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͚LŽǁ GƌĂĚĞ GůŝŽŵĂ͛͗ AŶ UƉĚĂƚĞ ĨŽƌ ‘ĂĚŝŽůŽŐŝƐƚƐ 

 

Abstract 

With the recent publication of a new World Health Organization (WHO) brain tumour 

classification that reflects increased understanding of glioma tumour genetics there is a 

need for radiologists to understand the changes and their implications for patient 

management. There has also been an increasing trend for adopting earlier, more 

aggressive surgical approaches to けlow grade gliomaげ treatment. We will summarise these 

changes, give some context to the increased role of tumour genetics and discuss the 

associated implications for radiologists of their adoption. We will discuss the earlier and 

more radical surgical resection of low grade gliomas and what it means for imaging 

patients. 

 

Background 

Diffuse ͚low grade gliomas (LGG)͛ are tumours of glial tissue which are generally slow-

growing, but have the potential to undergo anaplastic progression into more aggressive 

tumours. For the best part of the past century glial tumours have been grouped based on 

histological appearance 1,2, and this approach formed the basis of the 2007 World Health 

Organization (WHO) Classification of Tumours of the Central Nervous System.3 This system 

graded diffuse gliomas based on morphological features, reflecting biological behaviour, 

into grades II-IV with grade II being low-grade and grades III and IV being high-grade.3 WHO 

grade II are astrocytomas, oligodendrogliomas, and oligastrocytomas (although see below).4 

The recently published updated WHO classification, however, now contains some significant 

changes in the approach to the classification of LGG (and the higher grade gliomas). In 

particularly, molecular findings are now integral to a full diagnostic categorisation of these 

tumours. 

 

It is important at this point to say something about terminology. TŚĞ ƚĞƌŵ ͚ůŽǁ ŐƌĂĚĞ ŐůŝŽŵĂ 

(LGG)͛ is commonly used in the literature to refer to grade II gliomas as a group in both 

clinical and radiological literature. Whilst this is a useful grouping it should be noted that 

LGG is not used in the WHO classification and is not a final neuropathological diagnosis. 

Furthermore, it should be appreciated that grade II gliomas are not benign tumours, given 
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their infiltrative behaviour and eventual progression to more aggressive grade III and IV 

tumours with an associated poor prognosis. Thus they have a /3 malignancy grading in the 

International Classification for Diseases of Oncology (ICD-0). Grade I tumours, such as 

pilocytic astrocytoma, are also often included in the term LGG. As these are benign and 

considered a separate entity, they are not included within the scope of this article, which is 

therefore restricted to the WHO grade II gliomas. LGG is used within this review to refer to 

WHO grade II gliomas, as this is the terminology currently used in clinical practice and 

widely understood by clinicians and radiologists alike, but it is important to note these 

caveats, and that it should not be considered as a final diagnostic label. 

 

Despite LGG being sometimes indolent in behaviour, it is estimated that approximately 70% 

will undergo anaplastic progression into high-grade tumours within 5-10 years of diagnosis.5 

This progression is unpredictable and varied and consequently the management of LGG has 

been debated for some time. Expectant management has been the norm in many centres 

for stable LGG showing no signs of further anaplastic progression, particularly as LGG tend 

to occur in eloquent brain areas. This has arisen out of the supposition that intervention and 

treatment can cause greater adverse effects than benefits in these patients, as well as the 

conflict of opinions on the benefit of early surgical resection, radiotherapy or chemotherapy 

in improving overall and progression-free survival. Many institutions have therefore 

adopted an imaging-based monitoring policy for LGG, with intervention being initiated when 

changes suggestive of anaplastic progression occur. Radiologists have played a key role, 

monitoring and identifying signs suggestive of anaplastic progression, traditionally by an 

increase in tumour diameter and new areas of contrast enhancement. Research has 

therefore also been focused in this area, aiming to identify non-invasive surveillance 

methods to allow early, yet sensitive and specific, detection of anaplastic progression. A 

variety of magnetic resonance imaging (MRI) based techniques have been explored for this 

purpose, including diffusion-weighted imaging6ʹ14, perfusion weighted imaging6,8,10,15ʹ21 and 

magnetic resonance spectroscopy10,12,16,22ʹ27. However, despite the plethora of research into 

imaging biomarkers of anaplastic progression, the results have been varied with no 

definitive predictive marker being found that has been universally accepted. 

