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Blind Source Separation and Artefact Cancellation for Single Channel

Bioelectrical Signal

Zhiqiang Zhang1, Huihui Li2 and Danilo Mandic3

Abstract— Bioelectrical signal analysis is gaining significant
interests from both academics and industries due to its capa-
bility for improved diagnosis and therapy of chronic diseases.
In practice, different bio-signals, such as EEG, ECG, EOG
and EMG, are usually contaminating each other, and the
measured signal is the linear combination of them. It is critical
to separate them since analysis of one type or several of them
separately is of more interest. In the case of multichannel
recording, several blind source separation methods are available
to extract its original components. However, for single channel
scenarios, the problem has yet to be well studied. Therefore
in this paper, we explore blind source separation and artefact
cancellation for a single channel signal by combining signal
decomposition method singular spectrum analysis (SSA) with
different blind source separation methods, such as principal
component analysis (PCA), maximum noise fraction (MNF),
independent component analysis (ICA) and canonical corre-
lation analysis (CCA). We also systematically compare the
separation performance by combing different decomposition
methods (wavelet transform (WT), ensemble empirical mode
decomposition (EEMD) and SSA) with blind source separation
methods (PCA, MNF ICA and CCA). The good simulation
results have demonstrated the effectiveness and efficiency of
the proposed method.

I. INTRODUCTION

Last decade has witnessed the measurement of human

physiological signals transiting from a hospital-centric de-

vices toward ambulatory wearable systems, which are often

operated by patients themselves at home environment [1]

[2] [3]. Although such systems are capable of continuously

monitoring for better diagnosis and therapy of chronic dis-

eases, it also increases the likelihood of getting poor quality

signal by taking the measurements system out of clinical

environments. In particular, different bioelectrical signals,

such as EEG, ECG, EOG and EMG, can contaminate each

other, and the measured signal is the linear combination of

them [4] [5]. Therefore, in order to analyse signal of interest

and extract useful information from it, it is crucial to separate

the underlying sources.

For this purpose, blind source separation (BSS) methods

have been widely explored. A number of methods, such

as principal component analysis (PCA), maximum noise

fraction (MNF), independent component analysis (ICA) and
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canonical correlation analysis (CCA), have been proposed

so far [6]. In the case of multichannel recording, all these

methods can efficiently unmix the given signal into their

constituent sources, but all of them implicitly assumes the

number of underlying sources is equal or less than the

number of signal channels. However, in ambulatory settings,

the wearable systems normally only provides one channel

signal, thus the aforementioned BSS methods will not be

applicable.

Thus far, there are also several methods aiming for single

channel source separation. For example, Davies et al. [7]

presented an adaptation of ICA to single-channel signals,

called single-channel ICA (SCICA), and it required sources

were stationary, which might not always hold in practical ap-

plications. Alternative approach is to construct multichannel

data from a single channel signal, and then apply multiple

channel source separation methods to extract the underlying

components. For instance, Lin et al. [8] and Abbaspour et

al. [9] demonstrated combining Wavelet transform (WT) and

ICA for source separation and artefact removal. Mijović

et al. [10] explored source separation from single-channel

recordings by integrating empirical mode decomposition

(EMD) and ICA. Han et al. [11], Sweeney et al. [12] and

Chen et al. [13] all investigated the combination of EMD

and CCA. Despite the wide application of WT and EMD,

there are also some constraints. The extracted components

vary significantly with different mother wavelet, and how

to determine the proper mother wavelet is challenging for

WT. The advantage of EMD, compared to WT, is that the

EMD is a data driven algorithm, which does not use any

predefined function in the decomposition stage, but it is

extremely computationally expensive, which is particularly

true for ensemble empirical mode decomposition (EEMD).

Singular spectrum analysis (SSA) is another powerful

method to decompose real-valued time series, which over-

comes the drawbacks of WT and EMD [14]. Therefore, in

this paper, we propose to combine SSA with different source

separation methods, such as PCA, MNF, ICA and CCA

for blind source separation and artefact cancellation for a

single channel signal. We also systematically compare the

separation performance by combing different decomposition

methods (WT, EEMD and SSA) and blind source separation

methods (PCA, MNF ICA and CCA). The good simulation

results have demonstrated the effectiveness and efficiency of

the proposed method.

