/(m.s) at the highest
resolution. This resolution was subsequently selected for all micro-seal&sons. The values afP/dX, P, H
chosen represent the conditions at the macro-scdlé for= 125 kN/m at the location whePg,,, is the maximum
value, see Section 4.2.3.

Mesh Resolution | Number of Fluid Elements | Number of Solid Elements
1 100x10 = 1000 30x6x6 = 1080

2 200x20 = 4000 35X7x7=1715

3 300x30= 9000 40x8x8 = 2560

4 400x40= 16000 45x9x9 = 3645

5 500x50 =25000 50x10x10 = 5000

Table 3—- Mesh resolution of the micro-scale domain.

Q' [g/(m*s)]

1.105 : : :
1 2 3 4 5
Mesh Resolution

Fig. 3— Mesh resolution study for the micro-scale simulations.

4.1.2 Micro-EHL



Micro-scale distributions of pressupe film thicknessh, and the deformatiow are presented in Figs.-46

respectively. These distributions correspond to the macro-scale solutiifor 125 kN/m at whiclP,,. is the
maximum value (see Section 4.2), whéhydX =-32.14 GPa/mmpP = 0.5317 GPa;H = 1.726 um. These values
were chosen to demonstrate an example micro-EHL solution used at tleestaler.
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Fig. 4— Contours of micro-scale pressyrén GPa atlP/dX =-32.14 GPa/mmP = 0.5317 GPall = 1.726 pm.
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Fig. 4 shows an example of how pressure varies in the micro-scalensailn. Periodicity of pressure on
opposing boundaries can be observed, with a constant shift in mageitiocdced between the boundaries at
0 andx = 1,. Within the micro-scale domain pressure fluctuates due to the presencegrbfuipy in the definition
of film thickness, such that for this ca®e= 0.6861 GPa which is significantly different to the constraint pressure
P = 0.53L7 GPa. Inspecting Figs. 4 and 5 it is shown that as the fluid isndfieen the inlet through the
constriction where the minimum film thickness is present, there is a corréspdndld up in pressure before
sharply reducing at the outléthe variation in pressure in the micro-scale domain is represented in the macro-
scale in various ways using flow factors. For exampleuantifies by how much load per unit area deviates from
the macro-scale pressure as assumed under smooth surface assumptions

Fluctuation in pressure in the micro-scale causes deformation t@asgmesented in Fig. 6, this variation
(x0.01 um) represents a small proportion of the total deformation magitk®epim) which is consistent with
the assumptions required by the HMM. The variation in deformation isthatlthe shape of topography is not
significantly altered by the presence of topography under the conditieestigated, the variablé™ = 2.230 pm
for this case which is almost identical to the valuglgf= 2.235 um indicating a very small difference between
the smooth surface assumptions and that inclusive of topograpieymia of flow factors this means thpj is
very close to 1 and the presence of topography does not significantlyectenmacro-scale film thickness. In
the case of higher loads than those considered in this work stofamgraphy may be flattened-up, this is not
observed here but the method is also not constrained to this and a$" sarathH,,, will differ. So long as the
variation in deformation over the domain is smaller than the total dafmmrmby an order of magnitude any
amount of localised deformation at the micro-scale can be modelled. Plastinatéda of the surface topography
may also be exhibited under higher loads, the model does not currerstigercthis since the separation in scales
is based on the materials having linear elastic behaviour. Further developmantpléstic deformation can be
considered in the micro-scale model is therefore a requirement for fubuke

4.2 Macro-Scale EHL Simulations

Macro-scale EHL simulation results are presented ieetbategories: (i) a mesh resolution study; (ii)
comparing smooth surface assumptions with results including togograpd (iii) investigating homogenised
micro-scale data at the macro-scale.