 

Some grade II gliomas rapidly progress within a very short time period, whereas others 
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remain stable for many years. It has therefore become readily apparent that the 2007 WHO 

histological typing and grading system does not always allow accurate prediction of tumour 

behaviour, response to treatment and patient prognosis, despite being based on 

morphological features reflective of biological behaviours. There are several reasons why 

this may be the case. LGG are heterogeneous in nature both within a single tumour resulting 

in potential sampling errors at biopsy and also amongst each other reflecting genetic 

diversity within this group of tumours. There is also suboptimal intra- and inter-observer 

reliability between pathologists28,29. This limits the usefulness of biopsy specimens which, 

combined with the apparent failure of MR imaging to provide a widely accepted and reliable 

biomarker of future tumour behaviour and progression risk, has led to recent research into 

the genetic make-up of LGG. The conflicting evidence reported for the various MR 

biomarkers previously studied as markers of progression is almost certainly attributable to 

the diverse nature of gliomas and differences in molecular status of tumours within the 

same histological grading.  

 

There have been significant advances in the understanding of molecular genetic 

abnormalities in the pathogenesis of brain tumours. The new update to the WHO 

Classification of Tumours of the Central Nervous System, published this year, incorporates 

molecular abnormalities into the neuropathological assessment of gliomas, and as such is a 

departure from the primarily morphological approach used in the previous classification.30 

Key changes in the new classification have been recently reviewed.2 This update has thus 

radically restructured the classification of gliomas, which is now based on integrated 

molecular and histological parameters.2 This review article aims to summarise the recent 

key findings in LGG genetics research and how these findings have shaped the latest 2016 

WHO classification,2 as well as the shift towards more aggressive surgical management. It 

will focus on the changing role of imaging and the impact of this on the radiologist in the 

clinical management of LGG. Potential new imaging-based research areas that may emerge 

as a result of a shift towards using molecular markers in LGG management will also be 

discussed. 

 

New Knowledge Influencing the Changing Practice in LGG Management 

Assessment of Tumour Growth 
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Studies investigating the growth rate of LGG have consistently demonstrated that LGG grow 

continuously prior to anaplastic progression, despite often appearing static on subjective 

visual analysis of interval imaging examinations demonstrating that LGG are actually not 

͚ƐƚĂďůĞ͛ ĂƐ ŝŶŝƚŝĂůůǇ ƚŚŽƵŐŚƚ. 

 

The majority of studies use velocity of diametric expansion (VDE) as a measure of growth 

rate.16,31ʹ37 This is obtained from a series of measurements and calculations: the tumour 

volume is measured using axial images and manual segmentation, the volume (V) is used to 

calculate a mean tumour diameter (MTD, MTD=(2xV)1/3), and finally VDE calculated from 

the linear regression of MTD over time.38 Prior to anaplastic progression LGG have been 

demonstrated to grow linearly at a mean VDE of 4mm/yr.38 Further studies used changes in 

tumour volume. Tumour volumes are measured on fluid attenuation inversion recovery 

(FLAIR) series using semi-automated technique to contour the tumour margin on multiple 

axial images with manual editing as required to increase accuracy (see figure 1).4,6 These 

studies found similar results to those measuring VDE: Rees et al. found in a study of 27 

patients that stable LGG grow at a mean annualised percentage growth rate of 16%;4 while 

Caseiras et al. demonstrated in 34 patients with LGG a mean growth over 6 months of 

8.8ml6 (approximately a 24% increase in volume per year). 

 

Figure 1 here 

 

Tumour growth rate is a prognostic indicator of tumour grade, risk of anaplastic progression 

and overall survival.4,6,16,32,38ʹ41 A VDE greater than 3mm/year correlated with an increased 

risk of anaplastic progression.16 Overall survival of patients was significantly longer in 

patients with a VDE of less than 8mm/year compared with those with a growth rate of 

greater than 8mm/year, as well as increased progression free survival in the slower growth 

rate group.39 There is often an acceleration in growth rate in the six months preceding 

anaplastic progression prior to any clinical deterioration or other imaging features 

suggestive of progression.4,6 Similarly tumour volume at presentation has been 

demonstrated as an independent predictor of time to anaplastic progression.4,6  

 

Despite growth rate and presentation tumour volume being reliable predictors of anaplastic 



 5 

progression and survival based on the handful of studies currently available, there is 

considerable overlap in the tumour volume and growth rates of LGG that remain stable for a 

long period and those that progress rapidly32, suggesting there are other factors important 

for the prediction of progression risk and prognosis. 

