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Abstract

A reduced description of shear flows motivated by the Reynolds number

scaling of lower-branch exact coherent states in plane Couette flow (Wang J,

Gibson J and Waleffe F 2007 Phys. Rev. Lett. 98 204501) is constructed. Exact

time-independent nonlinear solutions of the reduced equations corresponding

to both lower and upper branch states are found for a sinusoidal, body-forced

shear flow. The lower branch solution is characterized by fluctuations that vary

slowly along the critical layer while the upper branch solutions display a

bimodal structure and are more strongly focused on the critical layer. The

reduced equations provide a rational framework for investigations of sub-

critical spatiotemporal patterns in parallel shear flows.

(Some figures may appear in colour only in the online journal)

1. Introduction

Exact nonlinear solutions of the equations describing the evolution of simple parallel shear

flows have proved to be of immense value (Kawahara et al 2012). The existence of these
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solutions exposes the basic mechanism underlying self-sustained structures in shear flows and

may ultimately shed light on the properties of subcritical turbulence in these flows. However,

despite notable success (Nagata 1990, Clever and Busse 1997, Waleffe 1997, Gibson

et al 2008, Schneider et al 2010, Brand and Gibson 2014, Gibson and Brand 2014, Khapko

et al 2014, Lucas and Kerswell 2014a) the computation of such ‘exact coherent states/

structures’ (ECS) remains difficult because they are three-dimensional (3D) and disconnected

from the structureless base shear flow. In addition, much insight into the complex dynamics

exhibited by transitional flows has come from viewing the flow in terms of a temporal

sequence of transitions between weakly unstable coherent structures (Auerbach et al 1987,

Christiansen et al 1997, Halcrow et al 2009). This notion has met with great success, but

depends on our ability to identify a large number of ECS in these flows and the connections

between them (Duguet et al 2008, Chandler and Kerswell 2013, Lucas and Kerswell 2014b).

In this paper we propose a systematic but general procedure that leads to a simplified but self-

consistent description of the required ECS. Our approach differs in certain important aspects

from the pioneering analysis of Hall and Sherwin (2010) and builds on earlier work by the

authors (Chini et al 2009, Beaume 2012). Specifically, we derive a simplified version of the

governing partial differential equations (PDEs) that yields an asymptotically exact description

of lower branch states in the limit → ∞Re , where Re is a suitably defined Reynolds number.

We propose a composite multiscale PDE model that is uniformly valid over the entire spatial

domain. Our model has much in common with the hybrid formulation of Blackburn et al

(2013), but was developed independently (Beaume 2012). Moreover, our derivation high-

lights the underlying PDE structure associated with the formation of ECS and, although not

pursued here, also reveals how slow streamwise modulation of the mean (streamwise-

invariant) and fluctuation (streamwise-varying) fields may be consistently incorporated. We

solve the resulting equations by an iterative scheme, each step of which requires the solution

of a two-dimensional problem only. We demonstrate the method on a sinusoidal, body-forced

shear flow with stress-free boundaries that we call Waleffe flow, a flow first introduced by

Drazin and Reid (1981) and further studied by Waleffe (1997). Remarkably, for this flow our

method not only captures the lower branch states for which it was developed, but also upper

branch states: in spite of the large Re formulation, the asymptotics prove sufficiently robust to

capture the saddle-node bifurcation giving rise to these solutions. For the domain size used,

this bifurcation occurs at ≈Re 136 and we are able to numerically continue both branches

from this value to >Re 2000. The continuation allows us to study the evolution of the

detailed structure of Waleffe flow ECS with increasing Re; this structure differs from that of

Couette flow ECS.

