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Abstract: Tumour heterogeneity refers to the fact that different tumour cells can show distinct
morphological and phenotypic profiles, including cellular morphology, gene expression, metabolism,
motility, proliferation and metastatic potential. This phenomenon occurs both between tumours
(inter-tumour heterogeneity) and within tumours (intra-tumour heterogeneity), and it is caused by
genetic and non-genetic factors. The heterogeneity of cancer cells introduces significant challenges
in using molecular prognostic markers as well as for classifying patients that might benefit from
specific therapies. Thus, research efforts for characterizing heterogeneity would be useful for a better
understanding of the causes and progression of disease. It has been suggested that the study
of heterogeneity within Circulating Tumour Cells (CTCs) could also reflect the full spectrum of
mutations of the disease more accurately than a single biopsy of a primary or metastatic tumour.
In previous years, many high throughput methodologies have raised for the study of heterogeneity
at different levels (i.e., RNA, DNA, protein and epigenetic events). The aim of the current review is to
stress clinical implications of tumour heterogeneity, as well as current available methodologies for
their study, paying specific attention to those able to assess heterogeneity at the single cell level.
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1. Introduction

In oncology, molecular, cellular and architectural variability are frequently referred to with the
term “heterogeneity”, a concept that increases the complexity of the pathogenesis of malignant tumours.
In terms of cell phenotype, cell density or cell location, cell heterogeneity can be observed between
tumours that occur in the same organ and/or between patients. Inter-tumour heterogeneity leads to the
classification of tumour subtypes, which can be distinguished by whether or not their molecular profile
correlate with their morphologies and expression of specific markers. In addition, tissue variation also
occurs within individual tumours (intra-tumour heterogeneity), meaning that tumour cells can have
various functional properties and can express several markers [1,2]. Such heterogeneity is likely to
result in tumours adapting to changes in microenvironmental conditions and/or a tool for changing
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their malignant potential. This in turn will lead to cellular clones with different sets of undetermined
hallmarks [1,3]. Tumour heterogeneity has several key clinical impacts: (i) it has been associated with
acquired drug resistance; and (ii) it limits the precision of histological diagnoses and consequently
reduces the value of a biopsy.

Ideally, tumour heterogeneity should be monitored over time, and more specifically in relation to
therapeutic strategies. However, the invasiveness of biopsies makes it impractical to perform them
frequently. The risk of cell dissemination, the procedures cost, as well as sometimes the existence of
multiple metastases and the time needed must also be taken into consideration. Circulating tumour
cells (CTCs) are a potential surrogate for tissue-based cancer diagnostic and may thus provide the
opportunity for monitoring serial changes in tumour biology. Recent progress has made possible
accurate and reliable quantification and molecular characterization of CTCs [4,5]. The present review
describes different types of heterogeneity, their clinical implications, and techniques currently used to
analyse them.

2. Types of Heterogeneity

2.1. Intra-Tumour Heterogeneity

Intra-tumour heterogeneity was demonstrated by Fidler and Hart more than 30 years ago in
murine models [6]. It refers to the existence of distinct subpopulations of cancer cells within tumours,
within various metastatic sites, and between metastatic sites and primary foci [7]. Furthermore,
intra-tumour heterogeneity applies not only to tumour cells, but also to the components of their
microenvironment [8]. The cancer cell populations detected differ in terms of tumorigenicity, activation
of signalling pathways, evasion from antitumour immunity, induction of senescence, production of
secreted factors, migration, metastasis, angiogenic capacity, genetic make-up, response to anticancer
agents and activation of metabolic pathways [1,9,10]. Intra-tumour diversity is thought to develop
due to either genetic (epigenetic) disorders in tumour cells themselves, or under the influence of the
tumour microenvironment, or in the background of interactions between these factors [11].

Intra-tumour heterogeneity was initially explained by means of the cancer stem-like cell (CSC)
or clonal-evolution models [12] shown in Figure 1. The CSC model is a hierarchical model in which
only CSCs can generate a tumour, based on their self-renewal properties and high proliferative
potential (Figure 1A). In the clonal evolution model, all undifferentiated clonal cells have similar
tumorigenic ability (Figure 1B). These paradigms for tumour propagation exist in human cancer,
and the two models are not mutually exclusive. However, only the CSC model is hierarchical
(Figure 1C). In 1976, Peter. C Nowell described a model for cancer development combining the two
previous models [13]. The result is a mutant cell that initiates a monoclonal disease. This cell exhibited
higher chromosomal instability, leading to the emergence of both new clones and the polyclonal
disease associated with secondary genetic events, strengthening the heterogeneity of the tumour.
Mutant tumour cells with a growth advantage are then selected and expanded, and the cells in the
dominant population have a similar potential for regenerating tumour growth [13]. Nevertheless,
intra-tumour heterogeneity cannot be limited solely to genetic events. Numerous studies carried out on
cell lines considered as having a high degree of genetic homogeneity, have shown that drug responses
are also strongly associated with intercellular epigenetic heterogeneity [14]. Epigenetic mechanisms
are defined by numerous processes, including DNA methylation, post-translational modification
of histones, and chromatin remodelling. All of them are essential for genome organisation, gene
expression and cell function [15]. The failure of cancer therapies to achieve sustainable therapeutic
responses is often attributed to intra-tumour heterogeneity.
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Figure 1. Two models for tumour heterogeneity and propagation: (A) In the cancer stem cell (CSC) 
model, only the CSCs can generate a tumour based on their self-renewal properties and enormous 
proliferative potential. The tumour heterogeneity is associated with the capacity of differentiation of 
these CSCs and series of mutations and/or epigenetic events. The other cancer cells (CS) are non 
tumorigenic in immunodeficient mice for instance; (B) In the clonal evolution model, all 
undifferentiated cells (CSC) have initially similar tumorigenic capacity. However, CSCs acquire a 
series of mutations resulting in dominant clones; and (C) Both tumour maintenance models may 
underlie tumorigenesis. Initially, tumour growth is driven by a specific CSC (CSC1). With tumour 
progression, another distinct CSC (CSC2) may arise as a result of clonal evolution in CSC1. This may 
be a result of the acquisition of an additional mutation or epigenetic modification. CSC2 is more 
aggressive and becomes dominant, driving tumour formation. (Adapted from Visvader, J.E.; 
Lindeman, G.J. Nat. Rev. Cancer 2008, 8, 755–768. Copyright 2008 Nature Reviews Cancer.). 