 

Molecular Markers 

The emerging understanding of glioma oncogenetics has started to explain the prognostic 

inaccuracies of radiological and clinical biomarkers and the 2007 WHO Classification, whilst 

providing novel, more accurate, molecular biomarkers. 

 

Several molecular markers have been identified in diffuse gliomas (grades II-IV) with 

promising diagnostic and prognostic properties for stratification that could help guide 

clinical decision making, as well as potential predictive properties which may influence 

treatment options. Genome-wide analyses have identified isocitrate dehydrogenase (IDH) 

mutations, 1p19q co-deletion and genetic alterations in tumour protein 53 (TP53), 

telomerase reverse transcriptase (TERT) promoter and alpha thalassaemia/mental 

retardation syndrome X-linked (ATRX) as potential key markers.42 

 

IDH mutations were first discovered in 2008, initially in glioblastoma (GBM)43 and are 

heterozygous somatic point mutations in genes that encode for enzymes involved in the 

Krebs cycle.44 IDH1 mutations are more common than IDH2.44 IDH mutations (1 or 2) occur 

in 65-80% of grade II-III gliomas and secondary GBM (occurring as a result of progression of 

grade II/III tumours), whereas they are uncommon in primary GBM (occurring in 

approximately 5%).44 It has been reported that 75% of astrocytomas, 80% of 

oligodendrogliomas and 80% of oligoastrocytomas display IDH1 mutations.45 It is believed 

that IDH mutations are consistent molecular events which occur early during tumour 

pathogenesis and can therefore often be associated with other mutations,44 most 

commonly TP53 and ATRX in astrocytomas and 1p/19q in oligodendrogliomas.46ʹ48 

 

Gliomas with IDH mutations tend to occur in younger patients, have a predilection for the 

frontal lobes, are larger at diagnosis, are often non-enhancing and have prevalent cystic and 

diffuse components.42,49,50 Despite being larger at presentation, IDH mutations in gliomas 
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are strong independent predictors of improved overall prognosis. Several studies have 

demonstrated an improved median overall survival for IDH-mutated gliomas, compared 

with patients with IDH-wildtype tumours (i.e. without IDH 1 or 2 mutations).51ʹ55 The 

median overall survival for IDH-mutated tumours is reported as approximately 8-8.4 years, 

compared with 1.4-1.7 years in IDH-wildtype tumours.42,52 An improved progression free 

survival has also been shown.54,55Grade II and III IDH-wildtype gliomas have a comparable 

survival to primary glioblastomas and have been suggested to therefore behave 

similarly.42,44,47,53 Interestingly, IDH status has no significant effect on the spontaneous 

growth rate of LGG, despite the tumours often being larger at presentation.35,55 

 

It is not yet clear whether IDH status can predict sensitivity to chemotherapy or 

radiotherapy. A recent phase III trial of radiotherapy versus chemotherapy showed a longer 

time to treatment failure associated with IDH mutations but IDH status was not predictive of 

chemotherapy responsiveness.51 IDH mutation may also prove to be a predictive marker in 

aggressive surgical management, with additional survival benefit demonstrated with IDH ʹ

mutated tumours when surgical resection is extended beyond the enhancing tumour 

margins, however this has only been shown in high-grade gliomas.56 

 

IDH-mutated tumours have been shown to accumulate 2-hydroxyglutarate (2HG) and this 

can be detected non-invasively using magnetic resonance spectroscopy (MRS).57 

Concentrations of 2HG have been demonstrated to vary with tumour activity and increase 

with anaplastic progression, suggesting that 2HG measured by MRS could prove to be an 

accurate non-invasive biomarker in IDH-mutated gliomas.58 However, Chen et al. (2015) 

found in their analysis of 2HG-MRS in 21 patients (blinded to IDH-status) that there was a 

significant false negative rate, most notably in two cases that were negative for 2-HG 

despite progressive disease on conventional MRI.59 This suggests that 2HG cannot currently 

replace tissue diagnosis for determining IDH-status; however further research is needed in 

this area. 