2. Asymptotic reduction

We consider incompressible flow driven by a streamwise body force that varies sinusoidally

in the wall-normal (y) direction (Drazin and Reid 1981, Waleffe 1997, Beaume 2012)

⎜ ⎟
⎛

⎝

⎞

⎠
π

π∂ + = − + +  p
Re Re

yu u u u x( · )
1 2

4
sin

1

2
ˆ , (1)t

2
2

= u· 0, (2)

subject to stress-free boundary conditions at stationary walls located at = ±y 1

∂ = = ∂ =u v w 0. (3)y y
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Here ν≡Re UH is the Reynolds number, where H is the channel half-width and U is the

root-mean-square velocity of the base flow given in dimensionless form by

π=u v w y( , , ) ( 2 sin ( 2), 0, 0), hereafter referred to as Waleffe flow. Like the more

extensively studied plane Couette flow (PCF), Waleffe flow is linearly stable for all Re but

may be unstable to finite amplitude perturbations. The codimension-one states on the

boundary separating the basin of attraction of Waleffe flow from that of the upper branch

states are called edge states (Skufca et al 2006) and are typically found on lower branches.

These nonlinear states are maintained against decay by the self-sustaining instability

mechanism elucidated by Waleffe (1997) and further clarified at large Reynolds number by

Hall and Sherwin (2010).

Given the occurrence of streamwise streaks and rolls that typify ECS in shear flows, we

decompose the velocity vector into a streamwise component and a perpendicular vector, i.e.,

= ⊥uv v( , ), where =⊥ v wv ( , ), and posit appropriate asymptotic expansions for the various

fields. To this end, we are motivated in part by the scaling behavior identified by Wang et al

(2007) for lower-branch ECS in PCF. As indicated by this scaling the rolls comprising the

streamwise-invariant flow in the perpendicular plane are weak, of ϵO ( ) amplitude, where

ϵ ≡ Re1 , relative to the deviation of the streamwise-invariant streamwise flow from the base

laminar profile (i.e., relative to the streaks). A closed and asymptotically consistent reduced

description may be obtained by further positing that the (streamwise-varying) fluctuations are

similarly weak relative to the mean streamwise flow, an assumption consistent with the

scaling behavior reported by Wang et al (2007). We suppose that all fields are functions of

x X y z t T( , , , , , ), where ϵ≡X x and ϵ≡T t are slow scales (Chini et al 2009), and write

ϵ∼ + + ′ + …( )u u u u¯ ¯ , (4)0 1 1

ϵ∼ + ′ + …⊥ ⊥ ⊥( )v v v¯ , (5)1 1

ϵ ϵ∼ + + ′ + + ′ + …( ) ( )p p p p p p¯ ¯ ¯ , (6)0 1 1
2

2 2

where an overbar denotes a ‘fast’ (x, t) average and a prime denotes a fluctuation with zero

fast mean. Substituting these expansions into the multiscale versions of equations (1), (2),

collecting terms at like order in ϵ, and parsing the resulting equations into mean and

fluctuating components yields the following asymptotically-reduced, multiscale PDE system:

⎜ ⎟
⎛
⎝

⎞
⎠

π π
∂ + ∂ + = −∂ + +⊥ ⊥ ⊥ ( )u u u u p

y
uv¯ ¯ ¯ ¯ · ¯ ¯

2

4
sin

2
¯ , (7)T X X0 0 0 1 0 0

2
2

0

⎡⎣ ⎤⎦∂ + ∂ + + ′ ′ = − +⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥  u pv v v v v v v¯ [ ¯ ¯ ] · ¯ ¯ ¯ ¯ , (8)T X1 0 1 1 1 1 1 2
2

1

∂ + =⊥ ⊥u v¯ · ¯ 0, (9)X 0 1

which govern the mean dynamics, and

ϵ∂ ′ + ∂ ′ + ′ = −∂ ′ + ′⊥ ⊥ ⊥ ( )u u u u p uv¯ ¯ · ¯ , (10)t x x1 0 1 1 0 1
2

1

ϵ∂ ′ + ∂ ′ = − ′ + ′⊥ ⊥ ⊥ ⊥ ⊥ u pv v v¯ , (11)t x1 0 1 1
2

1

∂ ′ + ′ =⊥ ⊥u v· 0, (12)x 1 1

which govern the fluctuating fields. Here, ⊥ is the gradient operator in the (y, z) plane. Note

that =p p X T¯ ¯ ( , )0 0 is set to zero for Waleffe flow and PCF, but may be retained for flows

driven by externally-imposed pressure gradients, such as plane Poiseuille flow. We emphasize

that equations (7)–(12) comprise a closed reduced system; the usual closure issues resulting
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from averaging do not arise here owing to our ability to exploit scale separation. Physically,

the averaged equations constrain the slow temporal and streamwise evolution of the streaks