4.2.1 Mesh Resolution
A grid convergence study was undertaken to determine the nuindlenaents required in the macro-scale

simulations to produce accurate results. The non-dimensional rasg fvas calculated by parametrically
varying the number of elements used in an example simulation Whare= 125 kN/m and the effects of micro-
EHL were included. The dimensioned response of masQfligxpresented in Fig. 7 and demonstrates that the
value converges to 1.139 g/(m.s) when 1000 elements were idgdumber of elements was therefore used for
all macro-scale simulations as it was shown to give results independbatle¥el of discretisation. The size of
elements required by the macro-scale is larger than that presented for thacaler(see Section 4.1.1). In the
micro-scale topography is present and to capture the effects of theetggomany elements were required,
whereas in the macro-scale the solution is homogenised and the gedoegryot need the same level of
discretisation. The value of the mass flux calculated at the macro-sc@e#b as the micro-scale result shown
in Fig. 3 for the same example simulation, this confirms that thestates are accurately coupled using
metamodelling, see Section 4.3.2.
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Fig. 7— Mesh resolution study for the macro-scale simulations.

4.2.2 Effect of Surface Topography
Figs. 8- 10illustrate the non-dimensional macro-scale presBuard load per unit are@ distributions for

line contacts with and without topography, each of the figures stiosveelationship foW /L = 100, 125, 150
kN/m respectively.
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Fig. 8— Non-dimensional macro-scale pressure and load per unit area distshwutibrand without topography,
W/L =100 kN/m.
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Fig. 9— Non-dimensional macro-scale pressure and load per unit area distsbutibrand without topography,
W/L= 125 kN/m.



pm
.1 pm
0.1 pm| |

(==}

1.5 -1 -0.5 0 05 1 1.5
X
Fig. 10— Non-dimensional macro-scale pressure and load per unit area distshwitiomnd without topography,
W/L= 150 kN/m.

Under smooth surface assumptions, when 0 um and all flow factors are 1, pressBrand load per unit
areaP* are identical whereas in Figs—80 it is shown that when topography is included these parameters differ
significantly. This effect can be attributed to the distribution of pressuthe micro-scale models ustsl
determine the macro-scale solutions, see Section 4.1. At the micro-scalfuetigations in pressure are observed
as the lubricant flows over the surface topography, thus deviating frutls surface assumptions. Higher
pressures are generated at the macro-scale with incrédiglnghis causes larger fluctuations in the micro-scale
pressure due to presence of surface topography and therefore increasevidtion from smooth surface
assumptionsThe load per unit area generated with topography is very similar to thetatgh under smooth
surface assumptions, indicating that in this case the effect of topogdagelynot significantly change the
behaviour of the macro-scale solution.

Corresponding to the pressure and load per unit area distributions shéigs. 8— 10 non-dimensional
macro-scale film thickness,, distributions are presented in Figd.— 13 for the same values &¥/L with and
without topography.
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Fig. 11 — Non-dimensional macro-scale film thickness distributions with andowittopographyWw/L = 100
kN/m.
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Fig. 12 — Non-dimensional macro-scale film thickness distributions with andowittopographyW/L = 125
kN/m.
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Fig. 13 — Non-dimensional macro-scale film thickness distributions with andowittopographyWw/L = 150
kN/m.

Figs.11— 13 show that film thicknesH,, in the contact is not significantly different when topography @ an
is not modelled. This correlates to the similaiityload per unit area observed with and without topography in
Figs. 8- 10. It is also shown that an increas@\iyiL. leads to a decrease in the macro-scale film thickness which
is expected based on the known attributes of line contact problems (ingrieaslrwith decreasing separation).
Overall the macro-scale solution is not significantly changed duefacsuppography in comparison to smooth
surface assumptions under the conditions investigated however béwoaussltiscale solution is homogenised
from the micro-scale, the method allows further investigatiomiofo-EHL effects which cannot be obtained
from smooth surface assumptions alone (see Section 4.2.3).

4.2.3 Micro-EHL
Distributions of the non-dimensional variables for pres8utead per unit areB*, minimum pressuré,,;,,

and maximum pressuly,,, are shown in Figdl4— 16 when topography is included, these show the micro-EHL
effect in the macro-scale EHL solutions over the range of load per units@d€pL. = 100, 125, 150 kKN/m
respectively.
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Fig. 14 — Non-dimensional macro-scale pressure, load per unit area, maximdnmi@mum pressure
distributions aW /L = 100 KN/m.
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Fig. 15 — Non-dimensional macro-scale pressure, load per unit area, maximdnmiammum pressure
distributions aW /L = 125 kN/m.
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Fig. 16 — Non-dimensional macro-scale pressure, load per unit area, maximdnmmi@mum pressure
distributions aWW/L = 150 kN/m.

