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Abstract 
 
 
The returns on most financial assets exhibit kurtosis and many also have probability 
distributions that possess skewness as well. In this paper a general multivariate model 
for the probability distribution of assets returns, which incorporates both kurtosis and 
skewness, is described. It is based on the multivariate extended skew-Student-t 
distribution. Salient features of the distribution are described and these are applied to 
the task of asset pricing. The paper shows that the market model is non-linear in 
general and that the sensitivity of asset returns to return on the market portfolio is not 
the same as the conventional beta, although this measure does arise in special cases. It 
is shown that the variance of asset returns is time varying and depends on the squared 
deviation of market portfolio return from its location parameter.  The first order 
conditions for portfolio selection are described. Expected utility maximisers will 
select portfolios from an efficient surface, which is an analogue of the familiar mean-
variance frontier, and which may be implemented using quadratic programming. 
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1.   Introduction 
 
Modern portfolio theory makes extensive use, both explicit and implicit, of the normal 
distribution. Two aspects of the importance of normality of asset returns are as 
follows. First, when asset returns follow a multivariate normal distribution, the market 
model, the equation that links assets returns to returns on the market portfolio, is 
linear and may be correctly estimated using OLS. Secondly, investors who select 
portfolios by maximising the expected utility of return will always be located on 
Markowitz’ mean-variance efficient frontier. This well-known feature is a 
consequence of Stein’s lemma, Stein (1981).  In reality, it is accepted that asset 
returns are not normally distributed. It is now common practice to recognise the non-
normality inherent in returns and to build more appropriate models. Nowadays, there 
is a very wide variety of models, ARCH/GARCH and neural networks to name just 
two, that is in common use.  For applications which require models of the multivariate 
distribution of asset returns, there has been substantial growth in recent years of the 
use of copulae in finance; see for example the recent book by Cherubini et al (2004). 
Such models, however, can leave two issues unresolved. These are (a) the correct 
form of the market model and (b) the choice of an appropriate utility function for 
portfolio selection. 
 
The form of the market model is an important issue for the following reason. It is 
conventionally assumed that this takes the familiar linear regression form. However, 
the OLS model makes strong assumptions about the form of the multivariate 
probability distribution of asset returns. In the absence of normality, OLS is not the 
optimal estimation method. Furthermore in the absence of elliptical symmetry there is 
no guarantee that the relationship between asset returns and market returns is linear. 
The choice of utility function is also an important consideration. Under some return 
distributions, certain choices of the functional form of the utility function are 
prohibited because the expected values do not exist. From a more pragmatic 
perspective, the question of whether there is a utility function that is “optimal” in 
some sense for a given return distribution is always likely to receive attention. In 
addition, to date anyway, the use of copulae is restricted to a small number of 
dimensions. This does not of course limit their importance or usefulness, but does 
mean that applications like large-scale portfolio selection require simplifying 
assumptions to be made. 
 
The past two decades has seen the development of a large body of theory concerning 
multivariate probability distributions which are elliptically symmetric. The standard 
source reference is the well-known monograph by Fang et al (1990). These 
distributions result in market models which are linear, although of course OLS is not 
the optimal method for parameter estimation. Papers by Liu (1994), Landsman (2006) 
and Landsman and Nešlehová (2008) present extensions to Stein’s lemma which 
indicate that, ceteris paribus, there is a single efficient frontier for all expected utility 
maximisers. 
 
Self evidently, elliptically symmetric distributions will not deal with asset returns in 
the presence of skewness, which is an empirical feature of returns of some assets.  
The aim of this paper is to present the multivariate extended skew-Student-t 
distribution (henceforth MEST distribution) as a coherent and tractable model for 
asset returns and hence for the development of various aspects of portfolio theory. It 
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is readily apparent that the use of a single multivariate distribution requires that 
compromises be made in the ability to estimate marginal distributions. The view taken 
in this work is that the gains offered by a coherent multivariate model offset the 
effects of such compromises. Furthermore, as is very well known, estimation error for 
associated with models used in finance is almost always substantial and it is debatable 
whether a more complex model will yield superior properties in practice. 
 
The MEST distribution described in this paper is a development of the multivariate 
skew-normal (MSN) distribution introduced by Azzalini and Dalla-Valle (1996), 
henceforth AZ&DV. The MSN distribution was first used as a model for returns in 
finance in Adcock and Shutes (2001), henceforth A&S, who introduced an extension 
of the model which is often referred to the multivariate extended skew-normal or 
MESN distribution.  
 
