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SUMMARY

The geomechanical analysis of a highly compartmentalized reservoir is performed to sim-

ulate the seafloor subsidence due to gas production. The available observations over the

hydrocarbon reservoir consist of bathymetric surveys carried out before and at the end of

a ten-year production life. The main goal is the calibration of the reservoir compressibility

cM , i.e., the main geomechanical parameter controlling the surface response. Two con-

ceptual models are considered: in one (a) cM varies only with the depth and the vertical

effective stress (heterogeneity due to lithostratigrafic variability); in another (b) cM varies

also in the horizontal plane, that is, it is spatially distributed within the reservoir strati-

graphic units. The latter hypothesis accounts for a possible partitioning of the reservoir

due to the presence of sealing faults and thrusts that suggests the idea of a block hetero-

geneous system with the number of reservoir blocks equal to the number of uncertain

parameters. The method applied here relies on an ensemble-based data assimilation (DA)

algorithm (i.e., the Ensemble Smoother, ES), which incorporates the information from the

bathymetric measurements into the geomechanical model response to infer and reduce the
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uncertainty of the parameter cM . The outcome from conceptual model (a) indicates that

DA is effective in reducing the cM uncertainty. However, the maximum settlement still

remains underestimated, while the areal extent of the subsidence bowl is overestimated.

We demonstrate that the selection of the heterogeneous conceptual model (b) allows to

reproduce much better the observations thus removing a clear bias of the model structure.

DA allows significantly reducing the cM uncertainty in the five blocks (out of the seven)

characterized by large volume and large pressure decline. Conversely, land subsidence

can constrain only partially the partitions that marginally contributes to the cumulative

displacements of the seafloor.

Key words: geomechanics – parameters identification – seafloor subsidence – hetero-

geneity – compartmentalized reservoirs

1 INTRODUCTION

The prediction of the subsurface compaction of producing hydrocarbon fields is an important issue

within the general reservoir management framework. Undesirable impacts such as casing deforma-

tions and wellbore failures (Hilbert et al. 1999; Fredrich et al. 2000; Sayers et al. 2006) must be

prevented to reduce significant economical risks and ensure the maximum safety of the drilling oper-

ations. Moreover, the forecast of the land subsidence caused by the compaction of the rock formation

can be of major importance. Indeed, the surface settlement can cause, in the case of offshore reser-

voirs, platform sinking, as observed at the Ekofisk field in the North Sea (Kristiansen & Plischke

2010), pipeline deformation and a certain environmental impact particularly in coastal areas (Morton

et al. 2006; Baù et al. 2000; De Waal 2012).

Geomechanical simulators have long been recognised as important tools to predict land subsidence

during and after field operations, as well as to evaluate the risks associated with it. However, numerical

modelling of the reservoir geomechanical response to fluid extraction is affected by several sources

of uncertainty, such as the rock mechanical properties, the geological structure of the reservoir, and

the initial stress regime. In light of the above, establishing a probabilistic framework may provide a

powerful strategy to cope with the problem uncertainties and to constrain our knowledge of the system.

The major geomechanical parameter influencing rock compaction is the vertical uniaxial rock

compressibility cM (van Hasselt 1992; Baù et al. 2002; Hueckel et al. 2005). An overview of the

methodologies used to estimate cM is given in Ferronato et al. (2004, 2013). This parameter can be
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evaluated from either laboratoy tests or in situ field investigations. In the former category, core samples

are tested in compaction devices, which aim at replicating the loading conditions expected in the reser-

voir. Most often, these conditions are hard to reproduce in the laboratory, which can result in significant

errors of estimation of the reservoir rock properties. As to the latter category, the radioactive-marker

technique (RMT) was developed in the 1990s and 2000s to estimate rock properties based on direct

measurements of the reservoir compaction (Cassiani & Zoccatelli 2000; Baù et al. 2002; Kristiansen

& Plischke 2010). With the RMT, the reservoir compaction is measured by monitoring the variation

of the vertical distance between a series of isotope markers shot into the formation through logging

boreholes. Despite the improved results with respect to laboratory techniques, the interpretation of

RMT data remains affected by uncertainties and caution to their use is recommendable (Ferronato et

al. 2003, 2004). For example, radioactive markers need to be installed in non-producing wellbores, as

the presence of a horizontal pressure gradient may lead to underestimating cM . In addition, a detailed

knowledge of the reservoir lithostratigraphy is needed to optimally position the radioactive markers

and correctly interpret the corresponding measurements.

Values of cM can be also “inverted” using observations of ground movement obtained, for ex-

ample, with satellite Interferometric Synthetic Aperture Radar (InSAR) measurements (Ferronato et

al. 2013). Teatini et al. (2011) used these type of measurements to calibrate a finite element (FE)

transversely isotropic model to simulate the behaviour of an underground gas storage (UGS) reservoir

in Italy. The methodology provided an indirect estimate of the cM in loading/reloading conditions.