In Figs.14— 16the homogenised effect of micro-scale presg&ishown for a range of macro-scale solutions,
and for each of the values Wf/L investigated a significant difference between the variables is observedisvhich



attributed the variation of pressure in the micro-scale modeWAs is increased the differences between the
maximum and minimum pressure is increased, in regions whenerélssure and pressure gradient have large
magnitudes a larger difference is observed. In the case Whdre 150 KN/mP,,;,, andP are shown to differ by
up to ~0.5p;,, andP,,,, andP differ by up to ~1.5. The results shown in Fig&4 — 16 are of significant
importance when considering the micro-EHL effect in the contact, itre+scale variation of pressure represents
a large proportion of the corresponding macro-scale contacting pressure.

Figs. 17- 19 present non-dimensional macro-scale distributions for film thiskiijgsand the homogenised
variables of volume per unit arégt, minimum film thicknesd,;,,, and maximum film thickness,,.,. Each
figure represents the same value$pfL. investigated in Figsl4— 16.
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Fig. 17 — Non-dimensional macro-scale film thickness, volume per unit aragimmam and minimum film
thickness distributions &/ /L = 100 kN/m.
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Fig. 18 — Non-dimensional macro-scale film thickness, volume per unit aragimmam and minimum film
thickness distributions &/ /L = 125 kN/m.
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Fig. 19— Non-dimensional macro-scale film thickness, volume per unit aragimmam and minimum film
thickness distributions &7 /L = 150 kN/m.

Figs. 17— 19 show that for all values & /L that there is no significant difference between the macro-scale

distributions of film thicknes#l,,, and volume per unit ardér, this implies that the average film thickness of the
micro-scale model is equivalent to that at the macro-scale. It is also ghatvihe minimum film thickness

Hpin @and maximum film thicknes$l,,,, distributions follow trends similar to that of the macro-scale film
thickness but where the magnitudes are shifted by constant values. iBlviisations represent the bounds of the
film thickness which includes the definition of surface topograplogletled at the micro-scale and are of
+aR/2a? in value respectively. These results combined indicate that the shape of topaogrtighmicro-scale
model is not significantly changed under load and that the stiffapessented by the micro-scale is equal to that
represented at the macro-scale. This effect relates to the micro-scale deforrstitiontidn shown for an
example case in Fig. 6, where the variation in deformation over the mideogsraain is significantly smaller
than the total deformation magnitude. Under higher loads than obsenedsigeificant deviation of the film

thickness at the micro-scale will cause deviatioH ofvith H,,, whereby the surface topography may be flattened
Note that this is not a limitation on the method so long as the separationeis associated with the material
properties of the spring column are maintained.

4.3 Metamodelling

Results relating to metamodelling are divided into: (i) performance dd@ie andMLS metamodels; (ii)
comparison of macro-scale and micro-scale data; andfianalysis of flow factors in the macro-scale EHL
solutions.

4.3.1DOE and MLS

For each of the values ®f/L investigated at the macro-scale the size and number of points adde®@g&he
used in calculating the flow factors are given in Table 4, also shoathe closeness of fit parameterfor the
MLS metamodels of§ andP*.

W/L Final Previous Points added| 8 for Q MLS | 6 for P* MLS
[kKN/m] | DOE size | DOE size | to DOE metamodel metamodel
100 202 50 152 366 1001

125 29 202 97 555 1588

150 430 29 131 1074 1714

Table 4- DOE and MLS metamodel parameters.

Table 4 shows that in order to provide macro-scale solutions at a @iye a number of micro-scale
experiments are required, this number is determined during th#osoprocedure based on the curvilinear
discretisation method. Where the macro-scale solution deviates furthethieoimitial values used mofe@OE
points are needed, for example 1B®E points are added to the initial 50 in order to relate the smooth surface
solution to that inclusive of topographyt/L = 100 kN/m, whereas onB7 relateto the W/L = 100 kN/m to



the W/L = 125 kN/m case because the pressure distributions are initially closdretogdte evolution of the
closeness of fit calibration parameter for the MLS metamoddjsanfdP* shows that as more values are added
to theDOE a larger value o is producedA larger6 will lead to more local data fitting of the MLS metamodels,
implying that as more values are added toDi@E the metamodel prediction deviates further from the least
squares approximation. This deviation represents a change in the bebatheysarameters from the underlying
basis functions of the MLS metamodels, which themselves describe the behanitex smooth surface
assumptions.