The motivation for an extended skew-Student-t model as distinct to the skew-normal 
is that kurtosis is almost always present in asset returns. The ability to incorporate fat-
tails as well as skewness is therefore an important practical consideration.  The use of 
a Student model is motivated to some extent by tractability, but also by a number of 
papers spanning several decades that indicate that the Student distribution is a useful 
model for fat-tailed returns. Two examples of such work include the well-known 
papers by Praetz (1972) and Blattberg and Gonedes (1974) and the study of returns on 
European securities by Aparicio and Estrada (2001).  
 
Development of the multivariate skew-Student-t and related distributions is an active 
area of research. The publication of initial papers by Branco and Dey (2001), Azzalini 
and Capitanio (2003) and Sahu et al (2003) has been followed by articles by several 
authors including Arellano-Valle and Genton (2005), Arrellano-Valle et al (2006), 
Arrellano-Valle and Azzalini (2006) and Azzalini and Genton (2008). An extended 
skew Student distribution and many of its properties are described in Arellano-Valle 
and Genton (2008), henceforth AV&G.   
 
There are also several papers which present other multivariate distributions, all of 
which possess skewness and which are based on the Student distribution. Examples of 
such work are in Jones (2001, 2002), Jones and Faddy (2003) and Bauwens and 
Laurent (2005). There is also a univariate skewed t distribution, which was introduced 
by McDonald and Xu (1995). This has been generalised and applied to financial data 
in Theodossiou (1998), who calls the model the skewed generalized t distribution. 
However, no multivariate form of this model appears in the literature. 
 
The results presented in this paper are used first to derive a market model, which has 
the appropriate functional form when asset returns follow the MEST distribution. The 
market model is non-linear. Specifically, it is shown that the MEST market model 
consists of two components, only the first of which is linear in the return on the 
market portfolio. If, in addition, the market portfolio has zero skewness, then the 
linear component is essentially the same as that in the conventional model based on 
the normal distribution. The non-linear component is a function of the squared 
deviation of the return of the market portfolio from its location parameter and exhibits 
different properties depending on the skewness of the market portfolio. Secondly, the 
first order conditions for portfolio selection are described. There is a single surface on 
which expected utility maximizing portfolios are located, regardless of individual 
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investors’ utility function. Under the MEST distribution, portfolio selection may be 
implemented using quadratic programming. 
 
The structure of the paper is as follows. Section 2 contains a short summary of the 
multivariate extended skew-normal distribution. Section 3 describes the derivation 
and probability density function of the MEST distribution that is used in this paper 
and presents properties that are required in subsequent sections. This includes the 
general conditional distribution for the case when the vector of returns R  is 
partitioned into two components 1R  and 2R  say and 1R  is taken as given. In section 
4 this is applied to the situation where 1R  is the scalar return on a market portfolio. 
The resulting market model is shown to be non-linear in general.  Section 5 is 
concerned with portfolio selection and efficient set mathematics. Section 6 concludes 
the paper. There are two short appendices.  
 
In the text of this paper, the word beta refers to the conventional measure of risk; that 
is the covariance of asset returns with the return on the market portfolio divided by 
market variance. The notation β is reserved for a different definition of risk that arises 
with market models based on the MEST distribution. However, as is shown in the 
paper, there are cases where β is essentially the same as beta. Notation is that in 
common use. 
 
2.    The Multivariate Extended Skew-Normal Distribution 
 
There are several ways of deriving multivariate skew-normal distributions. With 
financial applications in mind, the following method from A&S is used. Let Y be an 
n-vector with the full rank multivariate normal distribution ( )Σ,µN . Let X  be a 
scalar random variable which is independent of Y  and which has a normal 
distribution with mean τ , variance 1 and is left truncated at zero. The vector of 
variables Xλ+= YR  has a multivariate extended skew-normal, henceforth MESN, 
distribution. This may be interpreted as follows. If R  denotes returns on risky 
financial assets over a single period, the definition above means that each return iR  
has two components: iY which is normally distributed with mean iµ  and a skewness 
shock Xiλ . The shock is generated by the single variable X . The sensitivity of 
security i to the shock is iλ , which may take any real value including zero. The 
skewness shock may be interpreted as a departure from market efficiency in the sense 
of Fama (1970).  
 
