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ABSTRACT
We explore the linear stability of astrophysical discs exhibiting vertical shear, which arises
when there is a radial variation in the temperature or entropy. Such discs are subject to a
‘vertical-shear instability’, which recent non-linear simulations have shown to drive hydro-
dynamic activity in the MRI-stable regions of protoplanetary discs. We first revisit locally
isothermal discs using the quasi-global reduced model derived by Nelson et al. This analy-
sis is then extended to global axisymmetric perturbations in a cylindrical domain. We also
derive and study a reduced model describing discs with power-law radial entropy profiles
(‘locally polytropic discs’), which are somewhat more realistic in that they possess physical
(as opposed to numerical) surfaces. The fastest growing modes have very short wavelengths
and are localized at the disc surfaces (if present), where the vertical shear is maximal. An
additional class of modestly growing vertically global body modes is excited, corresponding
to destabilized classical inertial waves (‘r modes’). We discuss the properties of both types
of modes, and stress that those that grow fastest occur on the shortest available length-scales
(determined either by the numerical grid or the physical viscous length). This ill-posedness
makes simulations of the instability difficult to interpret. We end with some brief speculation
on the non-linear saturation and resulting angular momentum transport.
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1 IN T RO D U C T I O N

Accretion through magnetorotational turbulence is only viable in
sufficiently ionized regions of protoplanetary discs, namely at their
inner and outer radii (Balbus & Hawley 1998; Armitage 2011).
Between 1–20 au (the ‘dead zone’) non-ideal effects extinguish
the MRI, and instead accretion may occur via magnetocentrifu-
gally launched winds (e.g. Bai 2014; Lesur, Kunz & Fromang
2014). However, identifying additional hydrodynamic mechanisms
for driving turbulence is essential, due to its potential impact on the
dynamics of solids, and therefore for planet formation.

Though pure Keplerian shear flow is difficult to destabilize, sev-
eral mechanisms have been proposed: subcritical baroclinic insta-
bility (Petersen, Stewart & Julien 2007; Lesur & Papaloizou 2010),
convective instability (Ruden, Papaloizou & Lin 1988; Lesur &
Ogilvie 2010) and gravitational instability (Toomre 1964; Lin &
Pringle 1987), to name but a few. Another mechanism that has
recently received attention is the ‘vertical-shear instability’ (here-
after VSI) which, as its name suggests, attacks rotating systems that
exhibit vertical shear (Urpin & Brandenburg 1998; Urpin 2003).
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Fundamentally, the VSI is a form of centrifugal instability and is
a close cousin of the Goldreich–Schubert–Fricke instability, origi-
nally applied to stellar interiors (Goldreich & Schubert 1967; Fricke
1968). Observations of protostellar discs (Andrews & Williams
2005) and theoretical models of passively heated discs (Chiang &
Goldreich 1997) suggest that they too should display destabilizing
vertical shear, generated from radial variations in temperature or
entropy. Recent numerical simulations indicate that the non-linear
evolution of the VSI can produce hydrodynamic turbulence and
modest levels of angular momentum transport (Nelson, Gressel
& Umurhan 2013; Stoll & Kley 2014). It thus could be a po-
tentially key player in the dynamics of protoplanetary disc dead
zones.

The VSI was originally studied with a local (Boussinesq) ap-
proach by Urpin & Brandenburg (1998) and by Urpin (2003). More
recently Nelson et al. (2013) described it with a quasi-global model
that captures the full vertical structure of growing anelastic modes
in radial geostrophic balance (assuming the background is locally
isothermal). The VSI also appears in a further generalization of the
vertically stratified shearing box, which dispenses with these two
constraints (McNally & Pessah 2014). However, several properties
of the linear VSI require further explanation, especially with respect
to its global manifestation in more realistic disc models. This is a
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Figure 1. Basic state for the locally isothermal disc with q = −1, p = −1.5 and c0 = 0.05. The left-hand panel shows a contour plot of � on the (R, z) plane.
The middle panel is a similar contour plot, but this shows the magnitude of the vertical shear ∂z(R�), which has a maximum at |z| ∼ 1 (whereas the scaleheight
at the inner radial boundary is 0.05). The right-hand panel shows the density ρ.

particularly important issue when trying to connect the linear theory
to global simulations, and in interpreting their non-linear outcome.
Our paper is devoted to exploring this aspect of the problem.