2.2. Inter-Tumour Heterogeneity 

Inter-tumour heterogeneity defines differences between tumours of the same origin in different 
patients. These tumour subtypes have specific individual molecular signatures, different biological 
behaviours and, as a result, have a differential impact on clinical outcomes [16]. Two main 
mechanisms have been conceptualised to explain inter-tumour heterogeneity: (i) genetic mutations 
or/and epigenetic modifications occurring within th e same target cell and resulting in different 
tumour phenotypes (Figure 2A); and (ii) different tumour subtypes arising from distinct cells within 
the tissue that serve as the cell of origin (Figure 2B). In addition, extrinsic mechanisms may generate 
tumour variability, such as stromal heterogeneity (i.e., the existence of different populations of 
cancer-associated fibroblasts), the complexity of immune system infiltration into the tumour bulk, or 
dysregulation of the extracellular matrix [17]. All these mechanisms are crucial for determining 
malignant growth [18]. 

Figure 1. Two models for tumour heterogeneity and propagation: (A) In the cancer stem cell
(CSC) model, only the CSCs can generate a tumour based on their self-renewal properties and
enormous proliferative potential. The tumour heterogeneity is associated with the capacity of
differentiation of these CSCs and series of mutations and/or epigenetic events. The other cancer
cells (CS) are non tumorigenic in immunodeficient mice for instance; (B) In the clonal evolution model,
all undifferentiated cells (CSC) have initially similar tumorigenic capacity. However, CSCs acquire
a series of mutations resulting in dominant clones; and (C) Both tumour maintenance models may
underlie tumorigenesis. Initially, tumour growth is driven by a specific CSC (CSC1). With tumour
progression, another distinct CSC (CSC2) may arise as a result of clonal evolution in CSC1. This may be
a result of the acquisition of an additional mutation or epigenetic modification. CSC2 is more aggressive
and becomes dominant, driving tumour formation. (Adapted from Visvader, J.E.; Lindeman, G.J.
Nat. Rev. Cancer 2008, 8, 755–768. Copyright 2008 Nature Reviews Cancer.).

2.2. Inter-Tumour Heterogeneity

Inter-tumour heterogeneity defines differences between tumours of the same origin in different
patients. These tumour subtypes have specific individual molecular signatures, different biological
behaviours and, as a result, have a differential impact on clinical outcomes [16]. Two main mechanisms
have been conceptualised to explain inter-tumour heterogeneity: (i) genetic mutations or/and
epigenetic modifications occurring within th e same target cell and resulting in different tumour
phenotypes (Figure 2A); and (ii) different tumour subtypes arising from distinct cells within the tissue
that serve as the cell of origin (Figure 2B). In addition, extrinsic mechanisms may generate tumour
variability, such as stromal heterogeneity (i.e., the existence of different populations of cancer-associated
fibroblasts), the complexity of immune system infiltration into the tumour bulk, or dysregulation of
the extracellular matrix [17]. All these mechanisms are crucial for determining malignant growth [18].
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Figure 2. Two models of inter-tumour heterogeneity: (A) In the genetic and/or epigenetic mutation 
model, mutations/modifications primarily determine the phenotype of the tumour. For this reason, 
different mutations/modifications result in different tumour subtypes; and (B) In the cell-of-origin 
model, different cell populations in the lineage hierarchy are used as the cells of origin for the 
different cancer subtypes. 

3. Sources of Heterogeneity 

Early findings suggested that genetic heterogeneity was a result of treatment pressure [19]. 
However, it has since been proved that genetic differences in cells within the tumour, between 
different metastases diagnosed simultaneously, and even within the same excised primary or 
metastatic tumour, can occur in the absence of any intervening treatment [20–22]. Phenotypic 
differences among cells within a tumour may reflect the genetic differences between them. However, 
tumour cell diversification is not only due to genetic factors, but also to different non-genetic causes 
such as epigenetic processes, the microenvironment or stochastic mechanisms, all of which can 
result in this cell heterogeneity. In the following paragraphs, we will summarize the different causes 
of tumour heterogeneity (Figure 3). 
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mechanisms that occur in tumour cells enhancing genome instability and leading to both increased clonal 
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Figure 2. Two models of inter-tumour heterogeneity: (A) In the genetic and/or epigenetic mutation
model, mutations/modifications primarily determine the phenotype of the tumour. For this reason,
different mutations/modifications result in different tumour subtypes; and (B) In the cell-of-origin
model, different cell populations in the lineage hierarchy are used as the cells of origin for the different
cancer subtypes.