 

On the other hand, 1p/19q codeletion has been recognised for some time as being 

associated with oligodendroglial elements60 and can be seen in both pure and mixed 

oligodendrogliomas.44 There is combined loss of genetic material from the short arm of 
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chromosome 1 and the long arm of chromosome 19, leading to an unbalanced translocation 

and loss of heterozygosity.48 1p/19q codeletion only occurs in the presence of concomitant 

IDH mutations44 and is reported to occur in approximately 80% of oligodendrogliomas.61  

 

The presence of 1p/19q codeletion can aid risk stratification in IDH-mutant gliomas and is 

associated with a significantly longer overall survival. Sabha et al. found that overall survival 

was 97% at 3 years in tumours with codeletion compared with 89.9% in non-codeleted 

tumours.54 Similarly it has been found that having a LGG with a combined 1p/19q codeletion 

and IDH mutation corresponds with a median overall survival of greater than eight years.47 

 

1p/19q codeletion is also associated with an improved response to chemotherapy and 

chemo-radiotherapy as demonstrated in three randomised controlled trials,51,52,62 however 

the mechanism for this is still currently unknown. Furthermore, it has been demonstrated 

that 1p/19q codeletion correlated with a slower growth rate in LGG.33,35 Isolated loss of 1p 

or 19q can also be seen, mainly in astrocytomas, but is not associated with the same degree 

of prognostic benefits as codeletion.48 

 

Other molecular markers which are associated with diffuse gliomas includes TP53, ATRX and 

TERT, however these are less well established. TP53 mutation occurs in 50-60% of 

astrocytomas46,63 and often follows IDH-mutation.42,48,63,64 It also occurs in 

oligodendrogliomas, but is comparatively rare, occurring in 5%.63,65 It is not yet completely 

clear whether TP53 is a reliable prognostic predictor, either independently or in 

combination with other markers. 

 

ATRX is also associated with astrocytic tumours.46,47 It is rare for ATRX mutations to occur 

without concurrent IDH mutations and can be found in 36% of diffuse gliomas46 and 86% of 

IDH-mutated tumours.42 ATRX mutated tumours may represent a subgroup of IDH-mutant 

astrocytomas with a better prognosis as it has been demonstrated that they have a longer 

median time to treatment failure compared with those without the mutation.66 However 

the impact of ATRX mutation on survival and treatment response needs further 

investigation. 
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Mutation in TERT promoter tends to co-occur with 1p/19q codeletion and is therefore 

closely associated with oligodendrogliomas.42,44,67,68 The Cancer Genome Atlas Research 

Network study found that 96% of diffuse gliomas with IDH mutation and 1p/19q codeletion 

also showed TERT promoter mutations, compared with only 4% in tumours with IDH 

mutation but no 1p/19q codeletion.42 Due to the close links between TERT promoter 

mutation and other molecular markers it is unclear what elements of prognostic benefit are 

attributable to TERT status alone. 

 

Figure 2 here 

 

Implications for Neuropathological Classification and Diagnosis 

The new (2016) classification now incorporates molecular genetics and histopathological 

findings into an integrated diagnosis.2,30 The 4-point WHO grading scheme essentially 

remains unchanged, and the first step remains determination of the morphological subtype. 

LGG can be divided into IDH mutant or wild type tumours. Those with ATRX mutation but 

without 1p19q co-deletion are in general astrocytic, whilst oligodendrogliomas are ATRX 

wildtype with 1p19q co-deletion. For the integrated diagnosis, the molecular findings take 

precedence over the morphological appearances in determining whether the tumour should 

be considered oligodendroglioma or astrocytoma in the final report. The implication of this 

is that tumours are defined by the molecular genetics as well as the histological features, 

and that molecular typing allows finer sub-classification of tumour types. Where molecular 

typing cannot be fully assessed, the term NOS (not otherwise specified) is used. The 

oligoastrocytoma remains in the classification as a morphological subtype, but with 

application of molecular subtyping these would be resolved into either astrocytoma or 

oligodendroglioma in the integrated diagnosis. GBM is now classified into Glioblastoma IDH 

mutant or Glioblastoma IDH wildtype (a number of morphological subtypes also remain in 

the classification). 

 

Emerging surgical practice 

Another emergent finding, particularly over the past decade, is that of the benefit of surgical 

resection of LGG, which further refutes the use of expectant management policies. 

Previously it has been argued ƚŚĂƚ ŝŶ ͚ƐƚĂďůĞ͛ LGG ǁŝƚŚ ǁĞůů-controlled symptoms, 
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neurosurgery may cause greater morbidity than benefit due to the risk of secondary long-

term neurological deficits.4 In 2010, Soffietti et al. concluded the evidence for the timing of 

and extent of surgery in LGG to be inconclusive with no randomised trials in this field.63 

However, despite no prospective randomised trials in this area existing, multiple 

prospective observational/cohort and retrospective studies over recent years have 

repeatedly demonstrated increased survival and a reduced risk of anaplastic progression 

with early aggressive resection of LGG compared with biopsy alone/watch and wait 

programmes. 

