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Abstract
In this paperwe present a portablemagnetocardiography device. The focus of this development was
delivering a rapid assessment of chest pain in an emergency department. The aimwas therefore to
produce an inexpensive device that could be rapidly deployed in a noisy unshieldedward
environment.We found that induction coilmagnetometers with a coil design optimised formagnetic
fieldmapping possess sufficient sensitivity ( - /104 fT Hz 1 2 noisefloor at 10Hz) and response
( m -813 fT V 1 at 10Hz) for cycle averagedmagnetocardiography and are able tomeasure depolarisa-
tion signals in an unshielded environment.Wewere unable to observe repolarisation signals to a
reasonablefidelity.We present the design of the induction coil sensor array and signal processing
routine alongwith data demonstrating performance in a hospital environment.

1. Introduction

Chest pain is responsible for one of the highest rates of
emergency hospital visits in industrialised countries
[1] and accounts for a large proportion of hospital
admissions. Statistics show that around 75% of
patients who present at the Emergency Department
with chest pain do not have a cardiac related condition
[2–5], yet they still need to go through a full diagnostic
pathway which can take more than 10 h [2]. This leads
to several thousand people occupying bed spaces
placing an additional burden on health care systems. A
diagnostic that is capable of rapidly stratifying the cases
and removing those patients who do not need an
overnight stay is therefore valuable in both triage and
cost saving [2].

Magnetocardiography (MCG) involves capturing
magnetic field maps (MFM’s) of current distributions
resulting from cardiac action potentials [6–14]. It has
been shown thatMCG gives significant improvements
in diagnostic capability over an ECG [15–26]. Sig-
nificantly, in this respect, it has been demonstrated
that MCG is capable of reliable detection of non-ST-
elevated myocardial infarction (NSTEMI) [15, 22],
which are by definition difficult to detect using ECG.
For this reason all ECGnegative chest pain patients are
treated as having an NSTEMI until other diagnostic
results can be obtained [3]. Hence, the short time to
produce a MCG (typically <10 min measurement)

dramatically reduces the time for diagnosis and
removes otherwise healthy patients earlier in the pro-
cess and is therefore a tool with obvious clinical
benefits.

The principle focus of the current research was the
creation of a portable MCG device that would be cap-
able of providing a rapid assessment of acute coronary
syndrome in an Emergency Department. To meet this
goal, the device requirements are sensitivity to amagn-
etic window of between 0.1 pT and 300 pT, in the fre-
quency range of around 1–40 Hz [27] and a spatial
resolution sufficient to detect anomalies with a spacing
of 10–15 cm (for a sensor operated 10 cm from the
chest wall) [28].

CardiacMFMdevices typically use an array of sen-
sitive magnetometers detectors to collect the magnetic
field of the heart by simultaneously sampling at many
positions across the chest. Sensors include liquid
helium cooled SQUID detectors, which have been
used in commercially available devices for over 40
years [29], and atomic physics detectors and giant
magnetoresistance detectors have also been developed
[27, 30, 31].

These devices are not always suitable for an Emer-
gencyDepartment as the associated apparatus is bulky,
they often require liquid helium, specialist training to
use, they are fixed in place and typically require an
electromagnetically shielded room. In contrast, induc-
tion coil magnetometers have been used several times
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for cardiac magnetic field detection by several authors.
They meet the demands of signal sensitivity [32–37],
they are inexpensive, do not require cooling and can
be run from batteries. However earlier efforts required
noisy high gain amplifiers, large and heavy coils which
are unsuitable for MFM and fixed electronically
implemented gradiometer arrangements. Here we
present a more compact coil design which when com-
bined with modern analog-to-digital converters
(ADC’s) and digital signal processing (DSP) produces
a device capable of detecting the cardiacmagnetic field
with an array of 19 sensors.

We first present the design of the sensors, array
and DSP routine. Then we show that this design has
the capability of resolving the field of the heart within
both shielded and unshielded environments.