The curvilinear DOE approach which was generated as the macro-sctitmgmacedure progressed is the
main difference between this method and that of de Boer et al. [B&} wequired 200 micro-scale simulations
to be calculated before the macrotesmulation could be started. This caused complexity in determining which
experiments to choose and where to place them in the design spateastice results generated were as accurate
as possible, the optimum Latin hypercube employed satisfied this argowerthe entire design space. This
space contained many micro-scale simulations which were far from thesvaded during the macro-scale
solution procedure, these experiments were therefore never ustxltiadocal data fitting nature of MLS, i.e.
influence diminishing with distance from assessment location.ritrast the curvilinear DOE used in this work
only adds micro-scale experiments which are close to the current macroedatigrsand as such all have an
influence via the metamodel. The DOE building presented in this work isfahera more efficient procedure
than that of de Boer et al. [29] since only useful experimentsdated without increasing the size beyond 200 by
a large margin (up to 430 in the last case wih 4dded from the initial solution), this also corresponds to an
increase in the metamodel accuracy (see Section 4.3.2).

4.3.2 Metamodel Performance

A comparison of the dimensioned variables calculated using flow fatttite macro-scal®(P*, etc.) with
the exact corresponding micro-scale solutia@'s K*', etc.) is presented in Table 5. Three locations along the
length of the contact region are chosen for the case Whigke= 125 kN/m. These locations correspond to: (i)
the centre of the contact; (ii) the maximum locatio®Qf, in the contact; and (iii) the location of the minimum
film thicknessH,, in the contact.

dP/dX P H Q P* Pmin Pmax H* Hmin Hmax

[GPa/mm] | [GPa] | [um] [9/(m*s)] | [GPa] | [GPa] | [GPa] | [um] [um] [um]
macro-

1.26 0.4701 | 1.945 scale 1.139 0.4739 | 0.4587 | 0.4984 | 2.301 2255 2.352
% error
micro- 0.0 0.056 0.1034 | -0.109 | 0.005 -0.030 | -0.004
scale
macro-

-32.14 0.5317 | 1.726 scale 1.139 0.6661 | 0.38L5 | 0.9461 | 2.230 2.184 2281
% error
micro- 0110 -0.021 | 0.066 -0.107 | 0.007 -0.052 | 0.087
scale
macro-

-1.49 0.0574 | 1.944 1.139 0.0691 | 0.0526| 0.0653 | 1.988 1933 2.039

scale
% error
micro- -0.065 0.031 | -0.108 | 0.097 | -0.015 | 0.040 -0.022
scale

Table 5- Comparison of variables calculated at the macro- and micro-scales.

The errors shown in Table 5 indicate that the MLS metamodel predictionsrgr@ccurate over the length of
the contact region, with the maximum discrepancy in the variables acrossedht 0.11 %. Table 5 therefore
shows that the homogenised mastale results truly represent the micro-scale variables and that the DOE used
effectively chooses the micro-scale models needed for the MLS metamodels. Thef Es@lracy shown in
Table 3 means that the results are an asfleragnitude more accurate than those generated by de Boer €} al. [29
who showed errors of up to 1% between the metamodel predicti@xaadcorresponding micro-scale solutions.

4.3.3 Flow Factors

Distributions of the flow factor®,, ¢,, @5 used in determining the macro-scale parame@easdP* are
presented in FigR0— 22 for the case where topography is considered, these relate to a Wltie0fLl25 kN/m
which is chosen to demonstrate how the flow factors vary in thiacioregion.
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Fig. 20— Flow factore, distribution,W/L= 125 kN/m.

1.03

0.99 - 1

0.98 . . . . .
-1.5 -1 -0.5 0 0.5 1 1.5

X
Fig. 21— Flow factore, distribution,W/L= 125 kN/m.
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Fig. 22— Flow factor; distribution,W/L= 125 kN/m.