(ū0) and rolls ( ⊥v̄1 ). The presence of an effective Reynolds number equal to unity and the

elimination of fast streamwise and temporal variation in these equations facilitate both time-

stepping and the computation of equilibrium ECS in comparison with equations (1), (2) at

≫Re 1. Further savings accrue if the slow streamwise (X) variation is suppressed, as in our

computations here, since the averaged equations are then spatially 2D.

Presuming fluctuation gradients remain O (1), the fluctuating fields themselves evolve in

accord with the equations governing the inviscid secondary stability of streamwise streaks.

The fluctuation fields, which are necessarily steady (i.e., neutrally stable) for equilibrium

ECS, exhibit a critical layer structure along the isosurface u y z¯ ( , )0 = 0 (Maslowe 1986, Hall

and Sherwin 2010). In the neighborhood of the critical layer, fluctuation gradients are large,

resulting in a distinct leading-order dominant balance of terms involving diffusion. However,

we choose to avoid the intricacies associated with carrying out a systematic matched

asymptotic analysis to address the critical layer singularity. Instead we retain the formally

small perpendicular diffusion terms in equations (10), (11), which are then uniformly valid

over the entire spatial domain. Retention of these terms may be justified by appeal to the

method of composite asymptotic equations, as in Giannetti and Luchini (2006).

It is important to note that the fluctuation equations are quasilinear and therefore do not

mix x modes, a fact that we exploit in our computations of ECS for Waleffe flow using the

reduced system. In fact, in accord with the scalings found by Wang et al (2007), we retain

only a single streamwise Fourier mode for each fluctuation field:
′ ′ ′ = α

⊥ ⊥u p x y z t u p y z tv v[ , , ]( , , , ) [ , , ]( , , )e x
1 1 1 1 1 1

i + c.c., where c.c. denotes complex con-

jugate and α π= L2 x is the fundamental dimensionless streamwise wavenumber. Before

describing the computation of streamwise uniform ECS, we remark that in long domains a

nearly continuous band of modes with similar streamwise wavenumbers will be neutral or

very weakly damped. Hence, a linear superposition of these fluctuation modes will naturally

induce a slowly-varying envelope, A X T( , ) say, that will in turn drive slow streamwise

modulations of the mean fields through the Reynolds stress divergence term in equation (8). If

realized, this multiscale coupling may provide a mechanism for streamwise localization of

ECS in a variety of plane parallel shear flows, further attesting to the value of the reduced

PDE structure identified here.

With X derivatives suppressed, equations (7)–(9) can be further simplified by introducing

a streamwise-invariant streamfunction ϕ y z( , )1 so that ϕ= −∂v̄ z1 1 and ϕ= ∂w̄ y1 1, and the

corresponding streamwise vorticity ω ϕ= ⊥1
2

1, resulting in the following set of equations:

⎜ ⎟
⎛

⎝

⎞

⎠
ϕ

π
π∂ + = +⊥( )u J u u y,

2

4
sin

1

2
, (13)T 0 1 0

2
0

2

ω ϕ ω ω∂ + + ∂ − ∂ + ∂ ∂ − = ⊥( )( ) ( ) ( )( )J v w w w v v, 2 2 , (14)T yy zz y z1 1 1
2 2

