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Abstract. We propose the notion of integrable boundary in the context of discrete in-
tegrable systems on quad-graphs. The equation characterizing the boundary must satisfy
a compatibility equation with the one characterizing the bulk that we called the three-
dimensional (3D) boundary consistency. In comparison to the usual 3D consistency con-
dition which is linked to a cube, our 3D boundary consistency condition lives on a half
of a rhombic dodecahedron. The We provide a list of integrable boundaries associated
to each quad-graph equation of the classification obtained by Adler, Bobenko and Suris.
Then, the use of the term “integr2ab(able boundary” is justified by the facts that there are
Bäcklund transformations and a zero curvature representation for systems with boundary
satisfying our condition. We discuss the three-leg form of boundary equations, obtain asso-
ciated discrete Toda-type models with boundary and recover previous results as particular
cases. Finally, the connection between the 3D boundary consistency and the set-theoretical
reflection equation is established.
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Introduction

Discrete integrable systems arise from various motivations in applied or pure mathematics like
the need to preserve integrability of certains continuous equations when performing numerical
(and hence discrete) simulations or the theory of discrete differential geometry. In previous work
concerning an important class of such systems known as integrable quad-graph equations [1],
one of the original motivations was to study discrete differential geometry of surfaces. In this
context, a general construction allows one to always obtain a discretization of the surface in
terms of quadrilaterals [1], at least as long as one is only concerned with the bulk of the surface
and does not worry about its boundary (if it has one). The vertices of the graph thus obtained
can be seen as discrete space-time points where the field is attached. The dynamics of the field
is then specified by an equation of motion involving the values of the field at the four vertices
forming an elementary quadrilateral. Typically, this is of the form

Q(u00, u10, u01, u11; a, b) = 0 , (1)

where u00, u10, u01, u11 are the values of the field at the vertices of the quadrilateral and a, b are
parameters (see LHS of the Fig. 3).
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There exist several integrability criteria that different authors use to characterize the notion of
discrete integrability. Let us mention for instance algebraic entropy [2], singularity confinement
[3] or the 3D consistency/consistency around the cube condition [1, 4]. The latter is deeply
related to the notion of discrete Lax pair, discrete Bäcklund transformations and other classical
notions of integrability and, combined with a few other assumptions, led to the important ABS
classification of quad-graph equations [5]. This fact and the similarity of the above structures
with those existing in the case of continuous integrable systems make it a popular criterion.

In this paper, we want to propose a way of defining an integrable discrete system on a quad-
graph with boundary as arising from the discretization of a surface while taking into account
its boundary. From the geometric point of view, this is a natural generalization of the discrete
differential geometry motivation to the case of a surface with boundary. From the point of
view of discrete integrable quad-graph equations, this then allows us to tackle the problem
of formulating the analog of the 3D consistency condition together with its consequences i.e.
Bäcklund transformations and zero curvature formulation. We also introduce Toda-type systems
with boundary through the three-leg form of integrable equations on quad-graphs and we recover
the previous approach to boundary conditions for discrete integrable systems presented in [6].

We give a precise definition of the discretization procedure and of a quad-graph with boundary
in Sec. 1.1. Then we show how to define a discrete system on it. In addition to the elementary
quadrilateral and the corresponding equation of motion (1), the new crucial ingredient is an
elementary triangle together with the corresponding boundary equation of the form

q(x, y, z; a) = 0 ,

where x, y, z are the values of the field at the vertices of the triangle, and a function σ determining
the effect of the boundary on the labelling (see RHS of the Fig. 3). We provide our definition
of integrability in this context by defining the 3D boundary consistency condition involving
Q, q and σ in Sec. 1.3 and then go on to present a method that allows us to find solutions
for q and σ for a given Q in section 2. In section 3, we justify further our introduction of
the 3D boundary consistency condition by discussing Bäcklund transformations and the zero
curvature representation in the presence of a boundary. Section 4 introduces the three-leg
form for boundary equations and we use this to define systems of Toda-type with boundary.
As an example, we recover as particular case the approach to boundary conditions of [6] in
(fully) discrete integrable systems. Finally, in section 5 we establish the connection between the
3D boundary consistency condition introduced in this paper and the set-theoretical reflection
equation [7, 8] in the same spirit [9] as the 3D consistency condition is related to the set-
theoretical Yang-Baxter equation [10]. Conclusions and outlooks are collected in the last section.

1 Integrable quad-graph systems with boundary

In this section, we first define the notion of quad-graph with boundary and then use it to define
the elementary blocks needed to study integrable equations on quad-graphs with boundary.

1.1 Quad-graph with boundary

Our starting point is the definition of a quad-graph from a cellular decomposition of an oriented
surface S containing only quadrilateral faces. As explained in [1], a quad-graph can always be
obtained from an arbitrary cellular decomposition G by forming the double D (in the sense of
[1], otherwise called a diamond in [11]) of G and its dual cellular decomposition G∗. So far,
these notions apply to surfaces without a boundary. For the case of a surface with boundary,
the notion of dual cellular decomposition does not exist in general. In [11], Definition 1 gives
the definition of an object Γ∗ associated to a cellular decomposition Γ of a compact surface with
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boundary and it is noted that Γ∗ is not a cellular decomposition of the surface. Nevertheless, in
Section C.3 of [12], a notion of double is given for a surface with boundary (and not necessarily
compact, like a half-plane) and we adapt it here for our purposes. In particular, we will see
that the generic structure that arises is what we call a quad-graph with boundary with its faces
being either quadrilaterals or “half quadrilaterals” i.e. triangles.

So let us consider a cellular decomposition G of our surface S with a boundary. We denote,
respectively, by F , E and V the set of faces, edges and vertices of this cellular decomposition.
Following [12] and adapting slightly, we define G∗ as the following collection of cells with F ∗, E∗

and V ∗ respectively the sets of faces, edges and vertices.

• To each face in F , we associate a vertex v∗ in V ∗ (called white), placed inside the face.

• To each edge e ∈ E not on the boundary, we associate the dual edge e∗ ∈ E∗ which
cuts it tranversally and forms a path between the two white vertices contained in the two
adjacents faces in F separated by e.

• To each vertex v ∈ V (called black) not on the boundary, we associate the face in F ∗ that
contains it i.e. the face whose boundary is made of the edges in E∗ that cross the edges
in E having the vertex v under consideration as one of their ends.

Compared to Definition 6 of [12], in our definition of G∗, we include neither the dual edge
corresponding to an edge on the boundary nor the additional white vertex in the middle of an
edge in E belonging to the boundary. A typical configuration of G and G∗ is shown in Fig. 1.
We now form the structure that we will call a quad-graph with boundary below. Let us denote
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Figure 1: Example of a cellular decomposition G and of the associated G∗. The “horizontal”
curved line is the boundary of the underlying surface S. The black dots and the straight lines
connecting them are the vertices and edges of the initial cellular decomposition G. The white
dots and the straight lines connecting them are the vertices and edges of G∗. Edges of G on the
boundary and the boundary itself are identified in this picture.

it D. The vertices of D are all the black and white vertices i.e. VD = V ∪ V ∗. The edges of D
are all the edges in E that lie on the boundary of S together with those edges (w, b) obtained
by connecting a white vertex to each of the black vertices sitting on the face that contains the
white vertex1. The faces are then taken to be the interiors of the “polygons” thus obtained.
The result of this procedure for G and G∗ as in Fig. 1 is shown in Fig. 2. The faces are therefore
of two types:

1Note that these edges are neither in E nor E∗.
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• Quadrilaterals, with two black and two white vertices, in the bulk.