Figs.20—- 22 show that in both the inlet and outlet regions of the contact that thevesignificant difference
between smooth surface assumptions and those inclusive ofrappggbecause the flow factors are
approximately equal to 1. This is attributed to large values of H in thelmmsaghen compared to the size of
topography such that the variations introduced by the micro-scale arst alegligible under these conditions.
Within the region of the contact where significant differences betweentlsrnsodface solutions and those
inclusive of topography are seen, the flow factors quantify the devidttbe terms of the constitutive equations.



Fig. 20 shows that the pressure gradient term of Eq. (1) deviates by up timds3that of the smooth surface
solution, whereas Fi@1 shows that the shear driven term of Eq. (1) deviates up taldytimes from that of
the smooth surface solution. FRR shows that load per unit area can be up to 1.25 times pressure landaes
0.87 times pressure, which shows the significance of the diffebetaeen the two parameters. The deviations
from the smooth surface solutions exhibited in F&fs- 22 are nonlinear functions of the variabt#/dX, P, H,
these distributions are non-trivial such that in order to produce thenmultiscale method and subsequent
metamodel approach described are required. The shape of the flow fattinutibes are complex and
significantly change in the region of the contact where the film thiskHes near the minimum value, at which
pressure reaches the maximum value and then rapidly decreases thigerorr€sponds to large negative values
of dP/dX which subsequently cause large variations of prepsarthe micro-scale, thus further deviating from
the smooth surface assumptions.

4.4 Model Validation

Model validation results are separated into two subsections: (i) a studwilhgtihe separation in scales of
the multiscale method and that of a deterministic topography: and (ii)aysisnof a deterministic solution
comparable with that produced using the multiscale method.

4.4.1 Separation of Scales

The size of the multiscale topography investigated in this work sattefieseparation of scales required by
the HMM, O(IX, ly) < 0(2a) — 1. Deterministic topography which is not constrained by this diffezecan be
modelled by assuming a macro-scale waviness in the film thickrees$rsexample Venner and Lubrecht [6].
Using the methodology described in this paper for the macro-scale soluticedpre the EHL problemwas
solved with a deterministic roughness similar to that of Venner and Luklj6deainder steady-state conditions, a
range wavelengths were investigated which decreased to the same sepastides as demonstrated for the
multiscale method in Sections 4.1-4.3. The deterministic topograplefired in the macro-scale problem by
assuming all flow factors are 1 and including the additional tgrin the film thickness equation, whelg is
given in this case by Eq. (33).

(33)

The micro-scale length becomes the macro-scale wavelength and this is given valles df00, 50, 10 pm,

for which only the latter can be modelled by the multiscale method dhe tequired separation of scales. Figs.
23 and 24 show the macro-scale pressure and film thickness distribwbtained for the deterministic
topographies, all operating conditions renegithe same as specified angyL = 100 kN/m. Table 6 collates the
number of elements, time to compute, and memory requirementxfooktthe cases investigated.

3

7')( =100 ym

o5l — —1,=25,m
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Fig. 23 — Non-dimensional macro-scale pressure distribution8VAL = 100 kN/m calculated for a range
deterministic topographies with decreasing wavelengths.
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Fig. 24— Non-dimensional macro-scale film thickness distribution&/ AL = 100 kN/m calculated for a range
deterministic topographies with decreasing wavelengths.

Wavelengthl, | Number of elements| Time to compute | Memory requirements
100 pm 2500 3 hr 56 mins 3.4 GB RAM

50 um 5000 7 hr 17 mins 6.6 GB RAM

10 ym 8000 12 hrs 3 mins 10.3 GB RAM

Table 6— Number of elements, time to compute and memory requirements fange of deterministic
topographies decreasing wavelengths.

Fig. 23 illustrates that a waviness in the macro-scale definition of thetHitkness causes ripples in the
pressure distribution. This correlates well with the observations made dgn@rod and Johnson [4] who
observed such effects when investigating transverse waviness icquaiatts. The shape of the film thicknesses
presented in Fig. 24 show that under the conditions investigated appygs not significantly changed with the
waviness remaining an oscillating function along the length of the cotadhe wavelength is reduced the
frequency of the pressure ripples is increased, this corresponds ¢dutiengending toward a mean value as the
wavelength tends to zero and the smooth surface approximatiotained. This is the same principle upon which
the multiscale method is based whereby the separation in scales and periodi@tynafro-scale model allow
the variables to be homogenised and coupled into the macro-scale.