We perform linear stability analyses of astrophysical discs ex-
hibiting global variations in temperature and entropy, and as a con-
sequence vertical shear. We employ locally isothermal and poly-
tropic models in both quasi-global and fully global 2D geometries,
which revise and extend previous work.

In agreement with Nelson et al. (2013), we find that the VSI
excites two classes of modes. The first class corresponds to classical
free inertial waves (r modes) that are present in any astrophysical
disc (Lubow & Pringle 1993; Korycansky & Pringle 1995; Kato
2001) but which have been destabilized by the vertical shear. These,
referred to as ‘body modes’, grow at modest rates and typically
exhibit longer wavelengths (though the radial wavelength of the
waves is still short).

The second class corresponds to modes localized to the verti-
cal surfaces of the disc where the vertical shear is maximal. These
grow much faster and have very short wavelengths, making them
difficult to resolve numerically. In fact, unless viscosity is included,
the fastest growing modes possess arbitrarily small wavelengths,
making their simulation problematic. Note that, though they have
been termed ‘surface modes’, these are different to the classical
surface gravity waves that appear in polytropic disc models, as they
lie in a different frequency range; they are hence a form of local-
ized low-frequency inertial wave. Strict isothermal models do not
possess a physical vertical surface and hence do not support these
surface modes. Polytropic disc models do, however, as should any
realistic disc model that possesses a transition between an optically
thick interior and an optically thin ‘corona’.

We begin by explaining why a radial variation in entropy or
temperature generally leads to vertical shear in Section 2. There we
also explain why such discs are likely to be unstable. After defining
our basic disc models in Section 3, we analyse the resulting VSI
in the locally isothermal disc in Sections 4 and 6 and the locally
polytropic disc in Section 5. Finally, we will discuss the implications
of our results in Section 7, where we also speculate on the non-
linear evolution of the VSI and its efficiency at transporting angular
momentum.

2 V ERTICAL-SHEAR INSTABILITY

Discs with radial variations in temperature or entropy necessarily
possess vertical shear. To see that this must be, consider the ‘thermal

wind equation’ (the azimuthal component of the vorticity equation
for the axisymmetric basic state of the disc):

∂z(R�2) = −eφ · (∇ρ × ∇P ) /ρ2 (1)

= ∂RT ∂zS − ∂zT ∂RS. (2)

Here we have adopted cylindrical polar coordinates centred on the
central object (R, φ, z) and ρ, P, S and T are the basic state density,
pressure, specific entropy and temperature profiles, respectively.
Equation (1) tells us that a radial variation in the background tem-
perature or entropy generates a departure from cylindrical rotation
through the baroclinic terms on the right-hand side. Thus the an-
gular velocity � = �(R, z), and consequently the disc exhibits a
weak vertical shear. For illustration, we show the angular velocity
and vertical shear for a disc with a radial variation in temperature
in Fig. 1, and the vertical shear for a disc with a radial variation in
entropy in Fig. 2 (both disc models and the notation adopted are
defined in Section 3).