 
Using the notation above, the distribution of the vector of returns R  has probability 
density function 
 

                      ( ) ( ) )(
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where ( )Ωx ,ς;nφ  denotes the probability density function of a multivariate normal 
distribution with mean vector ς  and covariance matrix Ω  evaluated at x  and 
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( )τΦ denotes the standard normal distribution function evaluated at τ .  When τ  takes 
the value zero, this is equivalent to the corresponding result in AZ&DV with a change 
of notation. The explicit use of non-zero values of τ  facilitates some subsequent 
manipulations of the density. It also creates a richer family of probability 
distributions. The distribution at (1.) is denoted ( )τ,λ,µ~ Σ,R MESN . Moments and 
related properties of this distribution, expressed in the above notation, are described in 
A&S.  AZ&DV show that when the vector R  is partitioned into two components, 

1R and 2R , containing 1n  and 12 nnn −= elements respectively, the conditional 
distribution of 2R  given that 11 rR =  is multivariate skew-normal of the same family.   
In the usual way, partition as µ , Σ and λ  as 
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The conditional distribution of 2R  given that 11 rR =  is ( )12121212MESN |||| ,λ,µ τΣ  
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A&S apply this to the situation where 2R  represents individual asset returns and 1R , 
which is a scalar variable, is the return on the market portfolio, pR  say. It will be 
apparent from the form of the parameters in the above equations that the market 
model, the expected value of the vector of asset returns conditional on the return on 
the market portfolio, is non-linear in pr , the given value of the market return. This 
model may also be applied to general regression. In this case, the conditioning vector 

1R  represents selected explanatory variables. The vector 1R  may have a multivariate 
normal distribution, in which case 0=1λ . In this case, the regression model that links 
the dependent variables 2R  to the independent variables 1r  is linear in 1r .  
 
In addition to finance applications using the multivariate skew-normal distribution 
reported in the book editted by Marc Genton, Genton (2004), and for example 
Adcock(2005), there is a comprehensive study in Harvey et al (2004). This uses a 
version of the distribution that allows for more than one truncated variable: in the 
notation used above X is now a vector and λ  is a matrix. Harvey et al make the 
important point that skewness in asset returns is not always evident from a univariate 
histogram and present a number of bivariate plots to illustrate the point. A recent 
paper which also uses the distribution is by Meucci (2006).  
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3.   The Multivariate Extended Skew-Student-t  Distribution 
 
The MEST distribution may be derived using the standard form of multivariate 
Student distribution (see for example Johnson & Kotz, 1972, page 162 et sec or 
Bernardo and Smith, 1994, page 435 and 441). The vector R  is defined as above, 
except that the vector 
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−
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now has a centred multivariate Student distribution with υ  degrees of freedom and 
dispersion matrix equal to 
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with the variable X being left-truncated at zero.  The joint distribution of Y  and 
X has probability density function proportional to 
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for 0>x  where ( )τTυ denotes the distribution function for the Student-t distribution 
with υ  degrees of freedom evaluated at τ . Standard transformation of the variables 
gives the joint distribution of R  and X . Writing this joint probability density in the 
conditional form ( ) ( )rr fxf | and integrating with respect to x  gives the MEST 
distribution, with probability density function 
 

  ( ) ( ) { }

)(
υ

T

TυτQ

Tτ
υ

nυ
nυ

T

υTτ
n

tf
τ























 −++

−−++
+

++=
λλλµ

λµ

λλλµr

11),,,,(1

1)(

,,;
ΣΣr

Σr

Σr .        (2.) 

 
 
The quadratic form ),,,,( Σr τQ λµ is defined as 
 
               ( ) ( ) ( )τττQ TT λµλλλµλµ −−+−−=

− rΣrΣr 1),,,,( .   (3.) 
 
The function ( )υ

n
t ,,; Ωx ς  denotes the probability density function of an n-variate 

Student distribution with υ  degrees of freedom, location parameter vector ς and 
dispersion matrix Ω  evaluated at x . As ∞→υ , the MEST density (2.) tends to the 
multivariate skew-normal at (1.). The notation ( )υτ,MEST ,,~ λµ Σ,R is used to 
describe the distribution at (2.). 
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The distribution derived in Sahu et al (2003) uses more than one skewness variable. 
An extended MEST distribution with more that one truncated variable is also reported 
in AV&G and Adcock (2008). It is a development of similar extensions to the 
multivariate skew normal distribution described in Gonzàlez-Farías et al (2004) and 
Arellano-Valle and Azzalini (2006). As AV&G rightly remark these “are … 
generalizations that are of interest from a theoretical point of view”.  As the papers 
by Horrace (2005) and Adcock (2007) make clear, the computational difficulties 
alone are substantial. 
 