3. Sources of Heterogeneity

Early findings suggested that genetic heterogeneity was a result of treatment pressure [19].
However, it has since been proved that genetic differences in cells within the tumour, between different
metastases diagnosed simultaneously, and even within the same excised primary or metastatic tumour,
can occur in the absence of any intervening treatment [20–22]. Phenotypic differences among cells
within a tumour may reflect the genetic differences between them. However, tumour cell diversification
is not only due to genetic factors, but also to different non-genetic causes such as epigenetic processes,
the microenvironment or stochastic mechanisms, all of which can result in this cell heterogeneity. In the
following paragraphs, we will summarize the different causes of tumour heterogeneity (Figure 3).
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Figure 3. Development factors for tumour heterogeneity. This diagram shows the genetic and
non-genetic mechanisms that occur in tumour cells enhancing genome instability and leading to both
increased clonal diversity, and the development of genetic, phenotypic and epigenetic heterogeneity.
Solid arrows indicate strict regularities and dotted arrows indicate possible relations.

3.1. Genetic Heterogeneity

Nowell proposed that most neoplasms have their origin in a single cell, and tumour progression
results from acquired genetic variability within the original clone making possible sequential selection
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of more aggressive subpopulations [13]. Nowadays, it is well-known that tumours consist of
multiple different clones and that there are multiple genetic diversification processes for tumour
development [23]. Importantly, two very recent studies of prostate-cancer metastases have revealed
existence of the cross-seeding concept meaning that secondary sites can be seeded by multiple cell
populations derived not only from the primary tumour, but also from other metastases [24,25].

Chromosomal instability is one of processes that generate variability. Cells capable of surviving
with this genetic instability generate a mutational load and genetic diversity. Increased genetic
instability is considered to be one of the cancer hallmarks [26,27]. The number of cell divisions
correlates with random mutagenesis events, and thus with genomic changes. In this context, more
the number of cell divisions increases, more the risk of “genetic” abnormalities (i.e., duplications,
deletions, mutations and spontaneous errors of DNA replication) increases. Consequently, larger
tumour size is usually associated with higher phenotypic variability. In addition, somatic mutations
contribute to tumour heterogeneity as they generate different subclones that are subjected to a selection
process for cancer formation [23]. The field cancerization phenomenon is defined as a transformation
process that allows genetically changed but histologically normal cells to precede the development
of a tumour [28], and it has been described as one of intra-tumour heterogeneity mechanisms [29].
Although genetic heterogeneity is not likely to be the primary contributor to intra-tumour phenotypic
heterogeneity, in general, genetic changes are heritable and therefore some of them are expressed
during tumour progression.

3.2. Nongenetic Heterogeneity

Nongenetic factors are associated with development of so-called deterministic and stochastic
heterogeneities. Stochastic heterogeneity corresponds to differences between genetically identical cells
caused by spontaneous modifications to biochemical processes in the cell when deterministic diversity
develops (Figure 3). These processes can lead to transient drug resistance and can also promote the
transition from one deterministic status to another [30]. The formation of intra-tumour deterministic
heterogeneity can be caused by changes in the DNA methylation profile [31], epigenetic landscape
variability [32], chromatin reorganisation variability in gene expression and microRNAs [33], etc.
(Figure 3). In cancer, complex internal and external factors induce changes in tumour cells affecting
multiple aspects of cellular biology and differentiation status [34]. Internal factors include epigenetic
modifications, genetic background and degree of differentiation. MicroRNAs which regulate gene
expression at the transcriptional level by binding to gene promoters, are now believed to play the
most important role in generating cellular diversity within a single tumour [35]. Phenotypical changes
induced by epigenetics are reversible, which makes it more difficult to study the tumour heterogeneity
developed by this process.

The tumour microenvironment, including inflammatory cells, hypoxia conditions or the
extracellular matrix, is the main external factor that promotes cell diversity by selecting cells adapted
to various conditions in the microenvironment [30]. The most obvious example is variation in the
distances from individual cancer cells to the vasculature, which leads to differential trophic supply
and metabolic status of the cancer cells [18]. In addition, other stromal cells, including fibroblasts,
inflammatory cells and pluripotent mesenchymal cells also contribute to the diversified genotypes
and phenotypes of cancer cells by secreting cytokines, growth factors and extracellular matrix (ECM)
components [19].