2.1 Physical picture

Vertical shear provides a source of free energy that can drive hydro-
dynamic instabilities. How might modes access this free energy?
Consider a ring of fluid at a given location (A) within the disc
with coordinates (RA, zA), and hence specific angular momentum
hA = R2

A�(RA, zA). If we vertically displace this ring to a new po-
sition (B) with coordinates (RA, zA + �z), then its specific angular
momentum will be conserved as long as viscosity can be neglected
(i.e. we assume that |�z| is much larger than the viscous length).
But if the angular momentum of fluid at the new location hB is
smaller (larger) than hA, then the ring will be pushed outwards
(inwards) by the centrifugal acceleration (h2

A − h2
B)/R3

A, leading to
a dynamical instability. Given that h2

B ≈ h2
A + �z∂zh

2, instability
occurs whenever ∂zh

2 < 0 (or indeed >0), i.e. if there is any vertical
shear. Basically, this interchange of rings of fluid reduces the total
energy of the configuration, leading to an instability that transports
angular momentum in order to eliminate the vertical shear.1 This

1 Our illustrative perturbation is vertical for simplicity; any displacement
lying within the angle between the rotation axis and a surface of constant
angular momentum will do (as explained in Knobloch & Spruit 1982, for
example).
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Figure 2. Basic state for the locally polytropic disc with qs =−1, p =−1.5,
a0 = 0.05 and γ = 1.4 (therefore H(R = 1) ≈ 0.13). The top panel shows a
contour plot of the vertical shear ∂z(R�) on the (R, z) plane. For given R, the
magnitude of the vertical shear has a maximum near the disc surface. The
bottom panel shows the density ρ. Regions outside the disc surface where
ρ = 0 are coloured white in both panels. (The angular velocity is not shown
since the departure of constant � surfaces from the vertical is very small.)

is a modified form of Rayleigh’s argument for centrifugal insta-
bility. Though accretion discs are stable according to the classical
Rayleigh criterion, any vertical shear permits its circumvention and
hence the onset of instability.

This physical argument works for neutrally stratified discs, but
must be altered when a stable vertical entropy stratification is
present, as exhibited by protoplanetary disc dead zones. So we
next introduce buoyancy and thermal diffusion. Buoyancy forces
impede exchanges of the type described, and thus inhibit any adi-
abatic (dynamical) instability (cf. the Solberg–Høiland criterion).
Instability is nevertheless possible if the buoyancy forces are elimi-
nated, such as by sufficiently fast cooling or thermal diffusion. For
this to work, displacements |�z| must then be much shorter than the
thermal diffusion scale. The resulting instability is hence double-
diffusive in character, possessing length-scales lying in the range
bounded from below by the viscous length and above by the thermal
diffusion length. Originally identified in the 1960s and applied to
stellar interiors (Goldreich & Schubert 1967; Fricke 1968), only

much later was it recognized that such an instability could emerge
in astrophysical discs (Urpin & Brandenburg 1998).2

2.2 Estimates from a local model

According to a local Boussinesq analysis, the growth rate of the
VSI is

σ ≈ |∂z(R�)| ∼ ε|q|�, (3)

where ε = H/R is the disc aspect ratio and q is the exponent in
the power law for temperature (or entropy), so that T ∝ Rq (Urpin &
Brandenburg 1998; Urpin 2003; Nelson et al. 2013). For |q| ∼ 1, the
VSI will hence grow, and presumably saturate, relatively quickly
on a time-scale not far from the dynamical time for thicker discs.

The VSI afflicts intermediate length-scales 
 in the range


ν � 
 � 
χ , (4)

where the viscous and thermal diffusion lengths are defined
through


ν = (ν/σ )
1
2 , 
χ = (χ/Nz)

1
2 . (5)

Here ν is the kinematic viscosity, χ is the thermal diffusivity and
Nz > 0 is the vertical buoyancy frequency. Length-scales above 
χ

are stabilized by buoyancy forces (as long as N2
z > 0); only when

these are subdued by sufficiently rapid thermal diffusion is instabil-
ity possible. On length-scales smaller than 
ν , viscosity neutralizes
the excess angular momentum of a fluid element too quickly to
allow the mode to grow. The fastest growing modes have vertical
(kz) and radial wavenumbers (kR) that satisfy

kz

kR

= 
R


z

� ε q, (6)

so the radial wavelength of the mode (
R) is typically much shorter
than the vertical wavelength (
z) (Urpin & Brandenburg 1998; Urpin
2003). Hence, being inertial waves, the group velocity points almost
vertically, in accordance with the direction of transport outlined in
the previous subsection. Note that modes grow at or near the fastest
rate on short length-scales all the way to the viscous cut-off 
ν .