1 1
*

1 1
*

1 1
* 2

1

where ϕ ϕ ϕ≡ ∂ ∂ − ∂ ∂J f f f( , ) ,y z z y1 1 1 f* denotes the complex conjugate of f, and  f( )

denotes its real part; since ′ ≡u 00 the overbar on the O (1) streaky flow component has

been omitted. The fluctuation equations can be written in the more useful form

α α− = ∂ + ∂⊥( ) ( )p v u w u2i , (15)y z
2 2

1 1 0 1 0

α ϵ∂ + = − +⊥ ⊥ ⊥ ⊥ ⊥ u pv v vi . (16)t 1 0 1 1
2

1
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Note that u1 is not required to close the equations although it may also be computed. In the

following these equations are solved subject to stress-free and no normal-flow boundary

conditions

ω ϕ∂ = = = = ∂ = = ±u v w y0, at 1. (17)y y0 1 1 1 1

Equations (15), (16) are homogeneous and quasilinear with solutions that depend on the

slowly evolving streamwise velocity u0. The solutions of these equations therefore either

grow or decay. Since we are interested in stationary solutions of equations (1), (2) we use an

iterative scheme consisting of two steps: searching for neutrally stable solutions of

equations (15), (16) on the fast time scale t, and converging u0 to a stationary state on the slow

time scale T. We solve this problem on a two-dimensional domain  of size

π× = ×L L 2 ,y z where Ly is the dimensionless gap and Lz is an imposed dimensionless

period in the spanwise direction, and set α = 0.5. In PCF this choice of domain leads to edge

states with a single unstable direction (Schneider et al 2008). The computations are performed

in spectral space using a mixed Fourier cosine/sine basis. Once a steady nontrivial solution

has been found numerical continuation in Re is applied to trace out the whole solution branch.

For simplicity we impose the shift-reflect symmetry =u v w x y z[ , , ]( , , )

− + −u v w x L y z[ , , ]( 2, , )x observed in the corresponding solutions in PCF (Schneider

et al 2008), where π=L 4x is the imposed period of the solution in the streamwise direction.

All solutions reported here are numerically converged, as confirmed by doubling the spatial

resolution and verifying that important quantities like energies and spectra change negligibly.

The details of the iterative scheme used to solve this problem are nontrivial and will be

described elsewhere (Beaume et al 2014) together with details of the continuation scheme.

3. Exact coherent states

Figure 1 shows the results in terms of
 

∫ ∫≡N u y z y zd d d du 0
2 , measuring the strength of

the streaks, and
 

∫ ∫′ ≡ +N v w y z y z( ) d d d d1
2

1
2 , measuring the strength of the asso-

ciated spanwise fluctuations v w( , )1 1 . These quantities are related to the kinetic energies per

unit volume associated with these modes by =E N 2u u and ′ = ′E N Re(2 )2 . The figure

shows that the reduced system captures not only the lower branch states for which it was

Figure 1. Bifurcation diagram showing the lower (downward triangle) and upper
(upward triangle) branches of ECS as a function of the Reynolds number Re in terms of

(a)
 

∫ ∫=N u y z y zd d d du 0
2 , (b)

 
∫ ∫′ = +N v w y z y z( ) d d d d1

2
1
2 . The branches

are connected via a saddle-node bifurcation at ≈Re 136. Lower branch states are
computed on a 32 × 64 mesh while upper branch states are computed on a
64 × 128 mesh.

Fluid Dyn. Res. 47 (2015) 015504 C Beaume et al

5



developed but the upper branch states as well. The two branches connect via a saddle-node

bifurcation at ≈Re 136.

Figure 2 shows streamwise-invariant representations of the lower branch solution at

≈Re 1500 while figure 3 provides insight into the 3D structure of this solution. Figures 4 and

5 provide analogous representations of the upper branch solution at the same Reynolds

number. The lower branch solution is characterized by a smoothly undulating critical layer

that is maintained by two nearly circular rolls (figure 2(a)). This structure is supported by

fluctuations that concentrate along a critical layer of α −O Re( ) 1 3 width (Maslowe 1986,