Table 6 shows that as the wavelength is decreased the numbemenhtsletime to compute and memory
requirements needed to solve the problem all increase. For the casd whé&feum this is comparative to the
separation in scales associated with the multiscale method. The deterministan safuthis wavelength is
computationally challenging to achieve and approaching the hardware limighthiss where the multiscale
method can be useful in investigating the micro-scale effects witheassociated level of discretisation.

4.4.2 Deterministic and Multiscale Topography

Using Eg. (33) as the micro-scale topography definition lgyig = 10 um the results obtained from the
multiscale method were also calculated. The micro-scal®fepiane length was arbitrarily specified gs=
10 um, since there is no change in film thickness with y in Eq. (33 thél be no variation in pressure or film
thickness in the micro-scale. Therefore the choick dbes not change the solution for the multiscale problem
under this definition of topographgs such the choice §f = 10 um is identical to that wherg — o which is
the case for the deterministic solution. The current micro-scale model haseheoped for whei, can be
given a physical value and therefore the results presented consider a m@lexcgaometry than the
deterministic counterpart in this regard. Figs. 25 and 26 respectively sieopwdssure and film thickness
distributions obtained from the multiscale method and for the determinjstigrphy at, = 10 um. Additionally
the multiscale variableg,,, andP,;, have been included in Fig. 25 afgl,, andH,,;, included in Fig. 26. The
number of elements, time to compute, and memory requirements dors&ege of the multiscale solution
procedure are presented in Table 7.
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Fig. 25— Comparison of non-dimensional macro-scale pressure distributie@rsigivmultiscale and deterministic
topographies &v/L = 100 kN/m.
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Fig. 26 — Comparison of non-dimensional macro-scale film thicknessittlisons given by multiscale and
deterministic topographies @t/L = 100 kN/m.

Stage Number of elements| Time to compute | Memory requirements
Macro-scale 1000 1 hr 1 mins 2.1 GB RAM
Micro-scale 30000 9 hr 43 mins 3.7 GB RAM
Metamodelling | ~ 0 hrs 13 mins 1.9 GB RAM

Table 7- Number of elements, time to compute and memory requirememiadbistage of the multiscale solution
procedure

Comparing the multiscale and deterministic topography pressure distributidrig. 25 shows that the
multiscale solution does not exhibit ripples as observed for the determinigtiosol he solution obtained from
the multiscale method does not fluctuate in the same way as the determoiigiensbecause pressure is

homogenised at the micro-scale. Instead the variance in pressure isepiagtf, ., andP,,;, which are seen to
closely follow the bounds of the deterministic solution. That is wherdeterministic solution fluctuates in the
contact the peaks and troughs foll®y,, andP,;, respectively. This implies that the multiscale method is
accurately capturing the macro-scale variation in pressure due to the micreffaai®f surface topography
Corresponding to this Fig. 26 shows that the variaHlgs, andH,,;, form the bounds of the deterministic
topography and the multiscale film thickness provides the meaa fralon which the deterministic topography
oscillates. The multiscale method therefore accurately represents the macro-scale iafifitichickness due
to the addition of surface topography at the micro-scale

Table 7 shows that the total runtime was 10 hrs 57 minsdantlitiscale solution, which compares to 12 hrs
3 mins for the deterministic solution and represents a decrease in the tiomepiote. Only 1000 elements were



required for the multiscale solution compared to 8000 in the determiniiigoso this relates to fact that the
micro-scale effects are homogenised and the surface topography tiasgiive discretisation at the macro-scale.
The largest amount of time spent for the multiscale method wasgunnicro-scale simulations, these required
30000 elements at 3.7 GB RAM and a total of 187 were run for the soprésented. The micro-scale solutions
were calculated quickly with less memory when compared to the macro-skesiensbut many of them were
needed The memory used in the multiscale solution was significantly lesstbieanomparative deterministic
value of 10.3 GB RAM and demonstrates another advantage of the multissthlednin modelling surface
topography. It is of note that the geometry investigated in the micro-scaledsamplex than the deterministic
solution given the physical value assigned to theobytane length scalg, in the case wheilg — oo the micro-
scale solution can be reduced by a dimension and would therefdrerfdegcrease the time to compute and
memory requirements of the multiscale solution.