• Triangles, with two black vertices (on the boundary) and one white vertex (inside S),
alongside the boundary.
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Figure 2: Example of a quad-graph with boundary D. Black and white dots are the vertices
of the double and the straight lines are edges. Edges of G on the boundary and the boundary
itself are identified in this picture and form the rest of the edges of D. Faces are therefore either
quadrilaterals (with two black and two white alternating vertices) or triangles lying along the
boundary (with two black vertices and one white vertex).

Definition 1. A quad-graph with boundary is the collection of vertices and edges of D obtained
as described above from a cellular decomposition of a surface with boundary.

As an important by-product, this procedure to get a quad-graph with boundary allows one
to obtain a bipartite graph2. In addition, all the vertices on the boundary are of the same type.
This property will be important in the construction of the Toda models in Sec. 4.

1.2 Discrete equations on quad-graph with boundary

We are now ready to define discrete equations on a quad-graph with boundary. As usual, we
associate a field to this quad-graph (i.e. a function from V ∪ V ∗, the set of vertices, to C) and
a constraint between the values of the field around a face. This constraint can be seen as the
equation of motion for the field. For each quadrilateral face, the constraint is, as usual, defined
by

Q(u00, u10, u01, u11; a, b) = 0 , (2)

where u00, u10, u01, u11 ∈ C are the values of the field at each vertex around the face and
a, b ∈ C are parameters associated to opposite edges. One usually represents this equation as on
the L.H.S. of Fig. 3. We will refer to equation (2) as describing the bulk dynamics. Sometimes,
one demands additional properties [1] for the function Q(u00, u10, u01, u11; a, b) such as linearity
on each variable u00, u10, u01, u11 (affine-linearity), symmetry by exchange of these variables
(D4-symmetry), the tetrahedron property or the existence of the three-leg form (see section 4).

The new elementary building block needed to define a discrete system on a quad-graph with
boundary is an equation of the following type defined on each triangular face

q(x, y, z; a) = 0 , (3)

2 To be precise, we should not include the boundary edges if we want to talk about a bipartite graph.
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Figure 3: Elementary blocks to construct a discrete system with boundary.

where x, z are values of the field on the boundary, y a value inside the surface and a is a parameter
associated to one edge (the other edge is associated to a function σ(a) of the parameter a). We
represent this equation as on the R.H.S. of Fig. 3 where the dashed line represents the edge on
the boundary of the surface. We will refer to this equation as describing the boundary dynamics.
In general, there is no special requirement on q or σ but we will see that our methods to construct
expressions for q result in q having certain properties:

• Linearity: the function q(x, y, z; a) is linear in the variables x and z. Let us emphasize
that it may not be linear in y.

• Symmetry: one has σ(σ(a)) = a and

q(x, y, z; a) = 0 ⇔ q(z, y, x;σ(a)) = 0 .

• In some cases, a three-leg form for q inherited from the three-leg form of the corresponding
bulk equation Q = 0. We go back to this point in Sec. 4.

Let us remark that for a given quad-graph with boundary (and for σ being not the identity),
it is not always possible to label the edges with parameters as prescribed above. We show on
the L.H.S. of Fig. 4 a quad-graph with boundary for which we cannot find a suitable labelling.
On the R.H.S., we show a case where this is possible. In the following, we consider only those
quad-graph with boundary that can be labelled. It would be very interesting to study this
combinatorial problem in general but this goes beyond the scope of this paper.

1.3 Integrability: the 3D boundary consistency condition

As explained in the introduction, we adopt the 3D consistency approach to integrable quad-
graph equations. Let us first recall what it means in the bulk case [1, 4] before we introduce
its boundary analog. The usual setup is depicted in L.H.S. of Fig. 5 where the bulk equation
of motion Q = 0 is attached to each face of the cube. Given values of the field in the three
independent directions of the cube, say u000, u100, u010, u001, there are three different ways of
computing u111 by repeated use of Q = 0. The 3D consistency condition requires that these
three possibilities give the same result for u111.

We propose, in the following, the main new equation of this article which is a similar consis-
tency condition for the function q (and σ) that we call the 3D boundary consistency condition.
This condition is in fact a compatibility condition between the bulk equation Q = 0 and the
boundary equation q = 0. Instead of the cube for the 3D consistency, the 3D boundary consis-
tency lies on a half of a rhombic dodecahedron as displayed in R.H.S of Fig. 5. On each face
(resp. 4 quadrilaterals and 4 triangles), we attach its corresponding equation of motion (resp.
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Figure 4: Two examples of quad-graphs with boundary (represented by a dashed line here).
Only the one of the right-hand side can be labelled according to our rules for quadrilaterals and
triangles.

Q = 0 and q = 0). Then, the 3D boundary consistency is the statement that, given the values x,
x1 and x2 of the field, the different schemes to compute w (see Fig. 5) lead to the same results.
More precisely, following the notations in Fig. 5, we get that, given x, x1 and x2:

• the three equations

Q(y1, x2, x1, x; a, b) = 0 , q(x, x1, y2; a) = 0 , q(x, x2, y3; b) = 0 , (4)

gives respectively the values of y1, y2 and y3.

• Then, both equations

Q(y1, z1, x2, y3;σ(b), a) = 0 , Q(y1, z2, x1, y2;σ(a), b) = 0 , (5)

gives respectively the values of z1 and z2.

• Finally, the three equations

q(y2, z2, w; b) = 0 , q(y3, z1, w; a) = 0 , Q(y1, z1, z2, w;σ(b), σ(a)) = 0 , (6)

provides three ways to compute w which must give the same answer.

Definition 2. We say that we solve the 3D boundary consistency for q if, given a 3D consistent
Q, we find a function q of x, y, z, a and a function σ of a such that the scheme (4), (5), (6) gives
a unique value for w given values for x, x1 and x2. In this case, q is called a solution of the 3D
boundary consistency condition (we omit explicit reference to σ which is taken as part of the
solution). We also say that q is compatible with Q.

Note that this should not be confused with the notion of a solution of the actual dynamics
described by Q and q. Such a solution would consists in finding an expression for the field u
at each vertex of the quad-graph that satisfies the bulk and boundary dynamics. This is an
exciting open question which deserves separate attention and is beyond the scope of the present
paper.

In the bulk case, when one finds a Q which satisfies the 3D consistency (see Fig. 5), the
associated system is called an integrable equation on quad-graph [1, 4, 5]. To introduce a
boundary which preserves the integrability, for a given Q, we must solve the 3D boundary
consistency condition, i.e. find compatible functions q and σ.
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Figure 5: 3D consistency and 3D boundary consistency. We recall that parallel edges carry the
same parameter.

Definition 3. We call integrable equation on a quad-graph with boundary the data of a quad-
graph with boundary with compatible labelling as well as functions Q, q and σ which satisfy
the 3D consistency and the 3D boundary consistency conditions.

We justify the adjective “integrable” in sections 3.1 and 3.2 by showing the presence of
Bäcklund transformations and a zero curvature representation.