 

Jakola et al., in their retrospective cohort study of patients with LGG undergoing early 

resection versus biopsy and then watchful waiting in two different centres, demonstrated 

that patients treated with early surgical resection have a better overall survival.69 The 

median overall survival in the biopsy and watchful waiting group was 5.9 years compared 

with an unreached median survival in the early resection group.69 The French Glioma 

Network also concluded from their mixed retrospective and prospective study of 1097 LGG 

that resection gives superior survival compared with stereotactic biopsy, and attribute this 

to a delay in anaplastic progression.70 

 

Several studies have also demonstrated improved survival with increasing extent of 

resection.71ʹ76 Gross total resection or resection of greater than 90% of the tumour volume 

can produce overall 5 years survival rates of 93-97%, compared with 41-84% for less 

extensive resections or biopsy.72,73,75,76 The risk of recurrence and anaplastic progression 

have also been shown by some to improve with aggressive resective treatment.71,73 This 

improvement in survival with extensive resection is also the case for repeat surgery 

following tumour recurrence.74 HŽǁĞǀĞƌ ƚŚŝƐ ŚĂƐŶ͛ƚ ďĞĞŶ ĐŽŶƐŝƐƚĞŶƚůǇ ĚĞŵŽŶƐƚƌĂƚĞĚ, with 

other groups showing no significant differences in progression free survival with gross 

tumour resection versus subtotal resection/biopsy.74,76 Seizure control is also reported to be 

improved by total resection, with more than 90% of patients becoming seizure free or 

having a significant improvement in seizures following surgery for LGG.77  

 

Following the demonstration that tumour cells can extend beyond the visible T2/FLAIR 

abnormality on MRI by up to 20mm37 and the above findings on the benefit of aggressive 
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extent of resection, some have gone on further to suggest that, where posƐŝďůĞ͕ ͚ƐƵƉƌĂ-ƚŽƚĂů͛ 

resections (resecting beyond the MRI visible tumour margin) should be attempted and may 

also reduce the risk of anaplastic progression.78,79  

 

Maximising survival chances by attempting the greatest extent of resection possible is 

obviously important, but only if balanced with no significant detrimental effect on the 

quality of life following aggressive surgery, after all the risk of long term deficit was the 

initial rationale for surveillance of stable LGG. The European Federation of Neurological 

Societies (EFNS) and European Association for Neuro-Oncology (EANO) recommend that 

͚ƐƵƌŐŝĐĂů ƌĞƐĞĐƚŝŽŶ ŝƐ ƚŚĞ ĨŝƌƐƚ ƚƌĞĂƚŵĞŶƚ ŽƉƚŝon, with the goal to maximally resect the 

tumour mass whenever possible, whilst minimising post-ŽƉĞƌĂƚŝǀĞ ŵŽƌďŝĚŝƚǇ͛͘63 The safest 

way to achieve this is by performing an awake craniotomy with intra-operative electrical 

stimulation, resecting according to functional boundaries. This is especially important as 

LGG are frequently located in eloquent areas of brain. In one study intra-operative 

functional brain mapping has been shown to reduce severe permanent neurological deficits 

from 17% to 6.5%, 80 however a recent large scale meta-analysis of 8091 patients from 90 

studies reported permanent deficits in even fewer cases (3.4%).81 The extent of resection is 

also improved with intra-operative mapping, as well as the ability to safely operate within 

eloquent areas.80,81 It has also been shown in a retrospective study of 190 patients that 

adding pre-operative functional MRI (fMRI) or fibre tracking diffusion tensor imaging (DTI) 

to an intra-operative neuro-navigational system can further increase extent of resection.75 

 