The rest of the paper is organized as follows. In section II,

all the methods and algorithms used in the paper are briefly

explained. In section III, we systematically compare the



performance for different combinations using simulations.

Section IV concludes the paper.

II. METHODS

In this section, we briefly explain the various techniques

employed in this paper by outlining different signal decom-

position methods and blind source separation methods.

A. Signal Decomposition Methods

For any real-valued time series, x = (x1, x2, · · · , xN ) of

length N can be decomposed into M different components of

length N , and the summation of all these components equals

to x. In this section, we will elaborate different methods

achieving this goal.

1) Wavelet transform: Multi-resolution wavelet decompo-

sition splits a signal into high-scale (low-frequency compo-

nents) approximations and low-scale (high-frequency com-

ponents) details. The decomposition process can be iterated,

with successive approximations being decomposed in turn.

The decomposition of x can be written as

x = xA0

= xA1
+ xD1

= xA2
+ xD2

+ xD1

= xAM−1
+ xDM−1

+ · · ·+ xD1

(1)

where
xAj

= xAj+1
+ xDj+1

xAj+1
=

∞
∑

k=−∞

h(2n− k)xAj

xDj+1
=

∞
∑

k=−∞

g(2n− k)xAj
.

(2)

It is obvious the decomposition is only associated with the

filter h and g, which are determined by mother wavelet.

2) Ensemble empirical mode decomposition: EMD is a

method to separate an arbitrary signal x into a series of

intrinsic mode functions (IMFs) through a sifting process.

The IMFs are functions that satisfy two properties: 1) over

the length of the dataset, the number of extrema and the

number of zero-crossings must either be equal or differ at

most by one. 2) at any point, the mean value of the envelope

defined by the local maxima and the envelope defined by the

local minima is zero. The procedure of the sifting process

include:

1. For x, find all the local maximum and minima.

2. Let µ be the mean of its upper and lower envelopes

determined from a cubic-spline interpolation of local

maxima and minima.

3. Define h = x− µ as the first proto-IMF

4. Repeat the step 1 to 3 until the resulting proto-IMF,

which is called IMF1 x1, satisfying IMF properties.

5. Subtract the IMF1 from the original signal to get the

residual r1 = x− x1.

6. Repeat step one to five to obtain other IMFs

x2, · · · ,xM−1 until the residual rM−1 is a monotonic

function.

Thus, x can be decomposed as:

x = x1 + x2 + · · ·+ xM−1 + rM−1. (3)

where M − 1 is the number of IMFs.

The EMD algorithm is very sensitive to noise; therefore,

an EEMD method was proposed to overcome this issue by

adding independent, identically distributed white noise into x

with several trials. EEMD repeats the EMD decomposition

for each trial, but with different noise, which obtains the

means of corresponding IMFs as the optimum choice of

IMFs.

3) Singular spectrum analysis: SSA is a model-free tech-

nique for signal decomposition. Given a integer L(1 < L <
N) as the window size, SSA decomposition for x can be

described as:

• Embedding: The first step is to create a L×(N−L+1)
matrix X using a delayed version of x:

X =











x1 x2 · · · xN−L+1

x2 x3 · · · xN−L+2

...
...

. . .
...

xL xL+1 · · · xN











(4)

It is evident that X is a Hankel matrix since the elements

of all the anti-diagonals i+ j = constant are the same.

• SVD: The second step is to perform the SVD of

the trajectory matrix X. Let S = XXT and assume

λ1, λ2, · · · , λN are eigenvalues of S in the decreasing

order of magnitude (λ1 ≥ λ2 ≥, · · · ,≥ λN ≥ 0) and

the corresponding eigenvectors are u1,u2, . . . ,uL. We

can thus write the trajectory matrix as

X = X1 +X2 + · · ·+Xd (5)

where d = argmax
i

{λi > 0}, Xi =
√
λiuiv

T

i
and

vi = XTui/
√
λi. Here the collection (λi, ui, vi) is

called the ith eigentriple of SVD.