Let us emphasize that similar approaches have already appeared in the literature to introduce
integrable boundaries in different contexts. Indeed similar figures to those in Fig. 5 appeared
in [13, 14, 15] as the face representation of the reflection equation [16, 17]. The right-hand-side
of Fig. 5 is also half of the figure representing the tetrahedron equation [18, 19]. There exists
also a close connection between the set-theoretical equation introduced recently in [7, 8] and the
3D boundary consistency (see Sec. 5 for more details). Similar connections have been studied
previously in the bulk case where the set-theoretical Yang-Baxter equation is linked to the 3D
consistency condition [5, 9].

2 Solutions of the 3D boundary consistency

In this section, we provide a list of solutions of the 3D boundary consistency condition associated
to the bulk equations Q classified in [5]. In other words, given Q, we want to find solutions q
and σ which satisfy the 3D boundary consistency conditions. The underlying idea is that this
should provide integrable boundary conditions for integrable discrete equations characterized by
Q.

2.1 The ABS classification

For completeness, we list the solutions of the 3D consistency equations (2) obtained in [5].

(Q1) : a(u00 − u01)(u10 − u11)− b(u00 − u10)(u01 − u11) + δ2ab(a− b) = 0 ,

(Q2) :
a(u00 − u01)(u10 − u11)− b(u00 − u10)(u01 − u11)
+ab(a− b)(u00 + u10 + u01 + u11)− ab(a− b)(a2 − ab+ b2) = 0,
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(Q3) :
(b2 − a2)(u00u11 + u10u01) + b(a2 − 1)(u00u10 + u01u11)

− a(b2 − 1)(u00u01 + u10u11)− δ2(a2 − b2)(a2 − 1)(b2 − 1)/(4ab) = 0,

(Q4) :
sn(a)(u00u10 + u01u11)− sn(b)(u00u01 + u10u11)− sn(a− b)(u00u11 + u10u01)
+sn(a− b)sn(a)sn(b)(1 +K2u00u10u01u11) = 0 ,

(H1) : (u00 − u11)(u10 − u01) + b− a = 0 ,

(H2) : (u00 − u11)(u10 − u01) + (b− a)(u00 + u10 + u01 + u11) + b2 − a2 = 0 ,

(H3) : a(u00u10 + u01u11)− b(u00u01 + u10u11) + δ2(a2 − b2) = 0 ,

(A1) : a(u00 + u01)(u10 + u11)− b(u00 + u10)(u01 + u11)− δ2ab(a− b) = 0,

(A2) :
b(a2 − 1)(u00u01 + u10u11)− a(b2 − 1)(u00u10 + u01u11)
+(b2 − a2)(u00u10u01u11 + 1) = 0 .

We use the same labels (Q, H, A families) and forms that were used in [5], except for equation
(Q4) which is in an equivalent form introduced in [20] where sn(a) = sn(a;K) is the Jacobi
elliptic function with modulus K. It is worth noting that the 3D consistency condition as well
as the affine-linearity, D4-symmetry and tetrahedron properties are preserved for each of the
equations up to common Möbius transformations on the variables u00, u10, u01, u11 and point
transformations on the parameters a, b.

2.2 Method and solutions

Instead of performing brute force calculations where one could make assumption on the form
of q (like multilinearity in the variables) and insert in the 3D boundary consistency condition
for a given Q, below we describe a simple method that amounts to “fold”, in a certain sense, Q
to obtain compatible q’s. Although it may seem ad hoc and arbitrary, this method has several
motivations. First, it gives a simple way to obtain three-leg forms for q knowing the ones for
Q and hence a way to introduce discrete Toda-type systems with boundary. This is explained
in Sec. 4. Second, the method is a simple adaptation of the folding method that was used in
[8] to obtain reflection maps i.e. solutions of the set-theoretical reflection equation. This last
point is discussed in more detail in Sec. 5. There, we present an alternative method to find
admissible q’s starting from reflection maps. This alternative method produces some of the
solutions that are also obtained with the method that we explain here. But more importantly,
this alternative method establishes a deep connection between solutions of the 3D boundary
consistency condition and reflection maps. This is reminiscent of the deep connection between
solutions Q of the 3D consistency condition (in particular the ones of the ABS classification)
and quadrirational Yang-Baxter maps [28].

Now, given Q satisfying the 3D consistency condition, we look for q(u00, u10, u11; a) of the
form

q(u00, u10, u11; a) = Q(u00, u10, k(u00, u10; a), u11; a, σ(a)) , (7)

satisfying the 3D boundary consistency condition, where k and σ are the functions to be deter-
mined. Equation (7) may be seen as the folding along the diagonal (u00, u11) of the quadrilateral
in Fig. 3 to get the triangle (u00, u10, u11). Obviously, one may fold along the other diagonal
but, due to the D4-symmetry of Q, we get the same results.

To find k and σ (and hence q), for each given Q, we insert our ansatz (7) in the scheme
(4)-(6) and try to find functions k and σ that fulfill the resulting constraints. We note that the
following “trivial” choice

σ(a) = a , k(u00, u10; a) = −u10 , (8)
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is always a solution of the problem for any Q. It yields q(u00, u10, u11; a) = au10(u00 − u11). We
report in Tables 1 and 2 the nontrivial functions k, σ and q we found for the different Q’s of the
Q, H and A families of the ABS classification. Note that we make no claim of completeness. A
method for a systematic classification is in fact an interesting open problem.

3 Other aspects of integrable equations on quad-graphs with

boundary

In this section, we present results on important traditional aspects of integrability obtained from
the 3D boundary consistency equation. They justify a posteriori our definition of integrability
for quad-graphs with boundary.

3.1 Bäcklund transformations

In this subsection, we prove that the 3D boundary consistency condition proposed in the previous
section leads naturally to Bäcklund transformations which are a basic tool in the context of
classical integrability and soliton theory. This result is similar to the one without boundary [5]
and is summarized in the following proposition:

Proposition 1. Let us suppose that we have an integrable equation on a quad-graph with bound-
ary (with the set of all its vertices denoted as V ) as well as a solution, g : V → C. There exist
a two-parameter solution g+ of the same integrable quad-graph equation and a function f from
V to C satisfying

Q(g(v), g(v1), f(v), f(v1); a, λ) = 0 , Q(f(v), f(v1), g
+(v), g+(v1); a, σ(λ)) = 0 ,

for all edges (v, v1) of the quad-graph not on the boundary of the surface (a is the parameter
associated to this edge), and

q(g(v2), f(v2), g
+(v2);λ) = 0 ,

for all vertices v2 on the boundary of the quad-graph. We call the solution g+ the Bäcklund
transform of g.

Proof: The proof follows the same lines as in the case without boundary. We start with the
quad-graph with boundary, called in this proof the ground floor. We consider also two other
copies of the surface, called first and second floor, of the ground floor. Then, we construct a 3D
graph by the following procedure (see also Fig. 6):

• There is a one-to-one correspondence between the vertices of the ground floor and the ones
of the first floor but one moved the vertices of the first floor such that no vertex of the
first floor lies on the boundary of the surface (see L.H.S. of the Fig. 6). The vertices on
the second floor is an exact copy of the ones on the ground floor.

• We copy the edges in the bulk of the ground floor on the first and second floor. The copies
carry the same label. We copy the edges on the boundary of the ground floor only on the
second floor.