The rest of this section presents properties of the MEST distribution, which are used 
in Section 4. A number of other properties of the distribution which are not required 
are omitted. 
 
3.1 Linear Transformations of Multivariate Extended Skew-Student-t  Variables 
 
When ( )υτMEST ,,,,~ λµ ΣR , the linear transformation η+ΜR , where Μ is a 

nm× matrix of rank less that or equal to n  is distributed as 
( )υτ,,λ,ηµ Μ,ΜΣΜΜ TMEST + .  The proof of this is omitted. Allowing for changes 

in notation, this result is essentially the same as proposition 5 of AV&G. 
 
3.2 A New Elliptically Symmetric Distribution 
 
When the λ  equals the zero vector, the probability density function is 
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The effect of ( )00 <>τ is to increase (decrease) the peakedness of the density around 

0R =  when compared with the standard multivariate Student density. This 
distribution is also reported in AV&G, who note that certain values of τ  will produce 
lighter tails than the normal distribution. From the perspective of finance, the potential 
interest in this distribution lies in the fact that it can be more peaked than the Student 
distribution. It may therefore have the ability to describe the returns on assets which 
are thinly traded and for which the frequency of zero returns is higher than that 
predicted by Student’s t. The following result is an interesting by-product of this 
distribution.  
 
Lemma 1 
 
Let Y be an n-vector which has a multivariate Student distribution with location 
parameter vector µ , scale matrix Σ  and υ  degrees of freedom. Let the quadratic 
form ),,λ,µ,( Σy τQ  be as defined at equation (3.). The following result holds 
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3.3   Expectation and Variance Covariance Matrix of R  
 
Direct evaluation of the higher unconditional moments of the distribution of R , when 
they exist, is not straightforward and is beyond the scope of this paper.  However, it is 
straightforward to show that for 1>υ  and 2>υ , respectively 

 
( ) ( ){ } ( ){ } ( )
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where )(τυt denotes the density function for the Student-t distribution with υ  degrees 
of freedom evaluated at τ . The unconditional expected value of R  is 
( ) )(τξτE υλλµ ++=R . The conditional covariance matrix of R  given xX =  is 

( ) ( ) ( )1}/{1x| 2 -υυτxυarv ΣR −+= . For 2>υ , the unconditional covariance matrix 
of R  is 
 

( ) ( ){ } ( ) ( ) ( ){ } T
υυυ τξτη-υυτηυarv λλ211 −++= ΣR . 

 
When all elements of λ  are equal to zero, the covariance matrix is a function of τ , 
even though this variable does not then affect expected returns. Since the above result 
holds for all values of  Σ  and λ  the following 
 

{ } { } 0)()(,0)(1 2 ≥−≥+ τξτηυτη υυυ  , 
 
hold for all values of τ . As ∞→υ , the covariance matrix of R tends to the 
corresponding expression for the MESN distribution in Section 2. 
 
3.4   Conditional Distributions 
 
Let R  be partitioned into two components, 1R  and 2R , containing 1n  and 

12 nnn −=  elements respectively and the parameters λµ ,, Σ  partitioned 
correspondingly. The conditional distribution of 2R  given that 11 rR = is also MEST. 
The derivation is omitted, but the method is the same as that briefly described in 
Section 2 or in AZ&DV. The conditional distribution of 2R  given 11 rR =  is 

( )1nυτ +,,λ,,µ |||| 12121212MEST Σ  where   
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with ),,,,( 111111 Σr τQQ λµ= . The expected value of 2R  given that 11 rR = is a non-
linear function 1r .  The details of three cases of the conditional distribution: (i) 

0=1λ ; (ii) at least one element of 1λ is non-zero and (iii) 0=1|2λ  are described in 
Appendix A. The vector 1|2λ is referred to as conditional skewness. 
 