To give some sense of the numbers, the growth rate for the VSI is
typically σ ∼ 0.3 yr−1, if ε ∼ 0.05 at 1 au and |q| ∼ 1. The micro-
scopic kinematic viscosity at the mid-plane of a protoplanetary disc
at 1 au may be estimated as ν ∼ 2.5 × 105 cm2 s−1, yielding 
ν ∼ 102

km, much shorter than the local disc thickness H (of the order of
107 km). The thermal diffusivity, on the other hand, is significantly
larger, χ ∼ 5 × 1012 cm2 s−1 (taking values typical for H2 in a
minimum mass solar nebula). Note that χ varies significantly with
height in the disc (e.g. Bell & Lin 1994), but we ignore this compli-
cation when making simple estimates. It is unclear what value Nz

should take in a dead zone in a protoplanetary disc, but it is probably
much smaller than �. Therefore a (very crude) lower bound on the
thermal diffusion length is 
χ � 105 km. In all likelihood, however,

χ ∼ H, not least because thermal diffusion becomes stronger as
we approach the photosphere.

These estimates suggest the following ordering: H ∼ 
χ � 
ν ,
with the VSI occurring in the wide gulf separating the viscous

2 Urpin & Brandenburg (1998) coined the term ‘vertical-shear instability’.
However, there is a good case for the retention of the name ‘Goldreich–
Schubert–Fricke (GSF)’ instability, even if ‘VSI’ has the merit of clearly
advertising the underlying physics.
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and thermal diffusion lengths. We might expect the fastest grow-
ing modes to localize in regions of greatest vertical shear; in any
realistic disc model, the magnitude of the vertical shear increases
with distance from the mid-plane, and takes its maximum value at
the disc surface.3 So we might expect the fastest growing modes to
occur on very short length-scales (just above 
ν ∼ 100 km) located
near the surface.

2.3 Non-linear evolution

We expect that the VSI will work to eradicate the destabilizing
conditions from which it arose (the vertical shear) and ultimately
return the system to a marginally stable, cylindrical rotation profile.
Of course, resisting the VSI will be the driver of the vertical shear
itself: the radiation field of the protostar. In the struggle between
these two opponents, the system will probably reach a quasi-steady
‘balance’ in which the vertical shear is diminished (but not entirely
removed) and some degree of hydrodynamical activity remains. The
properties of this state will be determined by the relative efficiency
of the VSI in wiping away the shear versus that of the protostar’s
thermal driving. Presumably, if the VSI is inefficient then significant
vertical shear persists and, as a consequence, significant turbulent
motions.4 The locally isothermal simulations of Nelson et al. (2013)
best describe this scenario, because the destabilizing gradients are
fixed and cannot be modified by the VSI. On the other hand, if
the thermal driving is weak, the VSI should eliminate the vertical
shear, and subsequently its motions will settle down to a much
lower level, because the system is near (if not at) marginal stability.
This situation can be observed in simulations where the unstable
equilibria possess long relaxation times (Nelson et al. 2013) or in
cases where the disc is not thermally driven (Stoll & Kley 2014).

However it is generated, the properties of the final quasi-steady
state are of key importance to dead zones, intervening potentially
in the dynamics of solids and even in angular momentum transport.
It certainly should be the focus of future numerical simulations.
Note that this state will evolve slowly, on the long time-scale of the
disc’s and protostar’s evolutionary track, and also presumably on
the shorter time-scale of the protostar’s emission variability.