Moreover, 4D seismic data, that is, time-lapse 3D seismic surveys, can be used as indirect information

for the prediction of reservoir petrophysical properties (Mezghani et al. 2004; Hatchell & Bourne

2005; Herwanger & Horne 2009).

Since each of the measurement methods presented above is affected by uncertainties, it is ad-

visable to select data with caution and develop procedures to integrate different and seemingly inde-

pendent sources of information, as well as validate simulation results. In this work, we apply a data

assimilation (DA) framework to infer the reservoir rock compressibility cM and reduce the uncertain-

ties in its estimation. DA is an analysis technique that allows for incorporating observations from a

dynamical system into a simulation model solution to reduce the uncertainty in the forecast of the

system state. In reservoir history-matching applications, DA has been used to update the dependent

variables of multiphase flow models, such as pressure and saturations, and as an inverse modelling

tool to “condition” model parameters, such as porosity and permeability, based on the observed data

(e.g. Lorentzen et al. 2003, Nævdal et al. 2003, Gu & Oliver 2005, Skjervheim et al. 2011, Emerick &

Reynolds 2013).

The estimation of geomechanical parameters via DA is a fairly new application. Fokker et al.
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(2013) employed measurements of ascending and descending line-of-sight displacements from In-

SAR to calibrate the compaction coefficient and the subsurface basement elastic modulus for the

Bergermeer gas field in the Netherlands. Baù et al. (2014) presented an Ensemble Smoother (ES),

i.e., an ensemble-based DA approach, to joint assimilate horizontal and vertical land surface displace-

ments into a hypothetical reservoir model based on Geertsma’s analytical solution (Geertsma 1973).

A real-world application is presented by Zoccarato et al. (2016), in which the ES is used to reduce

the uncertainty on the constitutive parameters characterizing a transversely isotropic geomechanical

model of a UGS reservoir. The calibrated parameters are homogeneously distributed in the domain,

although the heterogeneity due to the lithostratigrafic variability according to the dependency of cM

on the depth, z, and the vertical effective stress, σz is properly accounted for.

In this study, an ES parameter estimation technique is developed and implemented using seafloor

bathymetric observations, collected over an offshore gas reservoir, the Maja field. Two conceptual

models for cM are selected and compared. As in Zoccarato et al. (2016), the first conceptual model

assumes cM dependent on z and σz on account of a basin-scale variability due to lithostatic loading.

In the second conceptual model, cM varies not only with respect to z and σz , but also horizontally, that

is, it is assumed to be spatially distributed within the reservoir layers. This assumption is justified by

the strong compartmentalization of the Maja reservoir, which is physically partitioned into separate

blocks, or zones, by a complex system of faults and thrusts. To our knowledge, this is the first attempt

to calibrate cM as a three-dimensional field.

The constitutive law of cM versus σz is assumed to be known from previous basin-scale charac-

terizations from RMT surveys (Baù et al. 2002; Ferronato et al. 2013). The horizontal heterogeneity

is introduced into the model by means of a horizontally varying function fcM (x, y), which multiplies

the cM (σz) constitutive law. Note that we do not aim to derive a new basin-scale compressibility re-

lationship, but rather to infer local (at the scale of the reservoir) heterogeneities of cM by inverting

surface displacement observations.

This paper is organized as follows. Section 2 describes the major components of the methodology

followed in this work. These consist of the reservoir dataset available for the Maja gas field, the ge-

omechanical model, the available observations of surface displacements, and the ES algorithm used to

estimate the geomechanical model parameters. Section 2 also gives a detailed description of the two

conceptual models used for represent the heterogeneity of the cM field. The results of the numerical

forecast and the application of the inversion algorithm are presented in Section 3, along with a dis-

cussion (Section 4) on the adequacy of the adopted conceptual models. The conclusions that can be

drawn from this work are summarized in Section 5.
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Figure 1. South-North interpreted seismic section through the Maja reservoir.

2 METHODOLOGY

Our approach relies on the combination of a reservoir geomechanical model, data of surface displace-

ments observed over the Maja reservoir and a DA framework that merges the latter into the results of

the former. These elements are presented in the following.