The deterministic topography investigated in this section remains ars@tkdlinction in terms of Eq. (33)
and compares well with the multiscale solution under the same condition@réividing a validation for the
multiscale method. Real surface roughness data will change the behafvibarresponses generated by this
method and require significantly more computational resource for the-state simulations. By Fourier analysis
of rough surface data a periodic function would be obtained frashwlmparisons with experimental data could
be provided. It is of note that the multiscale approach is capable @llmgdnore complex surface topography
than can be investigated deterministically at the macro-scale (full 3D eftauls)s achieved without the
associated additional computational cost, the multiscale method can also facilitatatdifiestituent governing
equations or material properties at the micro-scale such as the Navier-Stokes equaktieasthinning lubricant
behaviour.

5. CONCLUSION

This paper develops a multiscale method for solving the EHL oftingacts inclusive of surface topography
based on the HMM where data is homogenised across the disparate scakesaditdat Flow factors are
introduced to represent micro-EHL effeatsthhe contacting region, which is similar in approach to the methods
developed by Patir and Cheng [18] for modelling surface topogriapBkL. These flow factors are calculated
usingMLS metamodels based on a curvillinear discretisation methdd@d building.

Results generated using this method shaasgnificant increase in accuracy when compared to other papers
published using the HMM for EHL. The discrepancy in the MLS metamoddigtions were up typically 0.1%
which was an order of magnitude greater than that produceleé Bper, et al. [29] who showed errors of 1%
using a similar method. In order to achieve this accuracip@¥e used in this work selected experiments which
were close to the values assessed during the solution procedure

Under the conditions investigated simulations comparing smooth surfacepéissis to those inclusive of
topography demonstrated that there is a significant deviation when theidattexdelled, where under the
conditions investigated including topography tended to reduce préasuch differs from load per unit area due
to the multiscale approach) and maintain the film thickness. The presesgdaafe topography in the micro-
EHL model caused fluctuations of pressure and film thickness at thés HSuse effects were mapped into the
macro-scale solution and sheathat therevas a significant variation in pressure due to micro-EHL wiltpg
spanning the range of values obsertin thickness was shown not to significantly change due to micio-EH
such that the shape of topography was maintained under load. Howedeehigh loads this may not be the case
and the surface topography may deviate significantly, the multiscale misthotl constrained in this way and
deformation of the surface feature is permitted so long as the separatiateis) of the problem is maintained.

The flow factors calculated when topograptes included demonstrated that thesas a significant deviation
in the pressure driven term of the mass flux relationship when cethftasmooth surface assumptions, whereas
therewas a smaller change in the shear driven term. The pressure drivenvésrop to 4.3 times that of the
smooth case whereas the shear driven veasronly 1.02 times that of the smooth case. Load per unit aredetev
within the range of 1.25 to 0.87 times pressure, showingntpertance of defining the different terms when
modelling micro-EHL effects with this method.

A study was performed comparing a deterministic topography, simitaat@f Venner and Lubrecht [6], to
a multiscale topography under the same conditions. The deterministic appggraused fluctuations in the
pressure and film thickness similar to that observed by Greenawaddlohnson [4], whereas the multiscale
topography did not due to the homogenisation of variables across tee. Sdae pressure ripples and surface
topography modelled under deterministic conditions were shown to be acculeselybed by the variables
spanning the bounds of the micro-scale variations in pressure rarthiftkness using the multiscale method.

Further development of the HMM method for EHL will include develophey micro-scale to model real
roughnesdy deconposng experimental data inta periodic form via Fourier analysis, and by including more
complex rheology and descriptions of lubricant flow such as sheanifigimnd thermal transport. The macro-
scale model will be developed to include a method for achieving highec#épadities such as that derived by



Habchi et al.40] or Ahmed et al.41], the HMM method will also be furthered to include aftplane lubricant
flow in the macro-scale and to model the interaction of two roughdefile surfaces in contact.
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NOMENCLATURE
A MLS weighted matrix of terms
a Half-width of Hertzian contact
b MLS weighted vector of responses
D Number of dimensions
Do, D, Dowson-Higginson compressibility parameters
E Young’s modulus
E’ Reduced modulus
HH Macro-scale film thickness, non-dimensional
H*, H* Volume per unit area, non-dimensional