The VSI in protoplanetary discs is challenging to simulate ade-
quately because the fastest growing modes have very short length-
scales, many orders of magnitude shorter than both the disc thick-
ness and (typically) the numerical grid scale. Global simulations
are then not only ill-posed but exhibit a non-linear saturation whose
characteristic length-scales are forced to be longer than is realistic.
It may be that global simulations of the VSI greatly overestimate the
amount of power in the largest length-scales. Indeed Stoll & Kley
(2014) find no convergence in radial angular momentum transport
(α) as resolution is increased, a result that emphasises the promi-
nence of the smallest scales.

We can crudely estimate an upper limit for the resulting radial
angular momentum transport if we assume that 
R ∼ |q|ε
z and

3 This is not the case for the locally isothermal thin-disc model discussed
in Section 3.1.1, which has no surface and for which the magnitude of the
vertical shear takes it maximum value at vertical infinity, where the density
is negligible.
4 In this case, the fastest growing VSI-driven modes probably saturate
through secondary shear instabilities – as is the case for fingering con-
vection, another kind of double-diffusive instability (Brown, Garaud &
Stellmach 2013). The resulting turbulence in the low-density regions near
the disc surface may best be studied using local simulations, since they can
access more realistic small scales.

if non-linear saturation occurs when the velocity amplitude is of
the order 
Rσ . Consequently, the turbulent viscosity scales as νT ∼

2

Rσ ∼ |q|3ε3 
2
z�. To make further progress we must estimate the

size of 
z. If the dominant scales at saturation are the largest ones,
then 
z � H, which gives an upper bound on the α parameter:

α � |q|3ε3. (7)

For a protoplanetary disc with ε ≈ 0.05, we get α � 10−4, which
is broadly consistent with the results of current global simulations
(Nelson et al. 2013; Stoll & Kley 2014).5 If, however, we assume
instead that the dominant scale at saturation is much shorter (so that

z � H), then this is a gross overestimate.

3 H Y D RO DY NA M I C E QUAT I O N S A N D BA S I C
STAT E PRO FILES

In the previous section, we explained why discs with global radial
variations in temperature or entropy6 are likely to be unstable to
the VSI. We now list the equations and describe the simplified disc
models that will be used to analyse the VSI. We begin with the
equations of compressible hydrodynamics for an inviscid adiabatic
fluid:

(∂t + u · ∇) u = − 1

ρ
∇P − ∇�, (8)

(∂t + u · ∇) ρ = −ρ∇ · u, (9)

(∂t + u · ∇) S = 0, (10)

where u is the velocity. The ideal equation of state is P = RρT

(whereR is the gas constant divided by the mean molecular weight).
If we adopt cylindrical polar coordinates (R, φ, z), the gravita-

tional potential due to the central object is approximately that of a
point mass

�(R, z) = − GM√
R2 + z2

, (11)

≈ −GM

R

[
1 − z2

2R2

]
= �0 + �2z

2, (12)

where in some cases we expand for a thin disc (|z| � R; second
line), and we define �0 = −GM/R and �2 = GM/(2R3).

3.1 Basic state

The axisymmetric basic state of the differentially rotating disc has
u = R�(R, z)eφ , and satisfies the equations of radial and vertical
force balance:

− R�2eR = − 1

ρ
∇P + ∇�. (13)

Taking the curl then provides the thermal wind equation (equa-
tion 1). For simplicity, and to allow some analytical reduction and
exploration, we restrict ourselves to studying two simple models
(as in Nelson et al. 2013): the locally isothermal disc with a radial
power law in temperature, and the locally polytropic disc with a

5 Note that many of the α calculations in Stoll & Kley (2014) are two
dimensional and questions may be asked of angular momentum transport in
this case (see arguments in Balbus 2000).
6 We do not set out to analyse the stability of local structures in the thermal
properties of the disc, such as edges or pressure bumps, etc.
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power-law entropy function. In both cases, we want to consider a
disc with mid-plane density

ρm(R) = ρ0

(
R

R0

)p

, (14)

where ρ0 is the mid-plane density at a radius R0. It turns out that
the value of p is unimportant for the VSI.