2.1 The Maja Gas Field

The Maja field is an offshore gas reservoir that was developed over a period of ten years starting in the

late 1990s. The field location cannot be published to comply with a confidentiality agreement made

with the operator managing the gas field. Gas was produced from three main gas pools A, B, and

C hydraulically disconnected from one another (Fig.1). The fluid pore pressure distribution in these

layers is obtained with the reservoir multiphase simulator ECLIPSETM through history matching

of the measured wellbore fluid pressures and gas production rates. Maps of the pressure change, ∆P, at

the end of the ten-years production life of the reservoir are shown in Fig.2(b-d). The gas bearing pools

are subdivided into different compartments delimited by sealing faults and/or thrusts as shown in the

schematic representation of the fault-block distribution of Fig. 2a. The reservoir compartmentalization

is derived from 3D seismic survey and accordingly supported by the pressure change in the geologic

blocks measured during the field production.

The largest ∆P reached -75 bar in the intermediate pool B (Fig.2c) at the end of the field produc-
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Figure 2. (a) Schematic representation of the fault-block distribution within the Maja gas reservoir and (b)-(d)

maps of the pressure change ∆P occurring in layer A, B, and C. The pore pressure variation is experienced over

ten years of production.

tion. The aquifer hydraulically connected with pool B is significantly compartmentalized and divided

into three blocks with an average ∆P ∼ -20 bar, -45 bar, and -30 bar. Pool A shows a different pressure

distribution with ∆P varying from a -45 bar to -18 bar. Negligible ∆P is found in the deeper gas pool

C except for the central blocks.

The reservoir porosity φ varies from 15% to 29%. In pools A and B, the horizontal permeability

kh ranges from 30 to 250 mD and from 13 to 680 mD, respectively. In pool C, kh equals 13 mD. The

vertical permeability kv is 0.1kh.

2.2 Reservoir Geomechanics

The subsurface deformation is a major consequence of the pore pressure change in space and time

due to the injection or the extraction of fluids. The numerical solution of the governing flow and the

structural partial differential equations (PDEs) is required to simulate the deformation up to the land

surface. With the so-called “one-way” coupling approach, the fluid pore pressure variation obtained

with a reservoir multiphase flow simulation is used as forcing term in a geomechanical model to
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Figure 3. Scale basin constitutive laws, cM vs. z and cM vs. σz for the Maja gas field (modified after Baù et al.

(2002)).

simulate the ensuing surface motion. In this work, the geomechanical behavior of the reservoir is

simulated using a FE poro-elasto-plastic model (Gambolati et al. 2001; Janna et al. 2012). The

isotropic relationship between the incremental effective stress σ and strain ǫ vectors reads:

dǫ = Cdσ ⇒
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(1)

where E and ν are the Young and Poisson moduli, respectively. E and ν are linked to the vertical

uniaxial compressibility cM through the well known relationship cM= [(1+ ν)(1− 2ν)]/[E(1− ν)].

For the Maja gas field, cM varies accordingly with the hypo-plastic relationship developed by Baù

et al. (2002) and improved by Ferronato et al. (2013). This model is described in Fig. 3. Initially, that

is, before the field development, cM is distributed depending exclusively on the depth z. Depth and

vertical effective stress σz are linked through the Terzaghi relationship σz(z) = ovb(z)·z−p(z) where

ovb(z) is the overburden gradient derived from density log and p(z) is the initial fluid pressure. During

production cM varies with σz , which is increased due to the reduction of fluid pressure associated with

gas production from the reservoir.
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Figure 4. (a) Axonometric view of the 3D Finite Element (FE) grid of the geomechanical model of the Maja

gas field with the colored elements corresponding to the productive units of the (b) reservoir production model.

The colors in (b) are representative of the reservoir layers.

Fig. 4 depicts the three dimensional grid used to discretize the geological setting in which the Maja

reservoir is embedded. This grid is made up by 320,901 nodes and 1,824,768 tetrahedral elements and

covers a domain of 52 km×49 km×5 km (Fig. 4a). Reservoir layers in pools A, B, and C (Fig. 4b),

which are subject to pressure variation, include a total of 54,720 elements. No-displacement conditions

are prescribed on the lateral and bottom boundaries of the domain, whereas its top, that is, the seafloor,

is assumed traction-free.

2.3 Bathymetric survey data

The bathymetry is the measurement of the depth of a water body, corresponding to the topography

on the land surface. The difference between two bathymetric surveys conducted at different times

provides the variation of the depth profile, that is the differential displacement that occurred from

the initial to the final time. Bathymetric surveys are powerful tools to monitor the subsidence of the

seafloor over large areas due to the production of fluids from offshore reservoirs (e.g. Ottemöller et

al. (2005); De Paulis et al. (2011)). These data are acquired from a moving ship using a multi-beam

echosounder system, which emits sound waves and measures the travel time that the wave takes to

bounce off the seabed and return back to a receiver. Travel time data are then processed to produce

maps of the water depth over the area covered by the survey. In the case of the Maja reservoir, bathy-

metric data have been collected both at the start and at the end of gas field operations. Multi-beam

acquisitions have provided a map of the seafloor subsidence caused by gas production over 10 years

as shown in Fig. 5. For confidentiality reasons, the contour lines are normalised to the measured peak

value, umax.
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Figure 5. Subsidence contour-lines derived from multi-beam bathymetric surveys over the Maja gas field. The

measured values are normalized to the value of the maximum displacement, umax. The trace of the gas reser-

voir is highlighted by red color while the dashed rectangle refers to the one in Fig. 2. The blue dots are the

assimilation data points.