• Eigentriple grouping and diagonal averaging: The next

step is to regroup the elementary matrices into several

submatrices

X =
M
∑

m=1

X̂m (6)

where M is the number of groups, index m refers to

mth subgroup of Eigentriple, and X̂m indicates the sum

of Xi within group m. Each matrix X̂m is hankelized,

which can thus transformed into a new series xm of

length N using the one-to-one correspondence between

Hankel matrices and time series. Thus x can thus be

decomposed as:

x = x1 + x2 + · · ·+ xM . (7)

For simplicity and integrity, we rewrite the decomposed

elements of signal x using WT, EEMD and SSA all into

x1,x2, · · · ,xM , thus we can construct a M channel signal

Y with length L as

Y = [xT
1 , xT

2 , · · · ,xT
M ] (8)



Here, Y is a L × M matrix, each column containing one

channel signal.

B. Blind source separation methods

For any real-valued multiple channel signal Y, we can find

an unmixing matrix Ψ to determine the unknown original

signal S as S = YΨ. In this section, we will elaborate

different techniques to determine Ψ and S.

1) Principal component analysis : In the context of arte-

fact removal and blind source separation, it is widely to view

PCA as an optimization problem, which tries to determine

a linear transformation that maximizes the variance of the

transformed variables subject to orthogonality constraints.

The transformation can write as the following optimization

problem:

argmax
Ψ

‖YΨ‖ (9)

subject to

ΨTΨ = I (10)

where I is the identity matrix. The solution to this problem

are the eigenvectors of YTY, which is equivalent to calcu-

late the SVD for Y as:

Y = Σ1Λ1Ψ
T

1 (11)

where the columns of Σ1 contain the eigenvectors of YYT,

the columns of Ψ1 contain the eigenvectors of YTY, and

the diagonal of Λ1 indicates the singular values of Y. Thus,

Ψ = Ψ1, and the transformation Spca = YΨ can generate

a new set of orthogonal variables ordered by decreasing

variance as the unknown original signal.

2) Maximum noise fraction: It assume that the signal Y

consists of real signal matrix Ŷ and noise N

Y = Ŷ +N (12)

where Ŷ and N are orthogonal to each other. Thus we can

have the following optimization

argmax
Ψ

‖ŶΨ‖
‖NΨ‖ + 1 = argmax

Ψ

‖YΨ‖
‖NΨ‖ (13)

Similar to PCA, the solution to the above optimization is

equivalent to generalized SVD:

YTYΨ = λNTNΨ. (14)

In practice, it may not easy to acquire the covariance matrix

of the noise, which thus can be estimated by computing the

covariance of the difference. Define the ith row of matrix

dY as the difference of the ith and i+1 rows of the matrix

Y, thus we can make the approximation:

dYTdY = NTN. (15)

Therefore, the unmixing matrix can be calculated as:

1. Calculate the SVD for the covariance of dY:

dYTdY = Σ2Λ2Σ
T

2 (16)

2. Whiten signal Y as

Ỹ = YΣ2Λ
−1/2
2

(17)

3. Calculate the SVD for the covariance of Ỹ

ỸTỸ = Σ3Λ3Σ
T

3 (18)

3. Compute the maximum noise fraction basis vectors as

the unknown original signal

Smnf = YΨ2 (19)

where Ψ = Ψ2 = Σ2Λ
−1/2
2

ΣT
3

.

3) Independent component analysis: Similar to PCA and

MNF, ICA also models BSS as a optimization by maximizing

the statistical independence of the estimated components. In

general, there are two ways defining independence: 1)mini-

mization of mutual information or 2) maximization of non-

Gaussianity. The minimization of mutual information fam-

ily of ICA algorithms uses measures like Kullback-Leibler

Divergence and maximum entropy, while non-Gaussianity

family of ICA algorithms, motivated by the central limit

theorem, uses kurtosis and negentropy. Regardless of the

independence definition, the aim of ICA is to determine

an unmixing matrix Ψ3 to derive the unknown independent

component as the original source:

Sica = YΨ3. (20)

Thus far, there are a number of different algorithms avail-

able, e.g. Bell-Sejnowski algorithm [15], extended ICA [16],

and JADE [14]. In our implementation, the fast ICA algo-

rithm [17] was applied to extract Ψ3 from Y due to its high

efficiency.