Maximum film thickness, non-dimensional

Humin, Hmin Minimum film thickness, non-dimensional
Ho, H, Separation, non-dimensional

h Micro-scale film thickness

h, Surface topography

k Stiffness per unit area

Iy, 1y, 1, Micro-scale coordinate lengths

M Longitudinal modulus

N Number of known experiments

n Normal surface vector

P,P Macro-scale pressure, non-dimensional
P*, P* Load per unit area, non-dimensional

P...P Maximum pressure, non-dimensional
max’ * max

Poin Prin Minimum pressure, non-dimensional
dP/dX,dP/dX  Macro-scale pressure gradient, non-dimensional
Py Initial macro-scale pressure, non-dimensional

p Micro-scale pressure

Ph Hertzian contact pressure

Pr Reference pressure



Q,Q Macro-scale mass flux, non-dimensional
R Radius of curvature
r Normalised Euclidean distance
t Equivalent thickness
S Curve length
Entrainment velocity

u,, U, Velocity of lower and upper surfaces
u Micro-scale deformation vector
u,v,w Micro-scale coordinate deformations
W/L Load per unit depth
X, X Macro-scale coordinate direction, non-dimensiona
X Vector of macro-scale variables
X Vector of normalised macro-scale variables
X,Y,Z Micro-scale coordinate directions
7 Piezoviscous index
a Topography amplitude
Y Vector of MLS coefficients
Ap Pressure difference
€ Micro-scale strain tensor
€ Scaling variable
14 Scaling parameter
n1n Lubricant viscosity, hon-dimensional
Nr Reference viscosity
Mo Ambient viscosity
0 Closeness of fit parameter
K Scaling parameter
A Lamé’s first parameter
v Shear modulus
v Poisson’s ratio
0P Lubricant density, non-dimensional
Po Ambient density
c Micro-scale stress tensor
@ Vector of flow factors
©1, -, Qg Flow factors
] MLS weights
ABBREVIATIONS
DOE Design of Experiments
EHL Elastohydrodynamic Lubrication
FSI Fluid-Structure Interaction
MLS Moving Least Squares

RSM Response Surface Methods



APPENDIX A
Eqg. (A1) gives the scaling parameters defined at the macro-scale,

’8WR QW 1 1—?
AT mEL PP T FOE (A1)

these are used for the non-dimensionalisation of the macro-scale variables asdibydis. (A2)-(A4),

— Pr P*' l:)rninr Pmax

P, P*, P, Pmax P (A2)

_—— — _ _ (H,H",Hpin Hpax Hm, Ho)R
H, 1%, Hoyn, Fopa, o, o = e (A3)

poUa? Po No (A4)

By substituting these expressions into the macro-scale governing equatijen(A5)-(A7) are derived for the
mass flux,

~ dP T

Q= —cpleﬁﬂpzp m (A5)

—3
pH, 12n,UR?
Pm 22l ™

“T e pha (A%
d [ d_] d (a7 |
e E—| = —
IX P X X P2pHm (A7)
with the boundary conditions and cavitation constraints written as Egsa(fgA9),
_ _ dpP
P(—o0) = P(0) = —(0) =0 (A8)
(—0) - () dX( )
_ dP
P<0,—=0 (A9)
dx
The non-dimensional density and viscosity are given by Eq4€){¢A11),
5= Do/pn + D;P
Do/pn + P (A10)

N =exp [ln (2—0) ((1 + %ﬁ)z - 1)] (Al1lY

The load per unit area and film thickness are non-dimensionalised acdoréigg. (A12)-(A14),

P* = @sP (A12)
_ PnR
Hy, = H+ @3CP = KaZ (A13)
_2 ©
He 4+ BY 1n[X — X'| dX' — P
- 0+7_Ef((p3 ) n| - | _(P3< (A14)

—00



The load capacity becomes Eq. (Al5

- - T
PdX =—
f(Ps 2

(A15)

and the remaining macro-scale parameters are given by Eqs. (H)-
Pomn = 4P Prax = @sP (A16)
H* = %ﬁ Hpn = 907@ Hpax = (Psm (A17)

Note that the flow factore,_g are not changed during non-dimensionalisation from such that the nshagis
given exhibit the same scaling as their dimensional counterparts.
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Fig. B1- Flow chart of the macro-scale EHL solver including flow factors