2.4 Data Assimilation Framework

DA methods aim at constraining the forecast solution of a mathematical model based on spatio-

temporal observations collected from the response of a dynamical system. Including the observations

from past and present times into a simulation model allows for reducing uncertainties in the system

forecast. DA application to geophysical models in atmospheric and oceanographic sciences dates back

only a few decades (Burgers et al. 1998; Evensen 1994, 2003; Evensen & van Leeuwen 2000). In

most applications, DA involves the use of algorithms derived from the Kalman Filter theory (Kalman

1960), such as the Ensemble Kalman Filter (EnKF) (Evensen 1994). The EnKF is a DA method

in which system observations are integrated into the response of a simulator sequentially, that is, as

they become available in time. The EnKF relies on a two-step forecast-update process. The forecast

step relies on the solution of the forward model equations with a Monte Carlo simulation, which ac-

counts for the uncertainty on model inputs, such as stress terms and system parameters. In the update

step, the system state variables are statistically conditioned in order to resemble the available system

observations.

DA gained attention in reservoir simulation in the early 2000s, as it became clear it could be

used to reduce uncertainties on model parameters based on observations of the system, that is, as

stochastic inverse modeling tool. A complete review of the application of DA techniques in petroleum

engineering is given in Aanonsen et al. (2009).
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2.4.1 The Ensemble Smoother

In this work, the ES is used for reservoir inverse modelling. The ES relies on a forecast-update process

similar to the EnKF, yet the system observations at different times are assimilated all at once, as

opposed to sequentially. As such, the ES is able to condition system states at all times and invariant

model parameters with a single forecast-update sequence. Here, we present a brief review of the ES

using the Bayesian formalism introduced by van Leeuwen and Evensen (1996).

Assume u, α and d as the aleatory variables representing the predicted data, the model parameters

and the set of available measurements, respectively. The ES scheme is derived from Bayes’ rule and

the concept of conditional probability. The joint probability distribution function (PDF) of the model

state and parameters conditional to the available dataset, f [(u,α)|d], is given by

f [(u,α)|d] =
f [(u,α)]f [d|(u,α)]

f(d)
(2)

In Eq.(2), f [(u,α)] is the joint PDF of the model prediction and parameters, f [d|(u,α)] is the PDF

of the data given the model states, also know as likelihood function, and f(d) is a normalisation factor.

Using Bayes’ rule, Eq. (2) can be rewritten as

f [(u,α)|d] ∝ f(α)f(u|α)f [d|(u,α)] (3)

In the ES formulation, u is a vector including the predicted data u1, ...,uK at a given number K of

time steps, whereas the vector d is formed by the system observations d1, ...,dJ at a subset of J time

steps (J ≤ K). Assuming both model and measurement as first-order Markov processes, Eq. (3) can

be expanded to

f [(u1, ...,uk,α)|(d1, ...,dJ)] ∝ f(α)
K
∏

i=1

f(ui|ui−1,α)
J
∏

j=1

f [dj |(ui(j),α)] (4)

In a linear Gaussian framework, the left-hand side of Eq.(4) is also Gaussian and the variance minimiz-

ing solution equals the maximum likelihood estimate (Evensen & van Leeuwen 2000). In particular,

the ES updating equation for a parameter estimation problem is well known and reads:

α
a = α

f +C
f
UΨ

(

C
f
UU +Cǫǫ

)

−1 (

z − u
f
)

(5)

where α
f and α

a are the parameters vectors prior and after the assimilation of measurements, i.e.,

the forecast and the update ensembles, respectively. C
f
UΨ is the cross-covariance between the prior

parameter vector αf and predicted data u
f , Cf

uu is the covariace of the predicted data u
f , and Cǫǫ

is the measurement error covariance matrix. The vector z holds the observations of the predicted data

perturbed with an error sampled from a Gaussian PDF with zero mean and variance σ2
ǫ .
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2.5 Parameter Uncertainty and Heterogeneity

Preliminary FE geomechanical simulations indicate that the land subsidence estimated using the con-

stitutive law shown in Fig. 3 is significantly lower than the differential bathymetric observations

(Fig. 5). The reasons why this happens are possibly twofold. One is a local departure of the cM (σz)

constitutive law with respect to the basin-scale average estimated by Baù et al. (2002). Another is a

reservoir scale heterogeneity of cM . To verify these hypotheses a multiplier fcM of the cM constitu-

tive model of Fig. 3 is introduced. The importance of heterogeneity is addressed by comparing two

conceptual models, termed CM1 and CM2, which are described in the following.