2. Apparatus

2.1. Coil design
The most important aspect of this device is the
construction of the sensor elements to achieve both
the sensitivity and required spatial resolution. An
induction coil magnetometer will have an output
voltage determined by

p= =
( ) ( )V AN

B t

t
ANB f

d

d
2 , 1

where N is the number of windings, A is the effective
cross sectional area of the coil, B(t) is the time varying
magnetic field, with a magnitude B, and f is the
frequency of oscillation of the field. The smallest field,
S, that can be detected given thermal Johnson noise
resulting from the winding resistance is given by:
detected given thermal Johnson noise resulting from
thewinding resistance is given by:

p
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where kB is Boltzmans constant, T is the temperature,
Ra is the antennawire resistance given by:

p r= ( )R N a r2 , 3a
2 2

coil

where a is the radius and ρ is the resistivity of the wire
used in the windings on a circular coil of average
winding radius rcoil. Equations (1) and (2) can be used
to find the coil structure with lowest noise level given
the design constraints.

If the coil parameters are the length L, the coil
outer diameter, D, and the coil inner diameter,Di, the
dimensions that give the lowest noise level have the
ratio =D D: 0.425 : 1i . In addition to this we pri-
marily want to measure the component of the magn-
etic field aligned to the axis of the coil. Zilstra [38]
notes that the optimum coil structure to measure the
axial component of the magnetic field is achieved
when =L D 0.69 for the above ratio D Di . The coil
diameter itself is determined according to the desired
device resolution, leaving the radius of the wire only
remaining free parameter in the coil design.

The output voltage of the coil is determined by N.
As all other parameters are now fixed, voltage is deter-
mined exclusively by the wire radius a. A thinner wire
increases the voltage output at the expense of
increased coil resistance and subsequently increased
noise, leading to a fixed signal to noise ratio irrespec-
tive of wire diameter.

Table 1 presents outputs from a simulation of the
coil design presented here (MFM Coil) compared to
the Brooks coil of the same outside dimension and
wire diameter, =a 0.23 mm. A Brooks coil is a special
case in which the ratio of the dimensions are chosen to
optimise inductance for which the ratio of the dimen-
sions are =D D L: : 4: 2: 1i . The current MFM Coil
design has a higher voltage and a lower noise equiva-
lent field at the target frequency of 30 Hz than the
Brooks coil. The noise equivalent field is the smallest
field strength that could be measured above Johnson
noise of the detector. The gains are a factor of 1.6 in
signal to noise and a factor of about 2.9 in output
voltage.

The increased signal size plays a role in the sub-
sequent electronics especially when thermal and John-
son noise in the electronics is similar in size to the
cardiac signal. Overall both effects improve data col-
lection times by a factor of 20. This is important
because, while the gains aremodest, the overall impact
on the design is a significant reduction (more than an
order of magnitude) in the data collection time when
cycle averaging is used.

2.2.Mapping array construction
The commercial ADC we used has 16 channels. One
channel was reserved for the ECG trigger, leaving 15
cardiac magnetometer channels. MFM coils with a
diameter of 7 cm (figure 1) were chosen to cover the

Table 1.Table comparing the classic Brooks coil designwith theMFMcoil design presented in this paper.

Coil D Di L Vout at 1 pT (40 Hz) Noise equivalentfield

MFM 12cm 5.1cm 8.28cm 616 nV 57 fT

Brooks 12cm 6cm 3cm 211 nV 96 fT

MFM 8.5cm 3.6cm 5.87cm 155 nV 136 fT

Brooks 8.5cm 4.25cm 2.125cm 53 nV 227 fT

MFM 4.25cm 1.8cm 2.9cm 9.5 nV 773 fT

Brooks 4.25cm 2.125cm 1.0625cm 3.3 nV 1.3 pT
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measurement area of ~ ´25 25 cm in a hexagonal
array, arranged in order to detect the principle
components of the heartsmagnetic dipole field.