4. Heterogeneity of Distant Metastases: Circulating Tumour Cells

Differences in DNA mutational status and RNA or protein expression profiles between the primary
tumour and metastases, or within a single tumour, has been widely reported [36–42]. This spatial
heterogeneity, i.e., the coexistence of various tumour cell clones, with different characteristics, in the
same or distant organs can result in suboptimal treatment. Circulating tumour cells (CTCs) constitute
a heterogeneous population of tumour-derived cells that could be the precursors of metastases or/and
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could contribute to the primary tumour-to-metastasis or/and metastasis-to-metastasis spread. CTCs
originated from the primary tumour or metastatic foci could invade the surrounding tissue, enter
either the lymphatics or the bloodstream, survive in the circulation, extravasate into a tissue and finally
grow at the new site [43]. Several studies support the idea that cellular heterogeneity within CTCs
comprehensively reflects the full spectrum of mutations in the primary tumour and metastatic lesions
better than a single primary tumour or metastatic biopsy [44–46].

Different studies have shown that CTCs exhibit considerable cell-to-cell diversity [44,47,48]. It has
also been shown that CTC profiles evolve as the disease progresses [49–51]. Conventional molecular
assays only reflect the signal from the dominant clone or an average signal from all the clones,
even though this may not be the most malignant CTC clone. For this reason, single cell analysis may
be a solution to this problem. As CTCs are present at extremely low concentrations in a background of
peripheral leukocytes, molecular characterisation of CTCs in the blood remains challenging. There are
currently many techniques based on a range of parameters that make it possible to enrich CTCs and
single CTCs for further characterisation. These techniques include the CellSearch® system (Veridex),
which is the only assay for enriching and enumerating CTCs in clinics that has been cleared by the US
Food and Drug Administration, or the DEParray™ technology (Silicon Biosystems, Bologna, Italy),
the only automated instrument that can identify, quantify and recover individual cells after initial
pre-enrichment step [5,52]. We previously described in detail and discussed advantages and pitfalls of
various methodologies suitable for CTC enrichment and isolation [5].

Recent findings have identified the importance of CTC clusters in tumour dissemination. Contrary
to common belief, Au et al. demonstrated that grouped CTCs are able to pass through the narrow
vessels to reach distant organs [53]. This may be a major source of heterogeneity at the metastatic point,
and may imply more effort for developing methodologies to isolate and characterise CTC clusters.

5. Clinical Implications of Tumour Heterogeneity

The main reason why cancer treatments fail is that treatment programmes are not designed
to address tumour heterogeneity. Most of the methods used to characterise tumours lead to
a global overview of the characteristics of the cancer tissue, corresponding to an average picture
of all the tumour clones and their microenvironment. The intra- and inter-tumour variations of
biomarkers may affect the success of biomarker-driven clinical trials if the biomarker used to both
predict the therapeutic response and stratify the patients into subgroups shows spatial variability.
In addition, divergent evolution of metastatic tumour cells and different microenvironments at the
metastatic sites may contribute to the change in the expression of biomarkers initially identified in
the primary tumour [18,54]. Treating metastatic disease based on the biomarkers expressed in the
primary tumour may thus be less than optimal. Deciding which mutations are clinically relevant,
and developing an easy-to-interpret framework for reporting the results to clinicians, are complex tasks.
Better understanding of tumour content and monitoring changes in cell populations during disease
progression and treatment will improve both cancer diagnosis and therapeutic design (Figure 4).

It is possible that new targeted therapies introduced into clinical practice will induce temporary
benefits until the tumour becomes resistant. Monitoring accumulated genetic or plastic changes in
cancer during patient’s treatment might guide selection of the next therapy, or even the addition
of a subsequent therapy. Ideally, researchers would obtain multiple regions from each tumour
or metastasis in order to capture spatial heterogeneity. Epigenetic and other analyses also need
to be performed. Clinical annotation of the samples and phenotypic correlation are essential at
each step. At present, medical protocols envisage obtaining biopsies to establish diagnosis and
determine whether the predictive biomarkers are in agreement or instead present differences between
the metastases and primary tumours. However, most metastases are difficult to access, and biopsies
are invasive, inconvenient and costly. Obtaining subsequent biopsies is thus almost impossible from
a logistic point of view. To overcome these problems, detecting and characterising CTCs might be
an excellent alternative.