2.5.1 Conceptual Model 1 (CM1)

In CM1, cM varies initially with respect to the depth z but is horizontally constant. fcM is thus a spa-

tially constant random variable, which is sampled from a prior PDF in order to generate the ensemble

necessary to run the geomechanical model forecast. In this case, a uniform PDF within the range 1-10

is selected:

fcM ∼ U [1, 10] (6)

The limits of this PDF are determined after preliminary geomechanical simulations that indicate the

selected range is likely to include the fcM values needed for the simulated land subsidence values to

be of the same order of magnitude of the available observations. Note that fcM is applied only within

the regions of the geomechanical model domain where the variations of pressure occur (Fig. 4b). The

horizontal trace including these regions is depicted in Fig. 6a,b. The cumulative distribution function

(CDF) of the prior ensemble for fcM is shown in Fig. 7. The CDF is approximately linear and departure

from linearity is due to the finite size of the ensemble, nMC=100.

2.5.2 Conceptual model 2 (CM2)

In CM2, the initial cM is heterogenous both vertically and horizontally. Vertical variability is the same

as in CM1, whereas the horizontal one is explained by assigning fcM as a two dimensional random

process. The ensuing conceptual model is intended to better match the observed land subsidence dis-

tribution (Fig. 5) by accounting for the geological structure of the Maja reservoir, which is strongly

compartmentalized (Figs. 1,2).

As for CM1, fcM is applied to the regions of the geomechanical model including pools A, B, and

C (Fig. 4b). Fig. 6c shows the compartmentalization adopted in CM2. The subdomain is partitioned

into seven zones based on the distribution of sealing faults and thrusts detected from 3D seismic data.

The traces of these zones are shown in Fig. 6(c). fcM is uniform in each zone, but varies from one
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(a)

(b)

(c)

Figure 6. (a) 2D view of the geomechanical model grid (see Fig. 4(a)), (b) fcM distribution in CM1 (single

random variable), and (c) f
(i)
cM distribution in CM2 within the reservoir blocks (seven random variables).

Figure 7. Prior sample Cumulative Distribution Function (CDF) of fcM (CM1).
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to another. In practice, fcM is modeled as a random process characterized by seven random variables

(f
(1)
cM ,f

(2)
cM ,...,f

(7)
cM ), each of which is sampled from a uniform PDF within the range 1-10:

f (i)
cM

∼ U [1, 10] i = 1, 2, ..., 7 (7)

The CDFs of the model parameters f
(i)
cM (i = 1, 2, ..., 7) are similar to the one of Fig. 7 (nMC=100).

No spatial correlation is hypothesized for the f
(i)
cM variables, thus they are considered as statistically

independent. The mean µfcM
and the standard deviation σfcM

of the ensemble approximate with

reasonable accuracy the respective theoretical vales of 5.5 and 2.6 for the uniform PDF U [1, 10].

3 RESULTS

In this section, the forecast of the vertical displacements obtained with the Monte Carlo geomechanical

simulations and the parameter updating via the ES algorithm are described in detail for both conceptual

models 1 and 2. Furthermore, the updating of the seabed subsidence is carried out with the calibrated

multiplier fcM as constrained in the analysis step.

3.1 Homogeneous fcM (CM1)

The forecast Monte Carlo geomechanical simulation is run using a prior ensemble of fcM realizations,

whose CDF is shown in Fig. 7. The results of this simulation are summarized in Fig. 8, which shows

the maps of the mean µv,prior (subpanel a), and the coefficient of variation Cv,prior (subpanel b) of

the vertical surface displacement field at the end of the ten-year reservoir production life. Note that

µv,prior is normalized to umax. Cv,prior provides an estimate of the variability of the ensemble.

The comparison of the observed land subsidence (Fig. 5) and µv,prior (Fig. 8a) is shown in Fig. 9.

The simulated peak displacement value is slightly shifted to the west and the extent of the simulated

subsidence bowl is significantly larger than the observed one. Consequently, the µv,prior largely over-

estimates the measured subsidence over the reservoir area. A Cv,prior of about 24% is found over

the central portion of the simulated area with a progressive decrease toward the outer regions of the

domain.

Parameter updating is performed by assimilation of data from the bathymetric survey. The full

dataset consists of 1110 measurements of vertical surface displacement over the reservoir area, which

are interpolated to obtain the map given in Fig. 5. However, only the subset of 30 observations at the

locations shown in Fig. 5 is used for parameter estimation. These data points are chosen such that their

interpolation over the domain resembles with sufficient accuracy the subsidence map obtained with

the full dataset.