• We add the edges (thin lines on the Fig. 6) linking all the vertices of the ground floor with
the corresponding vertices of the first floor and similarly from the first to the second floor.
The edges between the ground and first floor carry the label λ whereas the edges between
the first and second floor carry σ(λ). We add also the edges between the vertices on the
boundary of the ground floor to the corresponding ones on the second floor.
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ABS σ(a) q(x, y, z; a) k(x, u; a)

Q1δ=0

µ2

a

∗
a(y − z) + µ(x− y) x+ µ

a
(x− u)

µ2

a

∗
ax(y − z) + µz(y − x) axu

au+µ(x−u)

−a+ 2µ∗ y(x+ z) µxu+(a−µ)x2

(a−µ)u+µx

−a+ 2µ∗ a
(

y2 − xz
)

+ (x− y)(y + z)µ −u

Q1δ=1

µ2

a

∗
a(y − z − µ)± µ(y − x− µ) x+ µ± µ

a
(u− x− µ)

−a+ 2µ∗ y(x− z) x+ a(a−2µ)
x−u

−a+ 2µ∗ (y − x)(y − z) + a(a− 2µ) u

−a+ 2µ y(x+ z) x(ax−µ(x−u))−a(a−µ)(a−2µ)
au+µ(x−u)

−a+ 2µ (y2 − xz) + µ
a
(x− y)(y + z)− (a− µ)(a− 2µ) −u

Q3δ=0

±µ
a
∗ y(x± z) ± ((a2−µ)x−a(1−µ)u)x

(a2−µ)u−a(1−µ)x

±µ
a
∗ (a2 + µ)

(

y2 ± xz
)

− a(1 + µ)y(x± z) ±u
−a y(x+ z) −u

Q3δ=1

µ
a

y(x± z)
a(µ∓1)xu−(µ∓a2)x2+ 1

4
(a2−1)(a2−µ2)

(

1

µ
∓ 1

a2

)

(a2∓µ)u−a(1∓µ)x

µ
a

a(µ ± 1)y(x± z)− (µ± a2)(y2 ± xz) ±u
+1

4(
1
µ
± 1

a2
)(a2 − 1)(a2 − µ2)

−a y(x+ z) −u

Q4
−a y(x+ z) x2−sn2(a)

u(1−K2sn2(a)x2)

−a sn2(a)(K2y2xz − 1) + y2 − xz −u

Table 1: Results for boundary equations (Q family). µ is a free parameter. The asterisk denotes
solutions that are also obtained with the method of section 5.
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ABS σ(a) q(x, y, z; a) k(x, u; a)

H1
−a+ 2µ∗ y(x+ z) u+ µ−a

x

−a+ 2µ∗ y(z − x) + a− µ −u

H2

−a+ µ∗ x+ 2y + z + µ u
−a+ µ∗ y(z − x) −2x− u− µ
−a+ µ 2y(x− z) + (µ− 2a)(x + z + µ) −u
−a+ µ y(x+ z) 2ux+(u+µ)(µ−2a)

2x+2a−µ

H3δ=0
−a y(x+ z) −u
µ
a

y(x± z) ±u

H3δ=1

µ
a
∗ y(x± z) ±u− µ∓ a2

ax
µ
a
∗ a2 + ay(x± z)± µ ±u

−a y(x+ z) −u

A1δ=0

µ2

a

∗
µ(x+ y) + a(y + z) −x+ µ

a
(u+ x)

µ2

a

∗
ax(y + z) + (x+ y)zµ axu

µ(u+x)−au

−a+ 2µ∗ y(x+ z) (ax−µ(u+x))x
au−µ(u+x)

−a+ 2µ∗ a
(

y2 − xz
)

− (x+ y)(y − z)µ −u

A1δ=1

µ2

a

∗
a(y + z − µ)± µ(x+ y − µ) −x+ µ± µ

a
(x+ u− µ)

−a+ 2µ∗ y(z − x) −x− a(a−2µ)
x+u

−a+ 2µ∗ (x+ y)(y + z) + a(a− 2µ) u

−a+ 2µ y(x+ z) x(ax−µ(x+u))−a(a−µ)(a−2µ)
au−µ(x+u)

−a+ 2µ µ
a
(x+ y)(y − z)−

(

y2 − xz
)

+ (a− µ)(a− 2µ) −u

A2
±µ

a
∗ y(z ± x) ± a(µ−1)ux+a2−µ

(a2−µ)xu+a(µ−1)

±µ
a
∗ a(1 + µ)y(x± z)− (a2 + µ)

(

1± xy2z
)

±u
−a y(z + x) −u

Table 2: Results for boundary equations (H and A families). µ is a free parameter. The asterisk
denotes solutions that are also obtained with the method of section 5.
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• the set of faces is the union of the following sets: (i) the triangular and quadrilateral
faces of the ground and second floor; (ii) the quadrilateral faces of the first floor; (iii) the
“vertical” quadrilateral faces made from the edges of the ground floor, the corresponding
ones of the first floor and the vertical edges linking the vertices of these edges, and similarly
between the first and second floors; (iv) the “vertical” triangular faces made of the edges
linking the vertices on the boundary of the ground and second floors and the corresponding
vertex of the first floor (which is not on the boundary).

�
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�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

1f(v )

1f(v )

1
+

g (v )
+

σ(λ)

g(v )
f(v)

g(v)

1
f(v)

λ

g(v)

Figure 6: The figure on the left shows the ground floor (white vertices and thick lines connecting
them) and the first floor (gray vertices and thick lines connecting them) corresponding to a
typical configuration near the boundary. The first floor and the second one (black vertices and
thick lines connecting them) is shown on the figure on the right. The thin lines correspond to
the edges linking the different floors: they carry λ on the left and σ(λ) on the right.

We impose now that the values of the field living on this 3D graph be constrained by Q = 0
on each quadrilateral face and by q = 0 on each triangular faces.

As in the case without boundary, due to the 3D consistency condition, given a function g
satisfying the constraints on the ground floor, one can get a function f satisfying the constraint
on the first floor depending on λ and on the value of f at one vertex of the first floor. This
function f satisfies, in particular, Q(g(v), g(v1), f(v), f(v1); a, λ) = 0.

Knowing the value of the field at one vertex on the boundary of the ground floor (say
g(v1) on the figure) and the corresponding value on the first floor (f(v1)), we get the value
g+(v1) of the field g+ at the corresponding vertex of the second floor using the equation
q(g(v1), f(v1), g

+(v1), λ) = 0 which connects the white, grey and black copies of the vertex
v1.

We obtain a function g+ satisfying the constraints of the second floor usingQ on the “vertical”
quadrilateral faces between the first and second floors. The important point is to remark that
due to the 3D consistency and the 3D boundary consistency conditions, all the different ways
to obtain the values of g+ give the same result. We may see this geometrically since the only
“elementary blocks” of the 3D graph are cubes or half of rhombic dodecahedron and since the
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functions Q and q are chosen such that they satisfy the 3D consistency and the 3D boundary
consistency conditions, the different ways to compute the values of the field g+ are consistent.

Finally, using the fact that the second floor is an exact copy of the ground floor, g+ satisfies
the constraints of the original quad-graph equations.