This highlights the role of imaging both pre- and post-operatively. With a drive to maximal 

resection as the optimal initial management of LGG, whilst still maintaining a low rate of 

long-term neurological sequelae, pre-operative imaging that clearly identifies anatomic 

structures and tumour boundaries and gives information on functional activity is 

increasingly important in aiding surgical planning. This can be achieved with a variety of 

modalities, including fMRI, PET and DTI.82 However current imaging modalities available are 

not yet as reliable as intra-operative mapping, which is likely to remain the gold standard for 

the time being.83 DTI when compared with intraoperative subcortical language mapping was 

concordant in 81% of cases but negative tractography did not rule out the presence of white 

matter tracks in this area, particularly when invaded by tumour cells.84  
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Due to the infiltrative nature of LGG and the potential for microscopic invasion beyond the 

visible tumour boundary37, it is very unlikely that LGG will be completely resected. Post-

operative imaging is therefore also important. Studies have shown that it is very difficult to 

accurately predict the extent of resection intra-operatively,70,76 which introduces a role for 

intra-operative MRI as this has been shown to improve the extent of resection in gliomas 

when compared with conventional neurosurgery.85 Initial post-operative imaging should be 

performed as early as possible to get an accurate baseline, before post-operative 

inflammation occurs. Haemostatic material used intra-operatively can also cause reactive 

enhancement, restricted diffusion and inflammatory responses.86 Regular longer term post-

operative imaging is also important for follow-up, monitoring for tumour recurrence and 

response to adjuvant chemotherapy or radiotherapy in subtotal tumour resections or where 

genetic make-up indicates the need for adjuvant treatment. 

 

The Changing Role of the Radiologist 

As a result of the above findings, the role of the radiologist in imaging LGG is expected to 

change. Instead of imaging formŝŶŐ ƚŚĞ ŵĂŝŶƐƚĂǇ ĨŽƌ ŵŽŶŝƚŽƌŝŶŐ ŽĨ ƉĂƚŝĞŶƚƐ ǁŝƚŚ ͚ƐƚĂďůĞ͛ 

LGG for signs of anaplastic progression, patients are likely to undergo early aggressive 

surgical resection without prior biopsy to confirm the nature of the tumour. Genetic 

markers have radically changed the categorisation of diffuse gliomas as is reflected in the 

updated 2016 WHO Classification.2 MRI will therefore play a key role in the identification of 

LGG and distinguishing it from other non-neoplastic lesions, especially when the 

abnormality is small. Advanced MRI biomarkers may be developed and in the future provide 

reliable non-invasive methods for accurately determining genetic and molecular make-up of 

gliomas. Exploration is needed into the optimum management for indeterminate lesions, 

the ideal timing for interval imaging and the potential risks in delaying treatment if the 

lesion is later confirmed to be a LGG.  

 

Accurate pre-operative imaging will be required to enable safe surgical planning. However, 

inter-individual variations have been shown to exist in anatomic location of various brain 

functions,65 as well as a suboptimal concordance between DTI and intraoperative language 

mapping.84 The role and accuracy of advanced imaging techniques such as DTI tractography 
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and functional MRI in defining tumour boundaries and infiltration into functional brain 

tissue needs exploring further, but should be available to supplement conventional 

anatomic imaging in surgical planning where believed to be beneficial in reducing the risk of 

long-term neurological deficit. This will complement the existing intra-operative brain 

mapping along with possibly introducing intra-operative MRI where facilities exist. 

Accurately defining the tumour boundary is also important to enable maximal resection. 

Arbizu et al. suggest there may be role for metabolic imaging using 11C-methionine positron 

emission tomography (PET) for distinguishing the margins of LGG from perilesional 

oedema.87 

 

Improved knowledge into pathways of tumour cell migration and infiltration along white 

matter tracts is also important and how this effects appearances on DTI. Following early 

resection and the consequent improved overall survival there will be prolonged follow-up of 

patients and so identifying subtle and new areas of tumour recurrence or progression will 

become the predominant role of the radiologist. Investigation into the optimum timing and 

intervals for follow-up is needed and whether this should be modified according to the 

tumour genetics.  

 

Depending on tumour genetics, patients may undergo chemotherapy and/or radiotherapy 

as well as surgery. This will bring further challenges in the interpretation of post-treatment 

imaging and the identification of recurrence/progression versus pseudo-progression but this 

is outside the scope of this article. 

 

Overall the role of the radiologist will change from one of monitoring for anaplastic 

progression to accurate early identification of LGG, delineation of tumour boundaries and 

facilitating safe aggressive surgical resection along with post-treatment follow-up imaging 

for tumour recurrence. 
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Figure 1 

 

 

 

 

 

Figure 1: Axial FLAIR image with Gadolinium showing contour around the tumour margin 

used to calculate tumour volume. The overall tumour volume is the product of the 

contoured areas on each axial slice, the slice thickness and inter-slice gap. 
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Figure 2. 
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