Two scenarios A and B are investigated, which differ with respect to the value of σǫ assigned to the
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Figure 8. CM1: forecast ensemble of the seabed subsidence over the reservoir domain in terms of (a) mean,

µv,prior, normalized to umax, and (b) coefficient of variation, Cv,prior. The trace of the gas reservoir is marked

by the red line.

measurement error. In scenario A, a value σ
(A)
ǫ = 0.0625 is assumed for all data. This value is deemed

representative of the accuracy of the bathymetric measurements. In this scenario, all observations are

given the same weight in the assimilation.

In scenario B, σ
(B)
ǫ is spatially variable in relation to the distance of the measurement points from

the location where the the maximum displacement umax has been observed. In particular, σ
(B)
ǫ is

assigned a value of 0.025 at the seabed subsidence peak and a value of 0.125 at the farthest loca-

tion, where the subsidence is smaller and the measurements considered more uncertain. All other data

points are characterized by a σ
(B)
ǫ value computed by linear interpolation between the two endpoints

in relation to the radial distance from the location of the subsidence peak. In this scenario, measure-

ments away from the centre of the subsidence bowl are given a lower weight than those closer to the
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Figure 9. CM1: comparison between the measured subsidence (red contour-lines) and the mean of the forecast

subsidence, µv,prior, (Fig. 8a).

displacement peak. Fig. 10 shows the measurement error PDFs for the representative measurement

points P1, P2 and P3.

The results of the calibration are summarized in Fig. 11, which shows the posterior CDFs for fcM

in both scenarios A and B. The prior CDF of fcM (Fig. 7) is also included for direct comparison.

A drastic reduction in the parameter uncertainty, as explained by the spread of the sample CDF, is

achieved by assimilating vertical displacements from the time-lapse bathymetric surveys. One could

observe, however, that the results of scenarios A and B differ, with the updated CDF in scenario A

completely to the left of the CDF in scenario B. This a direct consequence of the assigned measurement

(b)

P1

P1

P1

Figure 10. (a) Bathymetric map (Fig. 5) with the location of points P1, P2, and P3 used to exemplify the error

distribution in scenario B (CM1). (b) PDFs of the measurement errors at P1, P2 and P3: ǫ(B) ∼ N [0, σ
(B)
ǫ ]

grows as the point distance increases from the centre of the subsidence bowl.
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Figure 11. CM1: prior and posterior CDFs of the updating model parameter fcM for scenario A and B.

errors. In scenario A, all data carry the same weight in the assimilation, and the ES produces an updated

ensemble for fcM that attempts to honor all observations regardless the displacement intensity. In

scenario B, a larger weight is given to larger vertical displacements and the ES yields an ensemble

of higher fcM values that tends to honor more larger displacement observations, at the center of the

subsidence bowl, and less lower displacement observations at the margins of the reservoir.

These results imply that the updated fcM ensemble in scenario A leads to a narrower land subsi-

dence bowl (in a probabilistic sense), which tends to underestimate the observed larger displacements

in order to honor also the lower displacements. On the other hand, the land subsidence bowl in scenario

B is wider (in a probabilistic sense) and better matches the observed larger displacements, whereas the

displacements observed toward the margins of the reservoir are likely overestimated.

To confirm these hypotheses, the updated fcM ensembles are used to run a “posterior” geomechan-

ical simulations. Fig. 12(a) and 12(b) show the profiles of the seafloor subsidence mean after ten-years

of gas production obtained for scenarios A and B and compared to the bathymetric observations. As

expected, increasing the mean value of the multiplier fcM from scenario A to scenario B yields:

(i) a reduction of the maximum subsidence underestimate;

(ii) an enlargement of the subsidence bowl.

These contrasting effects suggest that a better match of the observations cannot be achieved assuming

fcM as a single random variable within the whole model. These results point to the use of a spatial

variablity of fcM , as previously discussed in Section 2.5.2.
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Figure 12. CM1: profiles of the mean seabed subsidence µv,post along (a) section A-A and (b) section B-B

traced on the top map. Scenario A and B are compared with the bathymetric profile. Note that the subsidence

values are normalized to umax.

3.2 Heterogeneous fcM (CM2)

The prior ensemble of heterogeneous fcM realizations, generated as in Section 2.5.2, is run to from

the forecast ensemble of the surface vertical displacements over the geomechanical model domain. As

in CM1, the simulation spans the ten-year production period and the ensemble size nMC equals 100.

The results of the forecast Monte Carlo simulation are summarized in Fig. 13, which shows the maps

of the mean and the coefficient of variation of the surface vertical displacement. The peak subsidence

value from the forecast ensemble mean is equal to 1.01umax. The comparison of Fig. 8a and Fig. 13a

indicates that CM1 and CM2 produce similar outcomes in terms of forecast seabed subsidence mean.