Let us remark that the main difference between the cases with and without boundary lies
in the necessity of an additional, intermediate floor in the case with boundary. This feature
appeared previously in the context of asymmetric quad-graph equations [22]. Let us emphasize
that the function f defined on the intermediate floor is not in general a solution of the same
equations on a quad-graph with boundary since the values of the field on the vertices of the
“would-be” boundary of the first floor do not necessarily satisfy an equation of the type (3).

3.2 Zero curvature representation

It is well established that a 3D consistent systemQ(u00, u10, u01, u11; a, b) admits a zero curvature
representation [1, 4, 23] i.e. there exists a matrix L depending on values of the field on the same
edge, the parameter associated to this edge and a spectral parameter λ such that the following
equation holds3

L(u11, u10, b;λ) L(u10, u00, a;λ) = L(u11, u01, a;λ) L(u01, u00, b;λ) . (9)

There exists a constructive way to get L from Q [1, 4]: due to the linearity of the function
Q, we can rewrite equivalently equation (2) as follows

u11 = L(u10, u00, a; b)[u01] , (10)

where L is a 2 by 2 matrix describing, with usual notations, a Möbius transformation

L[z] =
αz + β

γz + δ
where L =

(

α β
γ δ

)

.

Geometrically, using Fig. 5, it is easy to show that the matrix (10) satisfies the zero curvature
equation (9) if Q satisfies the 3D consistency [1, 4, 23].

Similarly, we want to show that the 3D boundary consistent system admits a zero curvature
representation. For the boundary equation q(x, y, z; a) = 0, we propose the following zero
curvature representation

K(z; c) L(z, y, σ(a); c) L(y, x, a; c) = L(z, y, σ(a);σ(c)) L(y, x, a;σ(c)) K(x; c) , (11)

where K is also a 2 by 2 matrix. We can now state the following results justifying the previous
definition:

Proposition 2. All the examples of boundary equations q(x, y, z; a) = 0 displayed in Tables 1
and 2 as well as the trivial solution (8) can be represented by equation (11) where K(x; a)[u]
is the 2 by 2 matrix describing the function k(x, u; a), understood as a Möbius transformation
w.r.t. u with polynomial coefficients in x and a.

Proof: We give the details of the proof for the case given in the first row of the Table 1 i.e.
we deal with the bulk equation Q1δ=0 given by

Q(u00, u10, u01, u11; a, b) = a(u00 − u01)(u10 − u11)− b(u00 − u10)(u01 − u11) ,

3This equation holds projectively but a choice of the normalization of L allows us to transform it into a usual
equality.
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and the boundary equation characterized by

q(x, y, z; a) = a(y − z) + µ(x− y) with σ(a) =
µ2

a
, k(x, u; a) =

−µu+ x(µ + a)

a
, (12)

The matrix L associated to this Q is given by

L(y, x, a; b) =
1√

b
√
b− a (x− y)

(

ay + b(x− y) −axy
a −ax+ b(x− y)

)

. (13)

It is a known result that equation (9) with this choice for L is satisfied ifQ(u00, u10, u01, u11; a, b) =
0 but it is easily verified. Let us mention that the parameters entering in the square roots of
the normalisation of L may be negative. Therefore, one must choose a branch cut for the square
root appearing in the normalisation: we choose the half-line {ix | x < 0}.

The matrix K associated to the function k given by (12) is

K(x; a) =

(

−1 ( a
µ
+ 1)x

0 a
µ

)

.

By algebraic computation, one gets

K(z; c) L(z, y, σ(a); c) L(y, x, a; c) − L(z, y, σ(a);σ(c)) L(y, x, a;σ(c)) K(x; c)

∝ q(x, y, z; a)

(

a(y − z) −ax(y − z) + cz(y − x)
0 c(y − x)

)

.

Therefore, if q(x, y, z; a) = 0, relation (11) holds. That proves the proposition for this case. All
the other cases are treated similarly which finishes the proof of the proposition.

Note that equation (11) provides a rather general framework for the representation of an
integrable boundary in quad-graph models. In the next section, we show how it contains as a
particular case a previous approach to boundary conditions in fully discrete systems.

4 Toda-type models

4.1 Three-leg form

It is known that any quad-graph equation Q(x, u, v, y; a, b) = 0 of the ABS classification can be
written equivalently in the so-called three-leg form [1], either in an additive form,

ψ(x, u; a) − ψ(x, v; b) = φ(x, y; a, b) , (14)

or a multiplicative form,

ψ(x, u; a)/ψ(x, v; b) = φ(x, y; a, b) . (15)

As demonstrated in [1, 23], the existence of a three-leg form leads to discrete systems of Toda-
type [25]. Indeed, let x be a common vertex of the n faces (x, yk, xk, yk+1) (with k = 1, 2, . . . , n
and yn+1 = y1) with the parameters ak assigned to the edge (x, yk). On each face, there is the
equation Q(x, yk, yk+1, xk; ak, ak+1) = 0 written in the presentation (14) or (15). Then, summing
the corresponding n equations of type (14), one gets

n
∑

k=1

φ(x, xk; ak, ak+1) = 0 ,
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where an+1 = a1. Similarly, multiplying n equations of the type (15) leads to

n
∏

k=1

φ(x, xk; ak, ak+1) = 1 ,

where an+1 = a1. When the graph is bi-partite (for example with black and white vertices),
we can reproduce this procedure by taking as common vertices all the black vertices to get a
Toda-type model on the black subgraph.

Now assume that the boundary equation q(x, y, z; a) = 0 can be written as

ψ(y, x; a) − ψ(y, z;σ(a)) = ϕ(y; a) or ψ(y, x; a)/ψ(y, z;σ(a)) = ϕ(y; a) , (16)

where the function ψ is the same as in the bulk case and the new function ϕ depends only on the
central vertex of the triangle representing the boundary and on the parameter a. In this case, one
can obtain systems of Toda-type with boundary. Indeed, let x be a vertex close to the boundary
(i.e. belonging to a triangle but not sitting on the boundary) and common to n−1 quadrilateral
faces (x, yk, xk, yk+1) (with k = 1, 2, . . . , n− 1). As in the bulk case, on each quadrilateral face,
there is the equation Q(x, yk, yk+1, xk; ak, ak+1) = 0 written in the presentation (14) or (15).
On the triangular face, it holds that q(yn, x, y1; an) = 0 (with a1 = σ(an)). Then, summing (or
multiplying) the corresponding n equations, we get in the additive case

ϕ(x; an) +

n−1
∑

k=1

φ(x, xk; ak, ak+1) = 0 ,

and in the multiplicative case

ϕ(x; an)

n−1
∏

k=1

φ(x, xk; ak, ak+1) = 1 .

We illustrate this procedure schematically in Fig. 7 for n = 4.

y1
x1 x1

x2

x3

x4

x2

x3

x4

x

y

y

y
y5

4

3

2

φ

φ

φ

φ

ϕ
x

Figure 7: Faces adjacent to the vertex x near a boundary (Left). Star graph from the white
subgraph where the edges carry the functions associated appearing in the Toda-type equation
(Right).

As in the bulk case, if the graph is bi-partite (see footnote 2) and moreover if the vertices on
the boundary are of the same type, one can reproduce the above procedure on the whole graph
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to get a Toda-type model on a subgraph and with a boundary determined by ϕ. The conditions
on the graph seem, at first glance, very restricting. Nevertheless, the procedure explained in
Sec. 1.1 provides, starting from any graph, examples satisfying such constraints.