Int. J. Mol. Sci. 2016, 17, 2142 7 of 19

Studies on CTCs have focused on their prognostic significance, their utility in real-time therapies
monitoring, the identification of therapeutic targets, resistance mechanisms and understanding the
metastatic process [55,56]. Recently, it has been shown that molecular characterisation of CTCs is
pivotal for increasing the diagnostic specificity of CTCs and their potential as therapeutic targets [57].
As shown in several studies, CTCs are heterogeneous [58–62]. Single-cell analysis of CTCs has thus
been established as the most reliable method. Dynamic changes or transitions in the biomarker status of
CTCs may reflect the presence of the selective pressure that can be exerted by therapeutic interventions.
Performing serial measurements of the dynamics of longitudinal biomarkers displayed in CTCs
over the course of multiple sequential therapies, may provide insight into tumour evolution [63].
Furthermore, monitoring temporal CTC heterogeneity may help to identify the most effective drugs in
individual cancer patients [64,65]; especially those who already have or will soon have tumours that
are resistant to anti-cancer treatments. As an example, one of the most studied markers is PIK3CA.
It has been shown that somatic mutations in PIK3CA play a crucial role in therapy response in
breast cancer. Monitoring the mutational status of PIK3CA marker may thus improve the success of
treatment decisions in these patients [66]. Finally, an interesting application for the study of tumour
heterogeneity in clinical practice is related to predictive biomarkers of tumour evolution. Existence
of spatial and temporal heterogeneity in the expression of diagnostic markers, between cells in the
same tumour region or at the same stage of the disease, limits success of current predictive biomarkers.
Ideally, identifying drivers or suppressors of genome instability in solid tumours, whose activation or
inactivation is required to initiate intra-tumour heterogeneity and diversity, could provide a tractable
means of ultimately attempting to limit tumours evolutionary processes [3]. As an example, a study by
Kovacs et al. revealed the existence of large-scale genome instability signatures that are characteristic
of BRCA1/2-deficient tumours in more than 80% of analysed osteosarcoma samples [67].
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Figure 4. Effects of tumour heterogeneity on the predictive value of biomarkers. Cancer diagnosis is
commonly based on a biopsy (1) that contains only a small fraction of tumour and may thus not be
representative of all the subclones (cells in different colours). The first line treatment can be successful
in eliminating dominant clones (2), but resistant clones are selected and drive disease progression (3).
Metastases can develop from primary tumour cells, or from clones that survive the initial therapy.
Therefore, the clonal composition of metastatic lesions may be completely different from that of the
primary tumour sample, and treatments based on the initial diagnostic sample may be suboptimal for
the treatment of metastatic disease (4). New diagnosis after a relapse must be made before applying
a second line treatment (dashed-red lines) (5). (Adapted from Almendro et al.) [68].
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Table 1. Methodologies for studying the tumour heterogeneity.

Methods Applications Main Advantages and Drawbacks References

Immunohistochemistry (IHC) and
Immunofluorescence (IF) Protein - Preserved tissue context

- Difficult to quantify and to compare between samples
- Limitation in the number of analysed markers

[69,70]
Fluorescence in situ Hybridization (FISH) DNA or RNA

Immuno-FISH Genome imbalances and DNA
translocations + antigenic markers

- High sensitivity and specificity
- Reproducibility
- Can be easily automated
- Dependent on available probes
- No available for high throughput
- Only for the analysis of low cell density tumours

[71]

Comparative Genomic Hybridization
Array (a-CGH) DNA copy number variations

- High resolution
- Analysis of whole genome
- High specificity and sensitivity
- Fast technique
- Detects only, the copy number changes
- No detection mosaicism

[72,73]

RNAscope RNA

- Compatible with clinical routine practice
- Multiple RNA probes can be used at the same time
- High sensitivity and specificity
- High time-consuming
- Complex procedures

[74]

Fluorescent in situ Sequencing (FISSEQ) mRNA

- Allow the detection of RNA splicing and
post-transcriptional modifications (with preservation of
their spatial context)
- Discrimination of RNA with a small number of reads
- Expensive equipment for analysing the results

[75]

Specific-To-Allele PCR–FISH (STARFISH) Single nucleotide and DNA copy
number alterations

- Relative moderated cost
- Easy interpretation
- Recommended for suspected mutations
- Limited number of fluorochromes
- Tissue handling affects mRNA expression

[76]

Matrix assisted laser
desorption/ionization-imaging mass
spectrometry (MALDI-IMS)

Proteins, lipids, metabolites

- Low amount of material can be analysed
- Keep the spatial localization information
- High sensitivity and molecular specificity
- Require accurate sample
- Difficulty to control the methods of preparation

[77]
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Table 1. Cont.

Methods Applications Main Advantages and Drawbacks References

Whole Genome Sequencing (WGS)
DNA: single nucleotide variants,
copy number variants, non-coding
and structural variants

- Single-base resolution
- Deliver large volumes of data in a short amount of time
- Suitable for discovering of new markers
- Require high skills for data handling and interpretation
- Relatively high cost

[78–84]

Whole Transcriptome Sequencing (WTS) mRNA

- High throughput analyses
- Single-base resolution
- Low amount of sample required
- Sample handling must be accurate
- Complex procedures

[85,86]

Multiplexed error-robust FISH (MERFISH) RNA
- Conservation of the cell spatial information
- High throughput analyses
- Predesigned probes (limited discovery capacity)

[87]

Chromatin ImmunoPrecipitation
Sequencing (ChIP-Seq)

DNA/protein binding, histone
marks

- Single nucleotide resolution
- Repetitive regions in the genome can be analysed
- Require large amounts of starting material
- Low sensitivity and high technical read variance
- Relatively high cost

[88]

Whole Genome Bisulfite Sequencing (WGBS) Methylation of whole genome - Low quantity of starting material
- Relatively high cost [89]

Reduced Representation Bisulfite
Sequencing (RRBS) Methylation of whole genome

- High throughput analyses
- Low amounts of starting material
- Multiple step procedure (Risk: accumulation of errors)

[90]

Flow Cytometry into lab-on-a-chip Protein

- Quantitative technic
- High throughput analyses
- Multiparameter measurements
- Some pathways can be disrupted when cells are taken out
of context

[91–93]

Mass Cytometry (CyTOF) Protein

- No spectral overlap of detectors
- Up to 32 proteins can be detected simultaneously
- Slow acquisition
- Limited commercially labelled antibodies
- Complex data to analyse

[91–93]
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6. Methods for Studying Tumour Heterogeneity

In the following section, we will review available methodologies for studying tumour
heterogeneity in tissues and at the single cell level. Table 1 summarizes the main characteristics
of these methods.