To evaluate the mapping fidelity of this arrange-
ment a COMSOL model of the array was created. The
interaction of the soft iron cores with a static magnetic
dipole field comparable in size to the cardiac dipole
was simulated. Measurements of the flux at the coil
centres were taken as readings equivalent to sensor
output. These outputs were spatially interpolated
using the same technique as used with actual sensor
signals to produceMFM. From theMFM the fieldmap
angle (FMA) was measured from the vector between
the dipole maxima. Figure 2 shows the actual and
measured MFM’s at a fixed angle. The simulated car-
diac dipole was rotated in small increments. At each
increment the difference between the actual angle and
themeasured angle was calculated. Themaximumdif-
ference observed was 15°, with a typical error of 8°.
This uncertainty can be reduced by taking the vector
between pole centroids, this spatially averaged mea-
surement of the dipole vector has a considerably lower
uncertainty of< 1 .

To collect cardiac magnetic fields we designed a
mount to hold up to 19 coils with a hexagonal close
packed layout of sensor locations, see figure 4. The lay-
out, the approximate location against the body and a
system level diagram for data acquisition are shown in
figure 3. Since movement of the coils within the
Earth’s field will induce a current in the coils, they
must be stiffly coupled so that acoustically induced
signals become common mode and therefore remo-
vable by gradiometry. To this end, the mount was
manufactured from a single piece of Acetal engineer-
ing plastic and the coils were securely potted in place.
It was supported above the suppine participant by a

Figure 1.Photograph of the 7 cmdiameter coil sensors used. The 2 cmdiameter core is visible in the centre of the coil bobbin. The
pre-amplifier circuit board ismounted to the coil tominimise the unshielded signal path.DCbattery power is provided via the 4-way
header. The amplified signals are output via an SMB connector into a coaxial cable.

Figure 2.COMSOLmodel of the sensor arraymeasuring an
ideal cardiac dipole field. Figure (a) shows the cardiac dipole
field, which is sampled at the centre of the soft iron cores
shown as black spots. Figure (b) shows the interpolated
measurement of thefield samples. The actual angle and the
reconstructed rotation angle are closelymatched indicating
that an accurate reconstruction is possible with this sensor
array.
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four legged aluminium frame coupled to the floor. The
largemass provided inertial dampening.

2.3.Data acquisition andDSP
To extract signal from the coils with minimum
interference a low noise pre-amplifier ( - /3.5 nV Hz 1 2

at 10Hz)with a gain of ´1000 was placed immediately
above each MFM coil, see figure 5 for details. The
signal was then digitised using a National Instruments
16-channel 2kS s−1 24 bit AC-coupled ADC with a
rail–rail voltage of 316 mV (37 nV sensitivity). Cycle
averaging, filtering and gradiometry were performed
in digital post processing [39].

Cycle averaging used the ECG R-wave rising edge
as a fiducial. The magnetometer signals were sliced in

an interval of 500 ms about the fiducial, these inter-
vals were then averaged. A moving average filter was
applied by convolution of the signal with a 20 ms wide
top hat distribution [40].

In the normal mode of operation of a magnetic
gradiometer it is considered necessary to have exten-
sive shielding or closely matched gradiometer coils.
But matching wire wound induction coils to sufficient
accuracy is effectively impossible. However, in an
array of coils differences in coil sensitivity are reduced
by taking the average, and since the spatial average
over a dipole crossection is zero, the cardiac signal is
not present in this background. Hence, this back-
ground is a bucket detector. Subtracting the bucket

Figure 3. System level diagram; individual pre-amplified sensor signals are acquired by theADC, then processedwithin a computer to
create amagnetocardiogram.
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detector signal from a sensor signal produces a gradio-
metric signal.

Induction coils measure the time derivative of the
magnetic field and not the static field. It is not possible
to accurately construct the static field components by
integrating their signals since the constant of integra-
tion is unknown. Attempting to numerically integrate
yeilds signals with large baseline wander. This makes
induction coil magnetometers not ideal for low fre-
quency field measurement, though their performance
can be improved with a fluxgate arrangement [41] or
mechanical dithering of the sensors [42]. The deriva-
tive signals do not contain reliable absolute amplitude
information, but they contain the same relative ampl-
itude information and therefore the normalised spatial
measurement is unaffected. Therefore the majority of
the diagnostic information is preserved.