Wang et al 2007, Hall and Sherwin 2010). Figure 2(b) reveals that these fluctuations vary

rapidly in the direction perpendicular to the critical layer with a much slower variation along

it. The 3D representation in figure 3 confirms these observations and sheds more light on the

streamwise dynamics of the lower branch solution: the streamwise velocity fluctuation u1 is

concentrated in the regions of strong streamwise-invariant streamfunction ϕ1 (compare

figure 2(a) with 3(a)) and therefore away from the extrema of the critical layer. In contrast,

spanwise fluctuations v w( , )1 1 accumulate at the extrema of the critical layer (figure 2(b)), a

Figure 2. The lower branch solution at ≈Re 1500 represented by (a) contours of the
streamwise-invariant streamfunction ϕ1 and (b) the quantity∥ ∥v w( , ) L1 1 2

, a measure of
spanwise fluctuations. In each plot positive (negative) values are indicated in red (blue).
The contour plots are superposed on the streak profile shown in black, with the thick
solid line representing the critical layer =u 00 . All contours are equidistributed.

Figure 3. 3D rendition of the fluctuating flow on the lower branch solution at

≈Re 1500. The surfaces represented in color correspond to (a) umax | |
1

2
1 , (b)

vmax | |
1

2
1 , and (c) wmax | |

1

2
1 , with red (blue) representing positive (negative) values.

The surface shown in grey represents the critical layer =u 00 .
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consequence of the incompressibility of the fluctuations (equation (12)). At x = 0 (defined

arbitrarily as the front section in figure 3), the fluid in the region around the lowest

(respectively, highest) point of the critical layer tracks the critical layer from left to right

(respectively, right to left); the directions are reversed at locations displaced half a period in

the streamwise direction. Figure 6 shows projections of the fluctuations onto the critical layer

=u 00 , where they are concentrated. The fluctuations do not consist of straight, x-oriented,

vortices. Rather, their structure is oblique, stretched by the differential forcing in y, and the

fluctuation intensity peaks close to z = 0 and π=z 2, where the critical layer departs strongly

from the center of the domain y = 0.

In contrast with the nearly sinusoidal critical-layer profile exhibited by the lower branch

solution, the critical layer associated with the upper branch solution is much more strongly

deformed from the plane y = 0, even approaching at its extrema the top and bottom walls. This

change of shape is a signature both of less coherent roll motion and of the splitting of each roll

into a bimodal structure (figure 4(a)). This splitting moves the maxima of the streamwise-

invariant streamfunction closer to the extrema of the critical layer to support its highly

distorted profile. Figures 5(a)–(c) show that the fluctuations associated with this state exhibit

properties similar to those on the lower branch: the spanwise fluctuations v w( , )1 1 are con-

centrated at the extrema of the critical layer with the streamwise velocity fluctuation u1
expelled from these regions. However, the fluctuations also exhibit a bimodal structure with

maximum values now located on either side of the critical layer extrema (figure 4(b)). This

splitting serves to confine the critical layer in these regions, and leads to strong gradients in

Figure 5. Same as figure 3 but for the upper branch solution at ≈Re 1500. Intersections
of the fluctuation contours with the walls at = ±y 1 that can be observed in (c) are a

consequence of the stress-free boundary conditions.

Figure 4. Same as figure 2 but for the upper branch solution at ≈Re 1500.
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the fluctuation kinetic energy along the critical layer. Differences between the lower and

upper branch states are reflected in the Fourier spectra of the associated fluctuation fields

(figure 7). The figure shows the normalized partial sums

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟∑Σ =

−
+ + −

=
( )m

M N
S m S m m S m m( )

1

2( 1)
, 0 ( , ) ( , ) , (18)y y y

m

N

y z y z
2

1

2 2

1 2

z

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟∑Σ =

−
=

m
M N

S m m( )
1

2( 1)
( , ) , (19)z z

m

M

y z

0

2

1 2

y

where ≡ +S m m v m m w m m( , ) | ( , ) | | ( , ) |y z y z y z
2

1
2

1
2 and M (respectively N) is the maximum

wavenumber in the y (respectively z) direction. The quantity Σ m( )y y (respectively Σ m( )z z ) is

therefore related to the energy in modes with wavenumber my (respectively mz) in the y

