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General 

 

All materials were used as received. Levulinic acid (98%), KOH (85%) Al(OTf)3, 
p-toluenesulfonic acid monohydrate (PTSA.H2O), terephthaloyl chloride, methanol, 
anhydrous toluene, and anhydrous pyridine were purchased from Sigma-Aldrich. 
Palladium on activated carbon was purchased from Strem Chemical. 
2,7-Octanedione 2 was dried over molecular sieves prior to use in polymerizations. 
 
1H NMR spectra were recorded using a Bruker 600 NMR spectrometer operating at 
600 MHz. 13C NMR spectra were recorded on the same instrument at an operating 
frequency of 150 MHz. An HP 6002A DC power supply was used in the electrolysis 
reactions. 
 
Gel permeation chromatography was used to determine polymer molecular weight 
and was carried out using a set (PSS SDV High) of three analytical columns (300 x 
8mm, particle diameter 5 µm) of 1000, 105 and 106 Å pore sizes, plus guard column, 
supplied by Polymer Standards Service GmbH (PSS) and installed in a PSS SECcurity 
GPC system. Elution was done with stabilised tetrahydrofuran at 1ml/min with a 
column temperature of 23 °C and detection by refractive index. 20 µL of a 1 mg/mL 
sample in THF was injected for each measurement and eluted for 40 min. 
Calibration was carried out in the molecular weight range 400 – 2x106 Da using 
ReadyCal polystyrene standards supplied by Sigma Aldrich. 
 
Modulated differential scanning calorimetry (MDSC) experiments were carried out 
on a TA Instruments Q2000 under a nitrogen atmosphere at a heating rate of 10 
°C/min up to a temperature of 200 °C, and using a sample mass of approximately 10 
mg. The Tg values were reported from second heating scans. 
 
Thermogravimetric analysis (TGA) was performed on a PL Thermal Sciences STA 
625 thermal analyzer. About 10 mg of accurately weighed sample in an aluminum 
sample cup was placed into the analyzer furnace with a N2 flow of 100 ml/min and heated from room temperature to 625 ˚C at a heating rate of 10 °C/min. 
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Optimization of the Kolbe electrolysis of levulinic acid 

 

Kolbe electrolysis of levulinic acid 1 was carried out with platinum plate electrodes 
as working and counter electrodes (1.5 x 1.5 cm2; distance between parallel 
electrodes = 12 mm) in a methanolic KOH solution in an undivided glass cell with 
magnetic stirring. Constant current was applied at the stated temperature for the 
stated periods of time (see Tables S1 and S2). The reaction mixture was acidified to 
pH=2-3 with 1 M aq HCl and then evaporated under vacuum. The conversion and 
yield were determined by NMR using 1,4-dioxane as an internal standard. To the 
residue was added 1M NaOH (50 mL) and the mixture was extracted with 
dichloromethane (50 ml x 3). The combined organic phase was washed with 
saturated brine and dried over Na2SO4. The solution was filtered through a short 
plug of silica gel and concentrated to give 2,7-octanedione 2 as a light yellow solid. 

 

Table S1. Summary of experimental conditions (reaction time, levulinic acid 

concentration, methanolic KOH concentration, temperature, and current density) and 

the corresponding yields and conversions for the Kolbe electrolysis of levulinic acid 

carried out at 4 mmol scale. 

 

Run 

 

Time 

(min) 

[LA] 

(M) 

[KOH] 

(M) 

T (˚C) Current 

density 

(mA/cm2) 

Yield 

(%) 

Conversion 

(%) 

1 32 0.4 0.1 0 178 60 100 

2 16 0.4 0.1 0 178 53 81 

3 16 0.4 0.1 22 178 58 86 

4 32 0.8 0.1 22 178 55 81 

5 16 0.4 0.4 22 178 29 62 

6 16 0.4 0.4 22 356 37 83 

7 16 0.4 0.075 22 178 64 92 
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Table S2. Summary of experimental conditions (reaction time, levulinic acid 
concentration, methanolic KOH concentration, temperature, and current density) 
and the corresponding yields and conversions for the Kolbe electrolysis of levulinic 
acid carried out at 8 mmol, 16 mmol, 32, and 64 mmol scale. 

 

Run Scale 

(mmol) 

 

Time 

(min) 

[LA] 

(M) 

[KOH] 

(M) 

T 

(˚C) 
Current 

density 

(mA/cm2) 

Yield 

(%) 

Conversion 

(%) 

1 8 32 0.4 0.075 22 178 56 87 

2 16 64 0.4 0.075 22 178 58 86 

3 32 128 0.4 0.075 22 178 56 85 

4 64 256 0.4 0.075 22 178 48 84 
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Experimental procedures for polymers 

 

Poly(2,7-octanediol)terephthalate 4 

 

 