3. Results and discussion

3.1. Sensor response and sensitivity
The sensor response was measured by placing one in
the centre of a helmholtz coil pair, applying a
calibrated sinusoidal field and measuring the sensor
output amplitude, as shown in figure 6. The applied
magnetic field amplitude was measured using a
calibrated fluxgate magnetometer. The response is
dependent on the field frequency and for this coil, it is
linear between 1 Hz and 1KHz. The measured
response was m -290 fT V 1 at 30 Hz and m -813 fT V 1

at 10 Hz.
The sensitivity is determined by the inherent sen-

sor noise. To measure the inherent noise the sensor
was placed in a shielded room and 10 min of signal
were recorded. Computing a FFT on this timeseries
gives the amplitude spectral density of the sensor, see
figure 7. This voltage amplitude spectra was converted
into magnetic field amplitude by factoring in the coils
frequency response. The resulting noise floor was

- /104 fT Hz 1 2 at 10 Hz and - /36 fT Hz 1 2 at 30 Hz.

3.2. FirstMCGmeasurements
Now we show that these coils can detect the cardiac
magnetic field with sufficient sensitivity and suffi-
ciently low inherent noise. An MCG was taken in a
shielded environment, where the environmental noise
was low enough to observe dominant sensor noise.
Figure 8(d) shows a rawMCG sensor signal taken from
one of us in a shielded roomwhich had an attenuation
of 40 dB at 1 Hz and a maximum attenuation of
104 dB at 30 Hz. Aproximately 10 min of data were
recorded containing 485 cardiac cycles over 12 coils.
The noise amplitude was approximately 0.6 mV
rms (<73 pT).

The synchronously recorded 3 lead ECG shown
infigure 8(b) was thresholded to find the R-wave ris-
ing edge, this was used as a fiducial for cycle averaging,
which reduced the noise amplitude by a factor of 35
(to <2.1 pT). Then the gradient was calculated by

Figure 4.Photograph of the sensor array. The arraywas
machined out of acetyl engineering plastic, which stiffly
couples the sensors together. This array was then bolted to an
aluminium framewhich supported it above a supine partici-
pant in order to captureMCG.

Figure 5. Schematic of a single sensor channel. TheDCoffset control loop is used to remove drift generated by the amplifier, it
functions as a high pass filter with a cut-off of 1.6 Hz. The amplifier power supply (V+, V−) is supplied by a pair of batteries with local
fixed LDOvoltage regulators.
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subtracting the synthetic bucket detector. However,
this did not reduce the noise amplitude since it was
composed of Johnson thermal noise which is uncorre-
lated across the array. Finally a 20ms wide moving
average filter was applied to notch out the remaining
50 Hz noise and smooth the remaining thermal noise.

The resulting signal has no significant noise
(<150 fT) and resembles the anti-derivative of pre-
viously observed MCG signals [43, 44]. It has a max-
imum amplitude during cardiac depolarisation of
0.05 mV (30 pT).

To analyse the device performance in an unshiel-
ded enironment an MCG was recorded at Leeds Gen-
eral Infirmary, the results are shown alongside the
shielded data infigure 8. Similarly 10 min of data were
recorded, yeilding 482 cardiac cycles. The noise

amplitude is much larger compared to the shielded
room signals at 80 mV (~20 nT), and highly corre-
lated across the array. Cycle averaging reduces this by a
factor of 12. Application of synthetic gradiometry pro-
vides ´10 rejection. The same 20 ms wide moving
average filter is highly effective at removing the
remaining 50 Hz noise and it is harmonics leading to

´500 supression. The resulting signal is the same
amplitude as acquired in the shielded room, however
there is a large coloured noise content.