4) Canonical correlation analysis: CCA solves the BSS

problem by forcing the sources to be maximally autocorre-

lated and mutually uncorrected. Given any two matrix signals

Y1 with size N×K1 and Y2 with size N×K2 (K1 and K2

indicate the number of channels), the canonical correlation

can be given as the following optimization problem:

argmax
Φ1,Φ2

ΦT
1
YT

1
Y2Φ2

√

ΦT
1
YT

1
Y1Φ1

√

ΦT
2
YT

2
Y2Φ2

(21)

subject to
{

Φ1 6= 0

Φ2 6= 0.
(22)

Conduct QR decomposition for Y1 and Y2 as

Y1 = Q1R1 and Y2 = Q2R2, and SVD for QT
1
Q2 as

QT
1
Q2 = Σ4Λ4Υ

T, the canonical correlations can thus be

given by the diagonal elements of Λ4. The transformation

Φ1 and Φ2 can also be taken as Φ1 = R−1

1
Σ4 and

Φ2 = R−1

2
Υ. In blind source separation applications, we

can set Y1 = Y and Y2 as a temporally delayed version

of Y. Therefore, underlying source signal can be derived as

Scca = YΨ, where Ψ = Φ1.

III. SIMULATION RESULTS

In order to evaluate the performance of different ways of

combing signal decomposition methods with blind source

separation methods, we carried out the following essential

experiments. Since it is quite challenging to find the ground



Fig. 1. The signal used in the simulation. (a) the EEG signal xa; (b) the
ECG signal xb as the artefacts; (c) the mixture x for SNR=0.5; and (d) x
for SNR=1

Fig. 2. The 8 SSA components of the synthetic signal x at SNR=1.

truth for each component in a contaminated signal in prac-

tice, we resort to simulation study with known parameters.

In our simulation, we always mixed two signals: the signal

of interest xa and artefacts xb in the following way:

x = xa + βxb (23)

where β is a proportion factor representing the contribution

of artefacts. The signal to noise ratio, as a important indica-

tor, can be adjusted by changing the value of β:

SNR =
RMS(xa)

RMS(βxb)
(24)

where the root mean square (RMS) is defined as:

RMS(x) =

√

xTx

N
. (25)

The relative root mean squire error (RRMSE) is applied to

describe the separation performance:

RRMSE =
RMS(xa − x̂a)

RMS(xa)
(26)

Fig. 3. The principal components of the SSA elements given in Fig. 2

where x̂a is the reconstruction of the signal of interest after

removing the artefacts. The sources related to artefacts can be

removed by setting the corresponding column of the source

signal matrix S to zero, and the artefact-free multichannel

signals can thus be reconstructed using the updated source

matrix and the mixing matrix Ψ. Therefore, the estimated

signal of interest x̂a can be determined by simply summing

artefact-free multichannel signals. Meanwhile, in our imple-

mentation, we also used correlation coefficient as the second

criteria to evaluate the separation performance.

In practice, the EEG signal is always contaminated by

other bioelctrical signals, such as ECG, EOG and EMG.

There in our simulation, as an exemplar, we mixed EEG

signal with ECG artefact, as shown in the Fig. 1. The

frequency of the background brain electric activity ranges

from 0 to 40Hz, while the ECG is a narrow band signal

between 5 and 30 Hz, so the spectra of xa and xb are

overlapping. In our implementation, we applied Daubechies

4 as the mother wavelet to decompose the x into 8 scales.

For EEMD, the number of ensembles was set to 2, and 8

to 12 IMFs were usually produced by EMD, while for SSA,

the window length L was set to 8, and each eig-triple was

taken as an eig-triple group.

Fig. 2 and 3 illustrate the source separation process by

combining SSA and PCA as the example: 1) the synthetic

signal x was decomposed into 8 different elements by

SSA, 2) PCA was then applied to extracted the principle

components, and 3) reconstructed the signal of interest x̂a

by setting the ECG related principle components 1 and 3 to

0. Fig. 4 shows the artefact removal and signal reconstruction

performance by combining different signal decomposition

methods and blind source separation method for SNR=1. To

better illustrate the reconstruction results, only the first 200

samples were presented in the figure. It is obvious that all

the algorithms can remove the ECG artefacts successfully.