4.2 Boundary conditions for Toda-type systems

In general, it seems that not all the solutions for q found previously can be written as in (16).
However, it turns out that for each solution q(x, y, z; a) for which the corresponding function
k(x, y; a) depends only on y or the function q(x, y, z; a) factorizes as f(y, a)g(x, z, a), there is a
way to obtain ϕ from φ. This is reminiscent, at the three-leg form level, of the simple folding
procedure (7) used to obtain q from Q. In these cases, the function k(x, y; a) plays the role of
the cut-off constraint (or boundary condition) for the Toda-type model in the sense of [6] (see
Example 3 below for a precise connection).

For the first case where the function k(x, u; a) = k(u; a) does not depend on x, using equation
(7) in (14) or (15) together with the D4-symmetry property for Q, one can see that equation
(16) with the following function ϕ

ϕ(y; a) = φ(y, k(y; a); a, σ(a)) , (17)

is equivalent to the corresponding boundary equation q(x, y, z; a) = 0. Therefore, by using the
explicit forms of φ given in [5] associated to each Q of the ABS classification and the results of
Tables 1 and 2, we can derive ϕ and hence three-leg forms of the boundary equation in the form
(16). In turn, this allows us to define Toda-type systems with a boundary.

Example 1. The trivial solution (8) always corresponds to ϕ(y; a) = 0 for the additive case or
ϕ(y; a) = 1 for the multiplicative case. This boundary condition may be interpreted as a free
boundary for the corresponding Toda-type system.

Example 2. We recall that ψ(x, u; a) = a
x−u

and φ(x, y; a, b) = ψ(x, y; a−b) for Q1δ=0. Looking
at the fourth solution for Q1δ=0 of Table 1, i.e. σ(a) = −a+ 2µ and k(x, y; a) = −y, we obtain
ϕ using (17) and the following discrete Toda-type system with a boundary term:

an − µ

x
+

n−1
∑

k=1

ak − ak+1

x− xk
= 0 .

For the second case where the function q(x, y, z; a) factorises, the construction is a bit more
involved. The equation q(x, y, z; a) = 0 constrains x and z independently of the values of y.
Therefore, we get equations involving only the values of the field on the boundary. Let us
suppose we solve these constraints on the boundary and denote by x̄ the corresponding solution
for the field x. These values on the boundary play the role of parameters in the function k(x̄, y; a)
appearing in the boundary conditions. Also, one can see that equation (16) involves the following
function ϕx̄

ϕx̄(y; a) = φ(y, k(x̄, y; a); a, σ(a)) ,

and is equivalent to the corresponding boundary equation q(x̄, y, z̄; a) = 0. It also appears in
the corresponding Toda-type system with boundary. We now illustrate this case.

Example 3. Let us restrict our general framework to a Z
2 lattice system: we consider the

quad-graph with boundary represented on Fig. 8 with the bulk equations given by Q1δ=0 with
the label a on the lines m − n = const and the label b 6= a on the lines m + n = const. The
corresponding Toda-type model reads, for n ≥ 2,

1

qm,n+1 − qm,n
− 1

qm,n − qm,n−1
=

1

qm+1,n − qm,n
− 1

qm,n − qm−1,n
, (18)
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We use the third solution for q for Q1δ=0 in Table 1 to generate the boundary condition on the
Toda-type system from the following boundary equation4

q(x̄m, qm,1, x̄m+1; a) = 0 ⇔ x̄m + x̄m+1 = 0 ,

on the quad-graph with boundary. It is obvious that the general solution for the boundary values
of the field is x̄m = (−1)m x̄0 (for any x̄0). Then, following the procedure of folding explained
in Sec. 2.2, we obtain

qm,0 = k(x̄m, qm,1; a) . (19)

where

k(x̄m, qm,1; a) =
µ(−1)mx̄0qm,1 + (a− µ)x̄20
(a− µ)qm,1 + µ(−1)mx̄0

.

In particular, we recover exactly the results of [6] (equations (13) and (17)) for the model (18)
(equation (3) of [6]) with the identifications

x̄0 →
√

a

b
, a→ b+ c

√

b

a
and µ→ c

√

b

a
, (20)

qm,0 qm,1 qm,2

qm+1,0

qm−1,0

qm+1,1 qm+1,2

qm−1,1 qm−1,2

xm+2

xm+1

xm

xm−1

Figure 8: A quad-graph with boundary with an
underlying Z

2 lattice structure. The additional
white vertices will play the role of boundary ver-
tices for the Toda-type system with boundary
living on the white sublattice.

qm,0 qm,1 qm,2

qm−1,0

qm+1,0 qm+1,1

qm−1,1 qm−1,2

qm+1,2

xm+2

xm+1

xm

xm−1

Figure 9: The (white) Z
2 (sub)lattice support-

ing the Toda-type system with a boundary. Our
boundary is inserted between the boundary for
the Toda-type system at site n = 0 and the first
site of the bulk system at n = 1.

4.3 Lax presentation of boundary conditions for a Toda-type model

In the previous example 3, we showed that we can recover the boundary conditions introduced
in [6]. In this subsection, we show that the correspondence goes beyond this and is in fact also

4We suppose that qm,1 does not vanish.
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valid at the level of the zero curvature representation. Indeed, our zero curvature representation
(11) allows us to recover as a particular case the main equation of [6], which we reproduced
as (21) below, and which encodes the symmetry approach to integrable boundary conditions
applied to integrable discrete chains. For clarity, we restrict our discussion of this connection
to the case treated already in example 3 above. But we believe that the argument is easily
generalizable to most Toda-type models.

Let us first recall that the boundary condition (19) was obtained in [6] by analysing the
matrix equation

H(m+ 1, λ)A(m, 0, λ) = A(m, 0, h(λ))H(m,λ) , (21)

where A(m,n, λ) is the “discrete time” part of the discrete Lax pair (evaluated at the site n = 0
of the boundary), h is some function acting on the parameter λ andH(m,λ) is a matrix encoding
an extra linear symmetry at the site of the boundary (see eqs (14) and (15) in [6]) and effectively
producing allowed integrable boundary conditions.

The main result here is that our zero curvature representation boils down to (21) thanks to
a remarkable “fusion” property of the two matrices L which then become A and the fact that
our matrix K becomes the matrix H. This goes as follows. The zero curvature representation
based on Fig. 8 reads

K(xm+1; c)L(xm+1, qm,1, σ(a); c)L(qm,1, xm, a; c)

= L(xm+1, qm,1, σ(a);σ(c))L(qm,1, xm, a;σ(c))K(xm ; c) ,

where

L(y, x, a; b) =
1

(x− y)

(

ay + b(x− y) −axy
a −ax+ b(x− y)

)

,

and

K(x; c) =

(

µx (c− µ)x2

(c− µ) µx

)

.

Now, Using the three-leg form

ψ(qm,1, xm+1;σ(a)) − ψ(qm,1, xm; a) = φ(qm,1, qm,0;σ(a), a) ,

and performing calculations similar to those in [1] (Proposition 11), one finds

L(xm+1, qm,1, σ(a); c)L(qm,1, xm, a; c) = cL(qm,0, qm,1, σ(a) − a; c− a) .