6.1. Cell heterogeneity in Tissues

Assessing heterogeneity in tissue samples has been limited to methods based on microscopy,
such as immunohistochemistry (IHC), immunofluorescence (IF) and fluorescence in situ hybridisation
(FISH). In situ hybridisation techniques make it possible to detect RNA, DNA and protein molecules
with high sensitivity in both frozen and formalin-fixed paraffin-embedded (FFPE) tissues [69,70].
These techniques are normally the preferred methods for studying tumour heterogeneity for several
reasons: there are many available samples as they are a routine part of pathological diagnostic; they
preserve the specificity of tissue context and they have been used to investigate tumour traits at the
single-cell level. However, these methods suffer from difficulties in terms of quantifying expression
levels and comparing results within and between samples, owing to variable backgrounds and target
accessibility. In addition, the main limitation is the use of these techniques for high throughput analysis.

Immuno-FISH identifies genomic imbalances and specific DNA translocations, in particular cell
subpopulations by combining the hybridisation of probes with the immunodetection of antigenic
markers [71]. Comparative Genomic Hybridisation array (a-CGH) can be used to map genome-wide
copy number variations in FFPE tissues. This technology can also be used to analyse single cells [72,73].
The RNAscope technique (Advanced CellDiagnostics Inc., Hayward, CA, USA) makes it possible
to investigate multiple transcripts in the same tissue section at high-resolution [74]. New types of
mRNA probes have significantly improved analyses and quantification of spatial gene-expression
patterns at the single-cell resolution level; this information has been used to identify cells expressing
particular mRNAs in specific anatomic areas [69]. Recently, Lee et al. described new technology for
gene expression profiling intact cells and tissues called Fluorescent in situ sequencing (FISSEQ) of
RNA [75]. Another very recent method is STAR-FISH, a technique based on combining in situ PCR
and FISH to make possible the simultaneous detection of point mutations and copy number variations
at the single-cell level in high quality FFPE samples. Limitations of STAR-FISH include the need
for a priori knowledge of the mutation to be analysed and the number of fluorochromes that can be
applied to detect in situ PCR products and chromosomal regions [76].

Heterogeneity at the protein level has mainly been investigated by targeted assays,
using antibodies for IHC, or after extraction by reverse phase protein array or liquid chromatography.
Matrix-assisted laser desorption/ionisation (MALDI) and multiplexed ion beam imaging are
performed in situ while preserving the morphological characteristics [77]. Evaluating multiple markers
at the single-cell level is easier to perform using immunofluorescent antibodies which are useful for
identifying specific signalling pathways in defined cell subpopulations and/or for identifying the
topological locations of cell subpopulations within a tumour [68]. Very recently, Sood et al. published
the developmennt of a multiplexed immunofluorescence staining platform to measure the expression
of 27 proteins at the single-cell level in formalin-fixed and paraffin-embedded samples [94].

6.2. Cell Heterogeneity at the Single-Cell Level

As mentioned in the previous sections, single-cell analysis is the most reliable approach for
studying tumour heterogeneity. This section briefly summarises the technologies most used today to
identify molecular differences at the single-cell level. Advances in Whole Genome Analysis (WGA),
Next Generation Sequence (NGS), fluorescence-activated cell sorting (FACS) and other techniques have
made it possible to analyse multiple markers in single tumour cells isolated from fresh or fixed primary
tumours and metastases [78,79,95,96], and attempts have also been made to use these techniques to
explore tumour heterogeneity in individual CTCs [44,61,80–82], isolated from blood or bone marrow.
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6.2.1. Single-Cell Genomic and Transcriptomic Analyses

Single-cell technologies have evolved considerably in the area of genome and transcriptome
sequencing in the last ten years. The first challenge is obtaining a suspension of viable single cells
from complex solid tissues by means of mechanical or enzymatic dissociation, or by using more
sophisticated technologies such as laser-assisted microdissection [83]. Once in suspension, single cells
must be isolated by serial dilution, micropipetting, or FACS, among others [84]. CTCs from whole blood
or bone marrow are enriched using methods specifically developed for this purpose and reviewed
elsewhere [5,97]. To study DNA heterogeneity, the next step is to perform WGA in order to amplify the
single-cell genomes and minimise the introduction of artefacts. There are three main WGA methods:
(i) pure PCR-based amplification (DOP-PCR); (ii) isothermal amplification (MDA); and (iii) hybrid
methods (MALBAC or PicoPLEX), which are the most commonly used. Performing single-cell MDA
in microfluidic emulsions seems to markedly improve the uniformity of amplification and decrease
contamination. Many groups have had success with this approach [98].

It is thus necessary to define the type of genomic interrogation of the amplified genomes.
Depending on the objective of the study, it is possible to query specific loci of interest (either by
target-specific amplification using PCR, or target capture through hybridisation) [98]; sequence all the
exome [95]; or sequence the entire genome, called Whole Genome Sequencing (WGS) [78]. This last
method provides more information than the other two approaches, such as the single nucleotide variant
(SNVs), copy number variants (CNVs) and non-coding and structural variants. The counterpart is the
high cost. Determining genetic heterogeneity between single cells after WGS is currently achieved by
applying model-based clustering, which makes it possible to include false-negative errors [99].