By contrast, the coefficient of variation takes on higher values with CM2 (Fig. 13b) than with CM1

(Fig. 8b).

Fig. 13b points out that the pattern of Cv,prior resembles the hypothesized spatial distribution of

fcM shown in Fig. 6, which relies on the compartmentalization of the reservoir. Moreover, Fig. 13b

shows that the statistical variability of surface displacement is more pronounced over the zones charac-
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Figure 13. CM2: maps of (a) the mean and (b) the coefficient of variation of the forecast ensemble of seabed

subsidence over the reservoir domain. The mean values are scaled to the maximum measured vertical displace-

ment.

terized by larger areal extent and higher values of ∆P. In particular, Cv,prior reaches maximum values

of 0.43 and 0.45 in zones 2 and 4, respectively, whereas in zones 1, 5, 6, and 7 it is not exceed 0.36.

For CM2, the update step is carried out similarly to CM1, except that seven fcM parameters - as

opposed to one - are estimated by inverting the vertical displacement measured over the 30 locations

shown in Fig. 5. In this case, the standard deviation of the measurement error σǫ is assumed uniformly

distributed for all measurements and equal to 0.0625. The results from the ES are presented in Fig. 14a

and Table 1. Fig. 14a shows the posterior CDFs for the fcM value in the seven zones shown in Fig. 6.

The prior CDF of fcM (Fig. 7) is also included for direct comparison. Table 1 reports the major

statistics of the updated fcM ensembles in the seven reservoir zones.

The ES has the effect of steering the fcM ensembles toward different values in the seven zones

charactering CM2, which are somehow quantified by the mean and the median of the updated ensem-
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Table 1. Statistics from the posterior f
(i)
cM ensembles. Note that the mean µfcM

and the standard deviation σfcM
of the prior ensemble are equal to 5.5 and 2.6,

respectively.

zone # mean median std. dev.

µfcM
mcM σfcM

1 3.05 2.91 0.89

2 3.59 3.58 0.28

3 9.67 9.57 1.14

4 2.02 2.08 0.64

5 2.92 2.77 1.65

6 2.69 2.66 0.50

7 1.46 1.47 0.51

bles (Table 1). Fig. 14a shows that the spread of the posterior CDF of fcM is shrunk significantly for all

zones with respect to the prior CDF. The σfcM
values given in Table 1 indicate that the spread varies

significantly among zones. The largest value of σfcM
is found in zone 5, the easternmost in Fig. 6.

The contribution to the surface displacements from the deep deformation of block 5 is likely less sig-

nificant than for the other blocks because the pressure variation ∆P is relatively smaller. Indeed, the

constraint of f
(5)
cM is more difficult to obtain.

Table 1 shows that for all zones the median and the mean of the updated parameter ensemble are

very similar, which indicates that the posterior PDFs are reasonably symmetric. The updated means

µfcM
are typically lower than the mean (5.5) of the prior ensembles, except for zone 3 where such

mean equals 9.67. This value almost exceeds the upper support value of the prior PDF U [1, 10] (Eq. 7).

Thus, the ES analysis suggests that higher values for f
(3)
cM are required to match the measured seafloor

settlement. Moreover, the posterior PDF is quite spread around the mean value indicating that this

parameter is hardly constraint by the ES. Indeed, zone 3 is rather small and the model response is not

sufficiently affected by the variation of the f
(3)
cM values. The largest reduction of the ensemble spread

is achieved for zone 2.

The updated parameter ensemble is used to run the posterior geomechanical simulations and the

map of the mean of the surface displacement after ten-years of gas production is shown in Fig. 14b.

The extent of the seabed subsidence bowl is smaller than that shown in the profiles of Fig. 12 for CM1.

In the next section this different is further discussed.
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Figure 14. CM2: (a) posterior CDFs of the random variables f
(i)
cM after assimilation of vertical displacements

data and (b) updated subsidence map after ten-year of gas production using the calibrated f
(i)
cM and normalized

to umax.

4 DISCUSSION

Fig. 15 summarizes, in quantitative terms, the effectiveness of the ES procedure for the two conceptual

models addressed in this study. The figure shows maps of the percentage error, calculated as δ =

100×(umeas−usim)/|umeas|, where umeas and usim are the measured and simulated surface vertical

displacements over the reservoir domain. Figs. 15a and 15b relate to CM1, for scenarios A and B,

respectively. Figs. 15c relates to CM2. Positive δ values indicate model underestimation, i.e., the

simulated displacements smaller than the observations.