It remains to perform the changes of parameters as in (20), together with

c→ (2λ+ 1)b+ c

√

b

a
, (22)

to obtain

L(xm+1, qm,1, σ(a); c)L(qm,1, xm, a; c) = 2b

(

(2λ+ 1)b+ c

√

b

a

)

σ3A(m,n, λ)σ3 ,

where σ3 is the usual 2× 2 Pauli matrix. This also yields

K(xm; c) =

(

(−1)mc (2λ+ 1)a
(2λ+ 1)b (−1)mc

)

= (−1)mH(m,λ) .

This is completely equivalent to the results obtained in [6] up to an irrelevant c→ 1/c substitu-
tion in H. Note that the map λ 7→ h(λ) = −λ− 1 is also correctly reproduced with our choice
σ(c) = −c+ 2µ and under the identifications (20) and (22).
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5 Connection between 3D boundary consistency and the set-

theoretical reflection equation

5.1 General approach

In [9], a nice approach was described to obtain a relation between a 3D consistent quad-graph
equation and a Yang-Baxter map thus yielding a connection between 3D consistency and the
set-theoretical Yang-Baxter equation [10]. It is based on the use of symmetries of the equation
Q = 0 and the identification of invariants under these symmetries. Our idea is to extend
this connection at the level of reflection maps and integrable boundary equations thus yielding
a connection between the 3D boundary consistency introduced here and the set-theoretical
reflection equation introduced in [7, 8]. First, let us recall the method of [9]. Given a quad-
graph equation

Q(u00, u10, u01, u11; a, b) = 0 , (23)

let G be a connected one-parameter group of transformations acting on the variables uij

Gǫ : (u00, u10, u01, u11) 7→ (û00, û10, û01, û11) .

This transformation is said to be a symmetry of (23), if

Q(û00, û10, û01, û11; a, b) = 0 ,

whenever (23) holds. The corresponding infinitesimal action reads

vQ = 0 ,

where

v = η00
∂

∂u00
+ η10

∂

∂u10
+ η01

∂

∂u01
+ η11

∂

∂u11
,

with η being the characteristic of G specified by

ηij =
d

dǫ
Gǫ(uij) .

Methods to obtain the characteristic η can be seen e.g. in [26, 27]. Knowing v, the idea is then
to define a lattice invariant I of the transformation group G which satisfies

v I = 0 ,

and to use it to define the Yang-Baxter (or edge) variables (X,Y,U, V ) from the vertex variables
(u00, u10, u01, u11) by

X = I(u00, u10) , Y = I(u10, u11) , U = I(u01, u11) , V = I(u00, u01) ,

and assign them to the edges of an elementary quadrilateral as shown in Fig. 10. Once the
infinitesimal generator v is known, one can solve for I.

An important result of [9] is that the variables X,Y,U, V are related by a map (U, V ) =
R(X,Y ) which is a Yang-Baxter map, provided the quad-graph equation determined by Q
satisfies the 3D-consistency property. To construct boundary equations that satisfy the 3D-
boundary consistency property, we propose to use this method “backwards” in connection with
our classification of reflection maps associated to quadrirational Yang-Baxter maps. Choosing
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u00

p

(X, a) u10

q (Y, b)

u11
p

(U, a)u01

q(V, b)

Figure 10: Link between quad-graph equation and Yang-Baxter map.

the invariant properly, the Yang-Baxter map R can be recognized as one canonical form be-
longing to the classification of quadrirational Yang-Baxter maps [28, 29]. Then we can use the
corresponding reflection maps ha and σ to construct q according to the following prescription

q(u10, u00, u01; a) = I(u00, u01)− ha(I(u00, u10)) . (24)

The origin of this prescription comes from the folding method explained and used in [8] to con-
struct reflection maps. When translated in terms of vertex variables u00, u10, u01, it gives (24).
Indeed, the folding method produces reflection maps B acting on the Yang-Baxter variables and
the parameters, of the form (V, b) = B(X, a) = (ha(X), σ(a)). Hence, V = ha(X) and recalling
that V = I(u00, u01) and X = I(u00, u10), this becomes equivalent to q(u10, u00, u01; a) = 0
with q as defined in (24). In particular, our construction ensures that q and Q satisfy the 3D-
boundary consistency property since the corresponding Yang-Baxter and reflection maps satisfy
the set-theoretical reflection equation. We see that to carry out this programme, the knowledge
of the invariants and hence v is crucial. We use the classification for v obtained in [30] of the
so-called five-point symmetries, a subset of which is the set of one-point symmetries which are
the ones involved in the above method. Note that although the results of [30] were obtained
in the context of Z2 lattices, we can easily adapt them to the present more general context of
quad-graphs. For each v of each quad-graph equation, we provide a solution I0 for the invariant
I which is of the simplest form, the latter meaning that other solutions are obtained from our I0
in the form f(I0) with f being a differentiable bijection depending possibly on the parameters
a or b. To the best of our knowledge, only sparse examples of invariants and corresponding YB
maps have been given in the literature so far. In Table 3 below, we give a list of invariants
satisfying the above criteria and the corresponding family of YB maps. Then, one only has to
use formula (24) to find q. In Tables 1 and 2, the solutions for q (and σ) that we have found
using this method (on top of the folding method) are shown with an asterisk.

5.2 Example for A1δ=0

We now carry out the example of the quad-graph equation A1δ=0 explicitely to show how the
method works and illustrate some of the technical subtleties. Let

Q(u00, u10, u01, u11, a, b) = a(u00 + u01)(u10 + u11)− b(u00 + u10)(u01 + u11) .

For this family, the classification in [30] gives three one-point symmetry generators5

η1 = (−1)k+l , η2 = u00 , η3 = (−1)k+lu200 .

5We have kept the notations of [30] which involve the two integers k, l related to the underlying Z
2 lattice

considered in that paper. However, here, this should be understood as a straightforward generalization involving
the black and white sublattices to keep track of the relative signs.
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The corresponding simplest invariants I1, I2 and I3 read

I1(s, t) = s+ t , I2(s, t) =
s

t
, I3(s, t) =

1

s
+

1

t
.

So, for the first invariant, the Yang-Baxter variables read

X = u00 + u10 , Y = u10 + u11 , U = u01 + u11 , V = u00 + u01 ,

which satisfy

X − Y = V − U , aV Y − bXU = 0 . (25)

This yields the relations

U = aY
X − Y

bX − aY
, V = bX

X − Y

bX − aY
.

To recognize the family to which this map belongs, we perform the following transformation on
the variables

X → aX , Y → bY , U → aU , V → bV . (26)

We then obtain the FIII quadrirational Yang-Baxter map

U =
Y

a
P , V =

X

b
P , P =

aX − bY

X − Y
.

For this family, we have the following reflections maps

σ(a) =
µ2

a
and ha(X) =

aX

µ
or ha(X) = −aX

µ
,

where µ is a free parameter. Performing the inverse transformation of (26), we obtain the
reflection maps that we can use in formula (24) to obtain q. They read

ha(X) =
µX

a
or ha(X) = −µX

a
,

and we obtain

q(x, y, z; a) = µ(x+ y)− a(y + z) or q(x, y, z; a) = µ(x+ y) + a(y + z) ,

both valid with σ(a) = µ2

a
. Note that in this case, the two possibilities for the boundary

equations q(u10, u00, u01; a) = 0 are related by the transformation µ → −µ which leaves σ(a)
invariant so that, in fact, we only have one boundary equation here.