4.   The Market Model 
 
When R  represents the returns on a set of assets, the return on the market portfolio or 
market proxy is given by the linear transformation RT

pR w= , where the vector w  
represents the weights of each asset. The market model, in which 1R  is the now scalar 
variable pR  may be established using the results above. From the definition of the 
distribution, it follows that pR has a (univariate) extended skew-Student-t distribution 

( )υτ,ESTR TTT
p ,,,~ λwwwµw Σ , equivalently ( )υτ,,λ,σ,µ p

2
ppEST . The distribution 

of a vector of asset returns 2R  given that pp rR =  follows the MEST distribution with 
1υ +  degrees of freedom and parameters 
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The vector β (which, as stated in the introduction, is not equivalent to the 
conventional beta) and the quadratic form cQ  are, respectively 
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2
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The conditional mean vector of 2R  given pr  is therefore 
 

( ) ( ) ( )c1υcpppp τξτλµrτrE ++−−++= λδλµ 222 |R , 
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where δ is defined as ( ) ( )2

p
2
p

T λσ ++= wλλδ 2222Σ .  
 
This is a generalisation of the result derived for the MESN distribution in A&S. There 
is a difference in the last term, which reflects the underlying Student distribution.  The 
definitions in Section 3 mean that δ  is not the vector of covariances with the market 
portfolio divided by market variance and so is not equal to the conventional beta.  
Nonetheless, δ  measures the linear sensitivity of asset returns to market return. There 
are three forms of the market model to consider, which depend on the skewness of the 
market portfolio as follows: (i) 0=pλ , (ii) 0≠pλ  and (iii) 0=cλ . First, note that the 
conditional variance of asset returns is time varying and through the quadratic form 
defined at (3.) depends on the squared deviations of the return on the market portfolio 
from its location parameter. 
 
Case 1: λp = 0 
 
Since wλT

pλ 2= , the case 0=pλ  implies that βδ = and that the vector β  has the 
usual interpretation as long as 1υ > . The conditional expected value is 
 

( ) ( ) ( ){ } pppp ∆RErErE 222 | λβ +−+= RR , 
 

where 
 

( ) ( ) ( ) ( )τξξυυQ1υ∆ υυ1p −Θ++= +11 , ( ) ( )1++=Θ υυQ1υτ 1 , 
 
and ( ) 0=∆ pE . 
 
Case 2: λp ≠ 0 
 
When 0≠pλ , the  market model takes the form: 
 

  ( ) ( ) ( ){ } pppp ∆RErErE ~~| 222 λδ +−+= RR , 
 
where  
 

( ) ( ) ( ) 2
p

2
pp22

2
p

2
pcυc1υ1p σλ1βλλλ/σλ1)(τξ)(τξ1υυQ1υ +−=+−++=∆ +

~,~  
 
The non-linearity in the model is contained in the term p∆~ . This term is non-zero for 
all values of τ  and υ , although its expected value is zero. As already noted above, δ  
measures the linear sensitivity of returns to return on the market portfolio, but its 
definition is different from the conventional beta.  
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Case 3: λc = 0 
 
The final form of market model arises when 0=cλ . For this case, the market model 
is linear in pr and the measure of risk is β , as defined above: 
 

( ) ( ) ( ){ }ppp RErErE −+= β22 | RR . 
 

The conditional distribution of 2R  is the elliptically symmetric modification of the 
multivariate Student-t described in Section 3.2. The vector β  has the usual meaning 
as long as the degrees of freedom υ are greater than one.  The interpretation of this 
result is that the conditioning variable pR  accounts for all the skewness in 2R . It 
implies that a linear regression model may conceal skewness in the dependent or 
independent variables or in both. 
 
In general, the conditional expected value is a non-linear function of pr . Figure 1 
shows a sketch, which illustrates the effect of skewness on the conditional 
expectation. In this context 2R  is the scalar return on an asset or a portfolio of assets. 
As the sketch indicates, the effect of increasing λ  is to change the level of ( )prE |2R  
and to introduce curvature as λ  increases. The straight line corresponding to 0=λ  
corresponds to the security market line or SML. For negative values of λ  the 
corresponding graphs would be convex functions plotting below the SML 
 

Figure 1 about here 
  
The curves shown in Figure 1 are similar to the well known model for market timing 
introduced by Treynor and Mazuy (1966). In the notation of this paper, their model 
may be written as 
 

( ) ( ){ } ( ){ }2
2102 | ppppp rErrErrRE −γ+−γ+γ=  

 
According to the Capital Asset Pricing Model, the quadratic coefficient 2γ  must be 
identically zero and the conditional expected return on a portfolio must lie on the 
SML. Thus, if conditional expected return is found to be significantly greater than 
zero, the portfolio exhibits better performance than that predicted by theory. The 
implication is that the manager of such a fund exhibits superior skill and should 
expect to be rewarded. Conversely, the manager of a fund with a value 2γ  
significantly less than zero might expect some form of sanction.  However, the 
implication of the curves shown in Figure 1 is that performance above the security 
market line may be a consequence of positive skewness in asset returns and not 
necessarily due to manager skill at all. Conversely, performance below the security 
market line may be a consequence of negative skewness in asset returns. Thus, neither 
rewards nor sanctions may be warranted. 
 