(respectively z) direction. The plots indicate that the magnitude of the fluctuations associated

with upper branch solutions is larger than that for lower branch solutions. The fact that

Figure 6. The fluctuations (a) u1, (b) v1 and (c) w1 along the critical surface =u 00 . In

each of these plots, the top panel represents the upper branch solution and the lower
panel the lower branch solution. Red (blue) denotes positive (negative) values with the
scale reset between plots and between the lower and upper branch solutions.
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solutions along both branches exhibit similar decay in my (figure 7(a)) indicates that the wall-

normal structure of the critical layer is similar along both branches. However, the slower

decay in mz along the upper branch indicates the presence of steeper variations in z along the

upper branch, i.e., of solutions that are more strongly localized along the critical layer. These

conclusions are confirmed in (x, z) plots of the fluctuations along the critical layer in figure 6.

The dependence of the upper-branch fluctuations transverse to the critical layer is more abrupt

than for the lower branch solution, with strong additional variation along the critical layer

near the critical layer extrema at z = 0 and π=z 2. Indeed, the upper-branch fluctuations

focus close to the extrema, but plateau away from these points. Comparison of the solutions

found here and Nagataʼs solution for PCF (figure 7 of Jimenez et al 2005) reveals substantial

similarity: the overall shape of the critical layer, location of the fluctuations and differences

between the lower and upper branch states are all quite similar to those in PCF. These

common features suggest that our solutions may play a similar role in Waleffe flow to that

played by the Nagata solutions in PCF: separating relaminarizing perturbations from

turbulence-generating perturbations (lower branch ECS) and capturing the statistical

properties of the turbulent state (upper branch ECS). However, our solutions differ from

the corresponding PCF solutions in the level of distortion of the critical layer along the upper

branch, a difference we attribute to the different nature of the flow and in particular to the

more benign stress-free boundary conditions used in the present work.

4. Summary and conclusion

We have described an asymptotic reduction procedure suggested by the lower branch scaling

for PCF that appears to apply to parallel shear flows in general. The multiscale asymptotic

approach adopted here results in a straightforward derivation of a reduced system of PDEs

detailing the interaction between small scale fluctuations and streamwise-invariant structures

that serves as a starting point for more detailed investigations. We have used this system to

compute both lower and upper branch ECS for Waleffe flow using the Reynolds number Re

Figure 7. Spectral decomposition of the lower (downward triangles, figures 2 and 3)
and upper (upward triangles, figures 4 and 5) branch solutions at Re = 1500 in terms of
the normalized partial sums ∑ m( )y y in (a) and ∑ m( )z z in (b) defined in the text.
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as a homotopy parameter that enabled us to continue the lower branch states into upper

branch states. While we do not expect our solutions to be quantitatively accurate for

=Re O (1), i.e., near the saddle-node, the upper branch states obtained by continuation to

large Re are expected to provide an accurate approximation to the upper branch ECS of the

full 3D problem, just like the corresponding lower branch states. For these computations the

use of Waleffe flow is advantageous since the application of stress-free boundary conditions

enables us to employ and refine a uniform computational grid associated with a trigonometric

basis in all coordinate directions.

Our lower branch solutions are qualitatively similar to those for PCF, but the upper

branch solutions reveal properties heretofore unknown. These center on the appearance of a

bimodal structure in both the streamwise rolls and the associated fluctuations. In an inde-

pendent study, a similar asymptotic approach has recently been used to obtain lower branch

solutions to PCF (Hall and Sherwin 2010, Blackburn et al 2013) but no upper branch states

were reported.

In future work we will report on the stability properties of these states, including slow

streamwise variation, and on their relation to the ECS of the full 3D problem. In addition, new

ECS can be identified in the vicinity of the saddle-node captured by the reduced equations and

continued to large Re, where they can be used to find the corresponding states of the full 3D

problem. We mention finally that although these equations were derived for a parallel shear

flow, the inclusion of slow streamwise variability suggests a systematic path for computing

ECS in developing flows, including boundary layers.
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