Let us perform the same analysis for I2. The Yang-Baxter variables are

X = u00/u10 , Y = u10/u11 , U = u01/u11 , V = u00/u01 ,

and they satisfy

XY = UV , a(XY + U)(Y + 1)− bY (X + 1)(U + 1) = 0 ,

which yields

U =
bY − aXY + bXY − aXY 2

a+ aY − bY − bXY
, V =

aX + aXY − bXY − bX2Y

b− aX + bX − aXY
.

Performing the following transformation

X → −X , Y → −Y , U → −U , V → −V , (27)
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we obtain the HII quadrirational Yang-Baxter map

U = Y
(b+ (a− b)X − aXY )

(a+ (b− a)Y − bXY )
, V = X

(a+ (b− a)Y − bXY )

(b+ (a− b)X − aXY )
.

For this family, we have the following reflections maps

σ(a) =
µ2

a
and ha(X) =

a+ µ−Xµ

a
or ha(X) =

aX

aX + µ−Xµ
,

or,

σ(a) = −a+ 2µ and ha(X) = −X or ha(X) =
a+ (X − 1)µ

aX + µ−Xµ
.

where µ is a free parameter. Performing the inverse transformation of (27) and using (24) we
find

q(x, y, z; a) = ax(y + z) + (x+ y)zµ or q(x, y, z; a) = y(a(y + z)− (x+ y)µ) ,

both valid with σ(a) = µ2

a
, and,

q(x, y, z; a) = y(x+ z) or q(x, y, z; a) = a
(

y2 − xz
)

− (x+ y)(y − z)µ ,

both valid for σ(a) = −a+ 2µ.
Finally, using I3 yields the relations (25) so that we obtain the FIII quadrirational Yang-

Baxter map again. Therefore, we can use the same reflection maps but because the invariant is
different we may obtain different expressions for q. A direct calculation gives

q(x, y, z; a) = ax(y + z) + (x+ y)zµ or q(x, y, z; a) = ax(y + z)− (x+ y)zµ ,

both valid with σ(a) = µ2

a
. These are in fact the same solution under the transformation

µ → −µ and it coincides with the first solution already obtained from the HII family. Let
us remark that in some cases, point transformations on the parameters are needed on top of
Möbius transformations to recognize the canonical Yang-Baxter map. This may affect the form
of the map σ to be used in the 3D boundary consistency condition. This happens for Q3δ=0,
H3 and A2. Finally, let us also mention that this method has some inherent limitations due
to the fact that for families Q2, Q3δ=1 and Q4, there are no one-point symmetry generators
in the classification of [30]. Our other method described in section 2 does also work for these
families, as can be seen in the tables. Whether or not the corresponding solutions for q for these
“missing” families can be mapped back to reflection maps is an interesting open question.

6 Conclusions and outlooks

We proposed a definition for integrable equations on a quad-graph with boundary and introduced
the notion of 3D boundary consistency as a complement of the 3D consistency condition that
is used as an integrability criterion for bulk quad-graph systems. Just like quadrilaterals are
fundamental structures when one discretizes an arbitrary surface without boundary, we argued
that triangles appear naturally when one considers surfaces with boundary. Therefore, it is
natural to associate a 3-point boundary equation to describe the boundary locally just like
one associates a 4-point bulk equation to describe the bulk locally. We presented two different
methods to find solutions of the 3D boundary consistency condition given an integrable quad-
graph equation of the ABS classification. The terminology “integrable boundary” is also backed
up by the discussion of other traditional integrable structures like Bäcklund transformations
and zero curvature representation for systems with boundary. This is also supported by the
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Quad-graph Equation Characteristic Invariant Yang-Baxter map

Q1δ=0

η1 = 1 I(s, t) = s− t HIIIa

η2 = u00 I(s, t) = s/t HII

η3 = u200 I(s, t) = 1/s − 1/t HIIIa

Q1δ=1 η1 = 1 I(s, t) = s− t HII

Q3δ=0 η1 = u00 I(s, t) = s/t HI

H1
η1 = 1 I(s, t) = s− t HV

η2 = (−1)k+l I(s, t) = s+ t FV

η3 = (−1)k+lu00 I(s, t) = st FIV

H2 η1 = (−1)k+l I(s, t) = s+ t FIV

H3δ=0
η1 = u00 I(s, t) = s/t HIIIb

η2 = (−1)k+lu00 I(s, t) = st FIII

H3δ=1 η1 = (−1)k+lu00 I(s, t) = st FII

A1δ=0

η1 = (−1)k+l I(s, t) = s+ t FIII

η2 = u00 I(s, t) = s/t HII

η3 = (−1)k+lu200 I(s, t) = 1/s + 1/t FIII

A1δ=1 η1 = (−1)k+l I(s, t) = s+ t FII

A2 η1 = (−1)k+lu00 I(s, t) = st FI

Table 3: Some invariants and corresponding Yang-Baxter maps for the ABS quad-graph equa-
tions.
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connection that we unraveled between 3D boundary consistency and set-theoretical reflection
equation. As a by-product of our study, we were also able to introduce three-leg forms of
boundary equations and hence to introduce Toda-type systems with boundary.

The present work lays some foundations for what we hope could be a new exciting area of
research in discrete integrable systems. Among the many open questions one can think of, we
would like to mention a few that we believe are important: finding a method of classification
of boundary equations given a bulk quad-graph equation, tackling the problem of posing the
initial-boundary value problem for quad-graph equations with a boundary, understanding the
connection of our approach with the singular-boundary reduction approach of [31], implementing
the discrete inverse scattering method with a boundary with the hope of finding soliton solutions,
etc.
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[28] V.E.Adler, A.I.Bobenko and Yu.B.Suris, Geometry of Yang–Baxter maps: pencils
of conics and quadrirational mappings, Commun.Anal.Geom. 12 (2004) 967 and
arXiv:math/0307009.

[29] V.G.Papageorgiou, Yu.B.Suris, A.G.Tongas and A.P.Veselov, On quadrirational Yang-
Baxter Maps, SIGMA 6 (2010) 033 and arXiv:0911.2895.

[30] O.G.Rasin and P.E.Hydon, Symmetries of Integrable Difference Equations on the Quad-
Graph, Studies in Applied Mathematics 119 (2007) 253.

[31] J.Atkinson and N.Joshi, Singular-boundary reductions of type-Q ABS equations,
Int.Math.Res.Not. 7 (2013) 1451 and arXiv:1108.4502.


	Integrable quad-graph systems with boundary
	Quad-graph with boundary
	Discrete equations on quad-graph with boundary
	Integrability: the 3D boundary consistency condition

	Solutions of the 3D boundary consistency 
	The ABS classification
	Method and solutions

	Other aspects of integrable equations on quad-graphs with boundary 
	Bäcklund transformations 
	Zero curvature representation

	Toda-type models 
	Three-leg form
	Boundary conditions for Toda-type systems
	Lax presentation of boundary conditions for a Toda-type model

	Connection between 3D boundary consistency and the set-theoretical reflection equation 
	General approach
	Example for A1=0

	Conclusions and outlooks