5.   Portfolio Selection and Efficient Set Mathematics 
 
The first order conditions for portfolio selection depend on expressions of the form: 
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where r  is the vector of asset returns, ir  is the return on asset i, pr  is the return on the 
portfolio, ( )rf is the multivariate probability density function of asset returns and 
( )pru  is the utility function.  When returns follow a multivariate normal distribution 

the issue of the choice of utility function does not arise because all well-behaved 
utility functions lead to a point on Markowitz’ mean-variance efficient frontier. This 
result is a consequence of Stein’s lemma, Stein(1981), which is applied to general 
portfolio selection in Kallberg and Ziemba(1983).  As noted in the introduction, 
papers by Liu (1995), Landsman (2006) and Landsman and Nešlehová (2008) present 
extensions to Stein’s lemma for elliptically symmetric distributions. When asset 
returns follow the multivariate skew normal distribution at (1.), Lemma 1 of Adcock 
(2007) shows that there is a single mean-variance-skewness surface. Subject to some 
regularity conditions on ( ).u  all expected utility maximising investors will be located 
on this surface regardless of their individual utility functions. Adcock (2008) shows 
that a similar result obtains for the multivariate extended skew-Student-t distribution 

( )υτ,,λ,µ Σ,MEST . Ignoring the Lagrange multiplier of the budget constraint, the 
first order conditions are a vector equation of the form 
 

{ } ( ) 0)( ≥−−+=∂∂ 1,221
T

p θθθruE λ,µwλλw Σ , 

where the scalar quantities 1,2θ , which represent preferences for µ  and λ  
respectively, are functions of the expectations of derivatives of the utility function 
( ).u . When they exist, this equation may be re-expressed in term of the expected 

return vector, the covariance matrix and λ  the vector of skewness coefficients. A 
sketch of the efficient surface is shown in Figure 2. The equations that generate it are 
essentially the same as those in A&S and are summarised in Appendix B. 
 

Figure 2 about here 
 
It is well known that the moment generating function does not exist for random 
variables that follow Student distributions. Consequently, when asset returns follow 
the MEST distribution, the use of the negative exponential function is not available to 
expected utility maximisers. However, the implication of the regularity conditions is 
that utility functions may be constructed which are continuous and for which the first 
two derivatives exist. For given values of 1,2θ  portfolio selection may be carried out 
using quadratic programming. 
 
6.   Concluding Remarks 
 
This paper presents the extended multivariate extended skew-Student-t distribution as 
a model, for asset pricing and portfolio selection. The properties of the distribution are 
summarised, a non-linear market model is derived and the first order conditions for 
portfolio selection are presented. 
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The properties of the market model may be summarised as follows. Under the MEST 
distribution, there are three forms of market model. First, when the market portfolio 
does not possess skewness, the market model is non-linear in market portfolio return 
rp. However, the non-linearity vanishes as the degrees of freedom increase. In this 
case, the sensitivity of asset returns to the market is similar to the conventional beta.  
Secondly, if the market portfolio does possess skewness, then the market model is 
always non-linear and the sensitivity of asset returns to the market is not equivalent to 
beta. Finally, in the case where conditional skewness equals zero, the market model is 
always linear and the sensitivity, as above, is similar to beta. The conditional variance 
of asset returns is time varying and is dependent on the squared deviation of market 
portfolio return from its location parameter.  
 
Although there are some restrictions on the choice of utility function, all expected 
utility maximisers will select portfolios from an efficient surface, which is the 
analogue of the familiar mean-variance frontier. 
 
The treatment of skewness depends on the use of a single skewness variable. A 
development of this work will be to extend the model so that multiple skewness 
shocks may be incorporated. As already noted, this extension is expected to be of 
mainly theoretical interest, since the practical difficulties associated with such a 
model are substantial. 
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Appendices  
 
A – The Conditional Expected Value 
 
Three cases of the conditional distribution are considered: (i) 0=1λ , (ii) at least one 
element of 1λ is non-zero and (iii) the special case 0=1|2λ .   
 