This coloured noise could be removed by the apli-
cation of more advanced DSP techniques such as
wavelet denoising [45], reference data based nonlinear
denoising as an alternative improvement to gradio-
metry [46], and EEMD for baseline wander removal
[47]. A second layer of coils ontop could provide an

Figure 6.Experiment tomeasure sensor response. A sinusoidalfieldwas created by the helmholtz coils being driven by the signal
generator, the peakfield amplitudewasmeasured using a calibrated fluxgatemagnetometer. Thefluxgate probewas then replaced by a
MFMcoil sensor and the peak amplitude output by the sensor as recorded using the oscilloscope.

Figure 7.Amplitude spectral density of the sensor in shielded (YNIC) and unshielded (LGI) environments, computed by FFT. The
sensor voltage spectral density was computed then the frequency dependent response was used to convert to units ofmagnetic field
amplitude (fT).
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improvement to gradiometer performance as the sec-
ond coils would be coaxial with the first but receive
reduced cardiacmagnetic flux [48].

The sensitivity to low frequency could be increased
by lock-in to a global excitation field provided by a
fluxgate or mechanical dithering arrangement
[41, 42, 49–51].

MFM’s represent the magnetic field at a chosen
instant in the cardiac cycle. They are created by spa-
tially interpolating the sensor amplitudes from a com-
mon time sample. Figure 9 compares the shielded and

unshielded MFM’s at −15 ms, during the magnetic R
wave peak activity.

The dipole angle is consistent between the two
MFM’s. The dipole position is translated between the
MFM’s since the array was only subjectively aligned in
the coronal plane relative to the Xiphoid process. Also
the angle between the coronal and transversal planes
was not precisely controlled, since each bed had a dif-
ferent distribution of padding material. Ideally the
MFMwould be precisely referenced to the individuals
cardiac geometry. This would be invaluable for solving
the inverse problem; estimating the structure of the

Figure 8.Comparison of twomagnetometer signals from the same person takenwith an identical device, with similarly positioned
sensors but in different environments. The SheildedMCGwas acquired in the YorkNeuroimaging center (YNIC). The unsheilded
MCGwas acquired at LeedsGeneral Infirmary (LGI), 16months later. The environmental noise is ´100 larger in LGI. Averaging
reduces the noise amplitude by ´20 . Gradiometry (subtracting the synthetic bucket detector signal) provides ´10 noise reduction at
LGI but does not effect the noise amplitude at YNIC, in this case it reduces the signal amplitude as the dipolemeasurement was not
symmetric. Afinal stage FIRfilter notches out 50 Hz, reducing LGI noise by ´500 and actingmostly as a smoothing filter in LGIwith
´20 reduction. The final signal amplitudes differ by 40%which could be explained by a difference in sensor positioning or

physiological differences. The unshielded signal has a similar level of white noise, but amuch larger coloured noise component.
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underlying current distribution corresponding to the
observedMFM.

The observed dipole angle and size are in good
agreement with past MCG observations of healthy
normals [22]. We therefore anticipate that the signal
has similar diagnostic value.

4. Conclusion

We have presented a new design for a device to
perform MFM and demonstrated that the device
collects useful magnetocardiography data in shielded
and unshielded environments.

The shielded measurements prove that the coil
sensor system has sufficiently low inherent noise for
cycle averaged MCG and sufficient spatial resolution
for FMAmeasurement.

However, operation of the device within an
unshielded environment imposes coloured noise on
the signal of an amplitude comparable to the repolar-
isation signals (ECG T wave). This potentially limits
the diagnostic capability of our device within unshiel-
ded environments. Though the depolarisation signals
(QRS) are reliably observable above this noise. This
result may be improved by the application of recent
developments in denoising algorithms [45–47].

Further clinical testing will be required to deter-
mine if it is capable of detecting recent onset of
NSTEMI in patients with the same accuracy as pre-
vious devices. A future device may want to use more
sensors to increase the measurement area and may
also consider smaller coils to achieve a higher resolu-
tion. The addition of a second layer of coils would pro-
vide a vertical baseline for synthetic gradiometry
which may improve environmental noise suppression
[48]. The low frequency performance could be
improved to reach DC by lock-in to a global excitation
field [41, 42, 49–51].
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