If the aim of the study is to explore transcriptome heterogeneity (Whole Transcriptome Sequencing
(WTS)), single-cell RNA sequencing methods must be applied. Nowadays, there are many protocols
available for RNA sequencing at the single-cell level, Quartz-seq, CEL-seq, STRT-seq, Smart-seq or
Drop-Seq are the best known, each one having both advantages and disadvantages [85,86]. A very
recent method described by Chen et al. is multiplexed error robust FISH (MERFISH), a single-molecule
imaging method that allows thousands of RNA species to be imaged in single cells by using
combinatorial FISH labelling with encoding schemes capable of detecting and/or correcting errors [87].

Regardless of which single cell analysis is performed, WGS or WTS, and given high number
of technical errors that emerge during the process, the results must be validated, as these technical
errors are often interpreted as real biological variations [100]. Despite initial restrictions of the “omics”
techniques in the field of CTC research, many studies have now been described using these technologies
to investigate heterogeneity in single CTCs. These studies include that by De Luca et al., in which inter-
and intra-patient heterogeneity is observed in the mutational status of breast cancer CTCs analysed
by NGS [101]. In addition, there have been studies comparing CTCs and metastases or primary
tumours at the single-cell level, such as the study performed by Jiang et al. in which they discovered
highly heterogeneous short structural variants of PTEN, RB1, and BRCA2 in all tumour and CTC
prostate samples assessed using high-quality WGS [102]. Interestingly, Powell et al. performed one
of the first studies in CTCs focused on single-cell transcriptomes. They used a microfluidic platform
(Fluidigm) to perform multiplexed quantitative PCR (qPCR) on 87 cancer genes in different breast
cancer samples. Importantly, they found high transcript levels of genes associated with metastases:
NPTN, S100A4, S100A9, and with epithelial mesenchymal transition: VIM, TGFβ1, ZEB2, FOXC1,
CXCR4 [103]. More recently, Lang et al. published a study of RNA expression profiling of breast cancer
CTCs using cDNA microarrays [104].

Another source of tumour cell heterogeneity is related to epigenetics, including histone
modification, and DNA base modifications (such as methylation and hydroxymethylation),
as mentioned previously. Robust technologies have been developed to provide genome-wide maps
of most epigenetic marks. ChIP-seq, suitable for studying histone marks at the single-cell level,
combines chromatin precipitation with next generation sequencing [104]. To assess methylation
levels, the most comprehensive picture can be obtained from whole-genome bisulphite sequencing
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(WGBS) [89], but precipitation techniques (methylated-DNA immunoprecipitation sequencing and
methylated–DNA-binding domain sequencing) or reduced-representation bisulphite sequencing
(RRBS) [90] are also used. Illumina’s Infinium Human Methylation450 BeadChip platform provides
an array-like alternative that has been found to provide acceptable DNA methylation profiles, reducing
the DNA-damaging effects of bisulphite treatment [91].

6.2.2. Single-Cell Proteomic Analysis

Fluorescent Activated Cell Sorting (FACS) data allows disrupted expression patterns in proteins on
cells in cancer to be identified, as well as to analyse signalling networks (phosphorylation) and their link
to the outcome of the disease. The instruments grouped under the term “flow cytometer” now extend
to microfluidics, and miniaturise the components into lab-on-a-chip devices [92,93]. These instruments
set a high standard for very quantitative and high-throughput multiparameter measurements of
single-cell attributes [105]. Several studies using single-cell phosphorylation analysis by means of flow
cytometry, known as phospho-flow, have been performed in cancer, leading to classification of patients
into several groups [106], and predicting outcome [107] and drug sensitivity [108].

One of the drawbacks of the flow cytometry analysis is that some pathways may be sensitive to
disruption when cells are taken out of context, leading to changes in the intracellular signalling, and
this may thus alter results of cell heterogeneity analysis. In whole blood–based assays (i.e., isolating
CTCs), this tends to be minimised. However, despite proteomic analyses at the single cell level which
have been already successful in haematological malignancies [106–108], this approach is just at the
beginning for solid tumours [105] and require at least 1000–2800 cells.

Studying proteomics at single-cell level is also possible with Cytometry time of flight (CyTOF),
developed by Bandura et al. [109]. CyTOF was developed into an imaging tool that can image the
localisation of up to 32 proteins at present (and potentially up to 100) with subcellular resolution [110].
Briefly, this method is based on tagging antibodies with isotopes not found in cells, staining the cells
with those tagged antibodies, and then ionising the sample before passing it into a time-of-flight
(TOF) mass spectrometer. Ions have a specific mass range and are quantified with the CyTOF
instrument. All isotope signals are integrated for each cell and digitised to create a spreadsheet
of cell-by-cell information similar to a flow cytometry data file, but containing much more information.
This complexity is reduced thanks to analytical approaches such as SPADE [111]. A study performed by
Han et al. validated the feasibility of this method for studying single-cell heterogeneity in cancer [112].