Scenarios A and B (CM1) are characterized by similar spatial distributions of δ. The average

percentage error, µδ equals -36% in scenarios A and -51% in scenario B. The standard deviation σδ is

51% and 57% in A and B, respectively. Negative δ is observed in the majority of the mapped region

showing that CM1 leads to generally overestimating the seabed subsidence. By distinction, positive δ
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Figure 15. Distribution of the percentage error δ over the area with measured subsidence larger than 0.1 for (a)

CM1-Scenario A, (b) CM1-Scenario B, and (c) CM2. Positive (red) and negative (blue) values are representative

of a model underestimation and overestimation, respectively. The black contour-lines provide the normalized

measured subsidence (Fig. 5).
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values are located in the areas where the measured subsidence is greater than about 0.6. In particular,

at the location where the largest surface displacement has been observed (point M in Fig. 15), values

of +34% and +26% are found in scenario A and B, respectively.

Adopting model CM2, the spatial distribution of δ results much less variable than in the case of

CM1 (Fig. 15c). The values of µδ and σδ are equal to +4% and 32%, respectively. At point M, the

model underestimation reduces to +22% thus indicating that an higher fcM in this area may help to

improve the misfit between simulation and observations. However, the overestimation over the aquifer

obtained with CM1 is almost removed by adopting CM2.

The comparison of the maps in Fig. 15 clearly points out that CM2 allows for a significantly im-

proved matching of the observed surface displacements with respect to CM1. The less constraints are

prescribed to the model, i.e., a cM heterogeneous distribution, the better the model solution adapts

to the observed response. However, the enlargement of the parameter space may lead to run a too

large number of Monte Carlo simulations to adequately sample the posterior PDFs. Indeed, the model

parametrization is crucial, in particular in real applications where an high computational cost is re-

quired for each model run. In this sense, the previous knowledge from the geological structure of the

reservoir, such as the compartmentalization derived from the presence of sealing faults/thrusts, may

help improving the characterization of the field.

5 CONCLUSIONS

The ES algorithm provides an efficient tool for reservoir parameter estimation using observations of

seafloor subsidence, i.e., vertical displacements measured through time-lapse bathymetric surveys.

These data represent a significant indirect information of the rock formation properties. In particular,

the ES allows for the characterization of the reservoir vertical uniaxial compressibiltiy, cM , namely

the geomechanical parameter that mostly controls the reservoir compaction due to the pore pressure

depletion during fluid production. The method is herein tested on a real offshore gas reservoir with a

highly complex distribution of sealing faults and thrusts that are also used to characterize the geome-

chanical properties of the reservoir. The major conclusions can be summarized as follows:

(i) data of seafloor displacements can be helpful to derive the mechanical properties of a gas reser-

voir;

(ii) weighting their observations based on the reliability affects the outcome of the updating scheme;

(iii) using the reservoir geologic structure may improve the reservoir characterization;

(iv) the ES constrains the prior PDF of the heterogeneous geomechanical parameters in the portions
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of the reservoir contributing considerably to the observed subsidence, e.g., where the pressure change

and the compacting volume are significant;

(v) the assumption of a heterogeneous parametrization for the compressibility, i.e., a different value

of cM , in each reservoir block may provide a better matching of the seafloor subsidence compared to

the case of a uniform cM .

Further improvements will focus on the validation of the above results using different data sources

including compaction measurements from RMT. Moreover, the compressibility law could be revisited

in light of the fact the only one law for the whole reservoir may not prove satisfactory results to address

the local reservoir geomechanical behaviour.
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Baù, D., Ferronato, F., Gambolati, G., Teatini, P., & Alzraiee, A., 2015. Ensemble smoothing of land subsi-

dence measurements for reservoir geomechanical characterization. Int. J Numer. Anal. Meth. Geomech., 39,

207–228.

Bouttier, F., Courtier, P., 1999. Data assimilation concepts and methods. Meteorological training course lecture

series. ECMWF, 1–58.

Burgers, G., van Leeuwen, P. J., Peter & Evensen, G., 1998. Analysis Scheme in the Ensemble Kalman Filter.

Monthly Weather Review, 126, 1719–1724.

Cassiani, G., & Zoccatelli, C., 2000. Subsidence risk in venice and nearby areas, Italy, owing to offshore gas

fields: A stochastic analysis. Environmental & Engineering Geoscience, 6, 115–128.

De Waal, J.A., Roest, J.P.A., Fokker, P.A., Kroon, I.C., Breunese, J.N., Muntendam-Bos, A.G., Oost, A.P.

& van Wirdum, G., 2012. The effective subsidence capacity concept: How to assure that subsidence in the

Wadden Sea remains within defined limits? Netherlands Journal of Geosciences, 91-3, 385–399.

Emerick, A. A., Reynolds, A. C., 2013. Ensemble smoother with multiple data assimilation. Computers &

Geosciences, 55, 3–15.
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