Terephthaloyl chloride (0.528 g, 2.60 mmol) was dissolved in anhydrous toluene 
(1.5 mL) in a dry 25 mL round-bottom flask which was sealed with the septum. The 
flask was cooled in an ice/water bath and continually purged with argon. Separately, 
2,7-octanediol (0.380 g, 2.60 mmol) was dissolved in a mixture of anhydrous 
pyridine (1.7 mL) and anhydrous toluene (1.5 mL). This mixture was added via 

syringe to the argon purged diacid chloride solution with slow agitation by a 
magnetic stirrer bar. Upon mixing the reaction become cloudy and slightly viscous, 
with viscosity increasing over time. After 6 h the flask was removed from the 
ice/water bath and allowed to reach rt, being left to stir slowly. At 48 h from the 
start of reaction (42 hours at rt), further terephthaloyl chloride (5 mg) in anhydrous 
toluene (0.2 mL) was added to the reaction flask, and this was repeated again after 
76 h. After a total reaction time of 92 h (86 h at rt) the excess pyridine and toluene 
was mostly removed in vacuo and the solid sticky residue was triturated twice with 
dry methanol (15 mL). The sticky crude product was re-dissolved in toluene (0.2 
mL) and this solvent was subsequently removed under vacuum. The solid product 
was dried under high vacuum (<1 mbar) overnight to give poly(2,7-octanediol) 
terephthalate 4 as a light yellow, sticky solid (0.452 g, 63% yield based on a C.R.U. of 
polymer of 276.33 g mol-1). 

 

Poly(2,7-octanediol)-2,5-furanoate 5 

 

 

Furan-2,5-dicarbonyl chloride (0.502 g, 2.60 mmol) was dissolved in anhydrous 
toluene (1.5 mL) in a dry 25 mL round-bottom flask which was sealed with a 
septum. The flask was cooled in an ice/water bath and continually purged with 
argon. Separately, 2,7-octanediol (0.380 g, 2.60 mmol) was dissolved in a mixture of 
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anhydrous pyridine (1.7 mL) and anhydrous toluene (1.5 mL). This mixture was 
added via syringe to the argon purged diacid chloride solution with slow agitation 
by a magnetic stirrer bar. Upon mixing the reaction become cloudy and slightly 
viscous, with viscosity increasing over time. After 6 h the flask was removed from 
the ice/water bath and allowed to reach rt, being left to stir slowly. At 48 hours from 
the start of reaction (42 hours at rt) further terephthaloyl chloride (5 mg) in 
anhydrous toluene (0.2 mL) was added to the reaction flask, and this was repeated 
again after 76 h. After a total reaction time of 92 h (86 h at rt) the excess pyridine 
and toluene was mostly removed under vacuum and the solid sticky residue was 
triturated twice with dry methanol (15 mL). The sticky crude product was 
re-dissolved in 5 mL of toluene and this solvent subsequently removed under 
vacuum, this step was found to reduce residual pyridine in the product. The sticky 
crude product was re-dissolved in toluene (0.2 mL) and this solvent was 
subsequently removed under vacuum. The solid product was dried under high 
vacuum (<1 mbar) overnight to give poly(2,7-octanediol)-2,5-furanoate as an 
orange/yellow glassy solid (0.376 g, 54% yield based on a C.R.U. of polymer of 
266.29 g mol-1). 
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NMR spectra 

 

Figure S1. 1H NMR spectrum of 2,7-octanedione 2 in CDCl3 
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Figure S2. 13C NMR spectrum of 2,7-octanedione 2 in CDCl3 
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Figure S3. 1H NMR spectrum of the crude product from the intramolecular aldol 

condensation-hydrogenation of 2 (in CDCl3) (main product 6 shown). 
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Figure S4. 13C NMR spectrum of the crude product from the intramolecular aldol 

condensation-hydrogenation of 2 (in CDCl3) (main product 6 shown). 
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Figure S5. 1H NMR spectrum of dimethyl 2,5-dimethyladipate 14 in CDCl3. 
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Figure S6. 13C NMR spectrum of dimethyl 2,5-dimethyladipate 14 in CDCl3. 
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Figure S7. 1H NMR spectrum of poly(2,7-octanediol)terephthalate 4 
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Figure S8. 1H NMR spectrum of poly(2,7-octanediol)-2,5-furanoate 5. 
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Fuel analysis by gas chromatography 

 

 

 

Figure S9. GC trace of the cycloalkanes resulting from the hydrogenation of 6 and 7, 

with dodecane as internal standard. 
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Polymer analysis by DSC and TGA 

 

 

Figure S10. Modulated DSC trace of 4. 

 

 

Figure S11. Modulated DSC trace of 5. 
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Figure S12. Thermogravimetric profiles for polymers 4 and 5. 
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Table S3. Comparison of the glass transition temperature (Tg) of polyesters of 
2,7-octanediol 3 with previously reported aliphatic-aromatic polyesters. 

 

Diacid unit Diol unit Tg / °C Source 

Terephthalic acid 

(TA) 

 

1,4-butanediol 41 [1] 

2,3-butanediol 127 [2] 

1,6-hexanediol 6 [3] 

1,8-octanediol 5 [3] 

2,7-octanediol 63 This work 

2,5-furandicarboxylic 

acid (FDCA) 

1,4-butanediol 26-36 [4] 

2,3-butanediol 87 [5] 

1,6-hexanediol 12-16 [4] 

1,8-octanediol 6-13 [4] 

2,7-octanediol 26 This work 
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