The reconstructed EEG signals can all follow the general

trend of the original signal, similar reconstruction perfor-

mance has been achieved for all the combinations of signal



Fig. 4. The first 200 samples of the reconstruction signal by removing ECG
artefacts at SNR=1. (a) PCA as the source separation method; (b) MNF as
the source separation method; (c) ICA as the source septation method; and
(d) CCA as the source separation method.

decomposition methods and blind source separation method.

It is also worthy nothing to mention that in our simulation,

the EEMD decomposition of the synthetic signal x into

IMFs takes 3-5 minutes, while SSA and WT decomposition

only take less than 0.1 second. We also noticed that the

performance of the WT based artefact removal methods

varies a lot with regards to different selections of mother

wavelet, while there is no need to selection such function for

SSA based methods. In summary, although all the algorithms

have achieved comparable accuracy, the SSA based methods

have shown some implementation advantages over EEMD-

based and WT-based methods.

In addition to the qualitative analysis of the artefacts

removal performance, the quantitatively results in terms of

RRMSE and CC are shown in Fig. 5 and 6 to better illustrate

the reconstruction performance by combining different signal

decomposition methods and blind source separation methods.

In general, when SNR increases, the artefact gets weaker

and it is easier to recover the signal of interest from the

contaminated ones with higher accuracy. As we can see

from the figures, all the algorithms follow this rule with

RRMSE raising and CC declining, which means that their

performances get significant improvement when the SNR

increases from 0.25 to 3. However, there are also some

differences among these algorithms. The combinations of

SSA with different blind source separation methods are

(a) (b)

(c) (d)

Fig. 5. Comparison of algorithms performance in RMMSE by combining
different signal decomposition methods and blind source separation meth-
ods. (a) PCA as the source separation method; (b) MNF as the source
separation method; (c) ICA as the source septation method; and (d) CCA
as the source separation method.

(a) (b)

(c) (d)

Fig. 6. Comparison of algorithms performance in correlation coefficient
by combining different signal decomposition methods and blind source
separation methods. (a) PCA as the source separation method; (b) MNF
as the source separation method; (c) ICA as the source septation method;
and (d) CCA as the source separation method.

slightly better than WT and EEMD based combinations,

and smaller RRMSE and higher CC were achieved by SSA

combinations regardless of SNR value. The only exception is

the combination of SSA and ICA. Although combinations of

EEMD and ICA is slightly better, the computational cost for

EEMD is significantly more expensive than the SSA based

methods, which prevent its routine usage on the ambulatory

wearable systems in home environment.

In the SSA based algorithms, the only variable to be

determined in advance in the window size L for SSA de-



Fig. 7. The performance of artefact removal by combing SSA and MNF
at SNR=1, where the window length L for SSA was set to different values.

composition. To further evaluate the effects of L on artefact

removal, another simulation was conducted when L was

set to different values. As an example, Fig. 7 shows the

performance variations when L was set to different values.

In the figure, the combination of SSA and MNF was applied,

and SNR was set to 1. It is clear that neither RRMSE nor

CC changes too much as the value of L increase from

7 to 12, which means that the performance is resilient to

SSA decomposition window size L, and the value of L
has very limited effects on the artefact removal. We also

noticed that the combinations of SSA and other blind source

separation methods also have the similar observations at

different SNRs: MMSRE and CC are almost constant for

different values of L. It once again illustrates the SSA-based

method is hardly affected by the selection of L; therefore,

in our implementation, we set L = 8 to get comparable

components with regard to EEMD and WT decompositions.

IV. CONCLUSION

In this paper, we explored the source separation and

artefacts removal performance for single channel recordings.

Singular spectrum analysis (SSA) was applied to decompose

single channel signal into multiple channels, which was then

combined with different blind source separation methods,

such as PCA, ICA, MNF and CCA to detect and remove arte-

facts. Other ways of combination among different different

decomposition methods (WT and EEMD) and blind source

separation methods (PCA, MNF, ICA and CCA) were also

investigated for systematic comparison purpose. Although all

the algorithms have achieved comparable accuracy, the SSA

based methods have shown some implementation advantages

over EEMD-based and WT-based methods.

In the future, although it is difficult to find the ground truth

for each components for a combined signal in practice, real

data experiments will be still carried out to further illustrate

the reconstruction performance of different combinations of

signal decomposition methods and blind sources separation

methods. Proper separation performance evaluation methods

will also be investigated.
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