Case 1: λ1 = 0 
 
When 0=1λ , the conditional expected value of 2R  given 1r  is 
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where ( )υξ is as defined above and ( ) ( )11 nυυQ1υτΞ ++= . Using the formulae 
in Section 3.7 for the expected value of 2R  and noting that, for 1>υ , ( ) 11 µ=RE ,  
the above conditional expectation may be written as 
 

( ) ( ) ( ){ } ( ) ( ) ( ) ( ){ }τξξnυυQ1υEEE υnυ11 1
−Ξ+++−+= +

−
211

1
1121212 | λRrΣΣRrR . 

 
Since 0=1λ , Β=−1

1121ΣΣ  is the 12 nn ×  matrix of theoretical coefficients for the 
multivariate regression of 2R on 1R . The regression above has two components. The 
first is linear in the conditioning vector 1r . The matrix Β has almost the same 
interpretation as in regression1. The residual term  
 

( ) ( ) ( ) ( )τξξnυυQ1υ υnυ11 1
−Ξ++=∆ + , 

 
 is non-linear in 1r .  As the degree of freedom parameter υ  increases without limit, 

0→∆ with probability one. The conditional expectation therefore has a limiting 
linear form as ∞→υ .  Taking expectations gives ( ) 0=∆E 2 for all υ . The term ∆  
acts like a residual; it contributes to variability, but not to unconditional expected 
return. The implication is that the use of OLS would result in an unbiased estimator of 
Β , but that the results would be inefficient. 
 
Case 2: At least one element of λ1  not equal to 0 
 
When 0≠1λ , that is  when one or more of the conditioning variables possesses 
skewness, the conditional expected value may be written as 
 

( ) ( ) ( ){ } 211212
~~~| λ∆+−+= RrBRrR EEE  

 
where: 
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The matrix B~ still measures the linear sensitivity of the elements of 2R  to elements 
of 1r . However, the interpretation of B~  is different. A second difference is that ∆~  

                                                 
1 It has the same interpretation as long as υ > 2. For smaller values of υ, a slightly different 
interpretation of B is needed, although it still determines the sensitivity of elements of R2 to elements 
of R1.   
2 It is straightforward to verify that this is the case. 
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does not tend to zero as the degrees of freedom increase, although it is of course true 
that ( ) 0~ =∆E . Thus, even in the limiting case of multivariate skew-normality, the 
regression model is non-linear.  
 
Case 3: λ2|1 = 0 
 
A model that is exactly linear with respect to 1R  arises when 0== 21|2

~λλ . In this 
case, the conditional expected value of 2R  given 1r  is 
 

( ) ( ) ( ){ }11212 | RrBRrR EEE −+= . 
 
Where B is as defined above. Although this is a special case, it merits a comment. 
The vector variables 1R  and 2R  have a MEST distribution both jointly and 
individually. When 0== 21|2

~λλ , the conditional distribution of 2R  given that 

11 rR =  is the elliptically symmetric modification of the multivariate Student in 
Section 3.2. The interpretation of this result is that the conditioning variable 

1R accounts for all the skewness in 2R . In view of the linear transformations property 
in Section 3.1, this raises the possibility of creating linear combinations of R  which 
account for the skewness present in all variables. Conversely, it raises the possibility 
that a linear regression model may conceal skewness in the dependent or independent 
variables or in both. 
 
B – Efficient Set Mathematics 
 
For given values of 1θ  and 2θ , the solution to the standard efficient set problem 

( ){ } 1.t.sEmax TT =www 1Ru is the set of equations 
 

( ) 01Σ =−−+ ζθθ 21
T -λµwλλ , 

 
where ζ is the Lagrange multiplier of the budget constraint, which is the n-vectors of 
ones, 1 . A&S show that this leads to an efficient surface as follows. Let the solution 
be *w and define 
 

λµ TTTE wwww === S*,ΣV*,* . 
 
Some algebra gives the following 
 

( ) ( ) ( ){ }1
2

221
2
011200 γγ*Sα*Vγγα/γγ*Sγα*E −−−−+−=− , 

       
where  
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Figure 1  -  A Sketch of Conditional Expected Value 
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Figure 2 – Sketch of the Mean-Variance-Skewness Efficient Surface 
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