7. Conclusions and Future Direction

Cancer is a heterogeneous disease, with variations in terms of morphology, immunophenotype
and genotype. Analysing conventional genetic profiling on bulk single biopsy tissues is often used
today as the standard for evaluating tumours, thus limiting diagnostic and treatment decisions to the
analysed region. Profiling of bulk samples may also unravel the phenotypes obtained from previous
selective pressures which are not relevant to the status of the current metastatic disease. Furthermore,
different regions of the same tumour can contain signatures for either good or bad prognoses; a single
biopsy may thus not be sufficiently representative of the tumour’s composition.

Circulating tumour cells (CTCs) can be isolated and interrogated as a potential window into the
genetics of a tumour by means of non-invasive sampling, making it possible to evaluate the tumour’s
temporal heterogeneity during the clinical course of the disease. To overcome the averaging approach
determined by using bulk CTC analysis, single-cell isolation can only be achieved with sophisticated
instrumentation, requiring expert operators such as the DEPArray™ system, (Silicon Biosystems,
Bologna, Italy) and time-consuming protocols which can only guarantee the single-cell level on rare
occasions. Moreover, depending on the methodology used for their isolation, the number of recovered
CTCs may be different and thus the analysis of heterogeneity will report different results [5,113]. CTCs
have been used successfully to reveal tumour heterogeneity, and can readily be subjected to dynamic
monitoring [114]. However, CTCs are present at very low numbers in peripheral blood, and current



Int. J. Mol. Sci. 2016, 17, 2142 13 of 19

studies of CTCs are generally limited to advanced cancer. Not all patients with advanced cancer have
detectable CTCs, only a few studies have detected CTCs in patients with early-stage cancer [115].
A considerable proportion of cancer patients diagnosed in the early stages develop distant metastases
after surgical removal of the primary tumour, indicating that CTCs are present even during the early
stages of cancer. A detection system with analytical sensitivity and capable of demonstrating adequate
cell recovery and sampling accuracy is needed to successfully isolate and enrich heterogeneous CTCs.

One of the key questions is to determine to what extent CTCs represent heterogeneity within
the primary tumour or metastases. It is possible that the cells detected with the currently available
techniques are merely those that were shed and are only the “tip of the iceberg”. For example, it is
clear that a high number of CTCs detected are associated with poor prognosis, but it is not possible to
know if these cells actually have malignant behaviour themselves. Perhaps they are just terminally
differentiated cells that merely reflect the presence of more malignant, but uncaptured cancer cells.
These cells do not necessarily represent the biology of the underlying tumour [116]. Interestingly, recent
data suggest that CTC clusters are able to extravasate through narrow vessels and invade surrounding
tissues [53]. In this context, cluster CTCs may have greater metastatic potential than individual CTCs,
and identifying and isolating these clusters is a key challenge for the future. Further investigation is
needed to both validate this recent discovery and develop new technologies for in-depth study of CTC
clusters heterogeneity [53].

In the last ten years, many new technologies have been developed in order to characterise
single-cell heterogeneity at the DNA, RNA or protein level. Some of these technologies are reviewed
in Section 6. The methodologies present several disadvantages, such as reduced sensitivity for low
expressed genes, small quantities of sample material, amplification biases, technical noise or low
throughput, among others. In addition, data mined from single-cell studies must be carefully studied
with rigorous computational analyses, which are imperative for distinguishing pre-existing genetic
alterations from amplification errors. Improper computation may result in bias and errors in data
interpretation, especially in highly heterogeneous samples. Independent analyses from multiple
single cells may also be used to reveal repeated and specific mutational patterns, which will be
pivotal in distinguishing technical noise from biological signals [87]. A complete picture of a cell’s
state will often require measurements of different parameters in the same cell (i.e., transcriptome,
genome and epigenome). Although it is usually possible to perform multiple assays on a bulk sample,
this is only possible in certain cases for single-cell measurements [117]. Further development of
multi-model measurement methods will help understand different sources of heterogeneity in a single
cell. A major challenge is new multiplexing strategies that can be used to profile single cells quickly
and at a reasonable cost. Despite analysis of heterogeneity at the single cell level, it is theoretically
a better approach for obtaining the maximum information on tumour heterogeneity. The cost and time
required do not allow to use such techniques in routine yet (in clinical practice). The most realistic
methods are currently based on analysis of small cell pools. This fact challenges the reliability of
overall tumour heterogeneity when it is inferred at the single cell level.

It is important to note that the tumour microenvironment itself is also heterogeneous.
This microenvironment, which defines an additional barrier or an asset for therapy, is responsible for
differently directed selective pressure within the same tumour, changing the evolutional trajectories
of the tumour cells [118]. This opens up new areas of research for developing techniques focusing
on regulating the tumour microenvironment in order to control tumour progression. One long-term
goal is to move towards tagless, or almost tagless measurements, in which viable cells are isolated
prospectively based on function, gene expression and genotypes and then assayed directly for their
tumour-initiating capacity. Techniques that probe the three-dimensional composition (architecture
and cell types) of tumours, while minimally disrupting cell biology, are also required to gain more
information on cell-type location and its relationship to disease. Currently, the only approaches that
are readily available (e.g., green fluorescent proteins or other gene expression–based reporters) require
genetic modification of the target cell.
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