3.1.1 Locally isothermal disc with a radial power law in
temperature

The first model that we will discuss is a locally isothermal disc with
P = c2

s (R)ρ (where cs is the isothermal sound speed), in which the
temperature depends only on cylindrical radius as the power law

T (R) = T0

(
R

R0

)q

, (15)

and similarly c2
s (R) = c2

0 (R/R0)q , where c2
0 = RT0 is the square

of the isothermal sound speed at a radius R0. The corresponding
density profile that satisfies equation (13) is

ρ(R, z) = ρm(R) exp

(
1

c2
s (R)

[�0(R) − �(R, z)]

)
. (16)

Note that the disc has no surface and formally extends to infinity.
The angular velocity that satisfies equation (13) is

�(R, z) = �0(R)

(
1 + q + (p + q)

H 2

R2
− qR√

R2 + z2

) 1
2

, (17)

where �0(R) =
√

GM/R3 and H(R) = cs(R)/�0(R) ∝
(R/R0)(q + 3)/2 is the local disc scaleheight. The angular ve-
locity therefore depends on z whenever q 
= 0. We set out to
consider p and q so that these discs are stable according to
the Solberg–Høiland criteria governing adiabatic axisymmetric
perturbations (e.g. Tassoul 1978).

For illustration, in Fig. 1 we plot the angular velocity �, vertical
shear ∂z(R�) and density ρ on the (R, z) plane for a disc with
c0 = 0.05, p =−1.5 and q =−1. This shows that the angular velocity
depends on z, and that the vertical shear increases monotonically
with z until it reaches a maximum far away from the mid-plane,
where the density is negligible.

3.1.2 Locally polytropic disc with a radial power law in entropy

The second model is a locally polytropic model in which
P = Ks(R)ργ (where γ is the adiabatic index) with an entropy
function

Ks(R) = Pρ−γ = K0

(
R

R0

)qs

, (18)

with qs and K0 constants. Hence Ks is only a function of cylindrical
radius, so that S = S(R) ∝ ln Ks(R). This disc model is neutrally
stratified in the vertical direction. The corresponding density profile
which satisfies equation (13) is

ρ(R, z) = ρm(R)

(
1 + (1 + m)

Ks(R)
[�0(R) − �(R, z)]

)m

(19)

≈ ρm(R)

(
1 − z2

H 2
0 (R)

)m

, (20)

where m = 1/(γ − 1) is the polytropic index. For the last line, the
potential has been expanded for a thin disc, and we have defined the

local disc thickness

H0(R) =
√

2(1 + m)Ks(R)

�2
0

, (21)

where �0 was defined in Section 3.1.1. This disc model possesses
a surface at which ρ = 0 when z = H0(R). The adiabatic sound
speed is a(R, z) = √

γP (R, z)/ρ(R, z), which becomes am(R) at
the mid-plane (taking the value a0 at R = R0), and we define
M(R, z) = R �0(R)/a(R, z) and Mm(R) = R �0(R)/am(R) to be
the Mach number and mid-plane Mach number of the flow. The
angular velocity that satisfies equation (13) is

�(R, z) = �0(R)

(
1 + qs + p

M2
m

+ qs

γM2
− qsR√

R2 + z2

) 1
2

.

(22)

As earlier, the angular velocity depends on z whenever qs 
= 0.
Since this model is neutrally stratified in the vertical direction, it
can become unstable to adiabatic disturbances for certain choices of
p and qs, whenever one of the Solberg–Høiland criteria are violated.
However, we do not set out to study such instabilities in this work,
and we instead focus on discs that would be stable to adiabatic
perturbations.

For illustration, in Fig. 2 we plot the vertical shear ∂z(R�) and
density ρ on the (R, z) plane for a disc with a0 = 0.05, γ = 1.4,
p = −1.5 and qs = −1. This shows that the angular velocity de-
pends on z, and that the magnitude of the vertical shear increases
monotonically with |z| until it reaches a maximum just below the
disc surface.

In the next three sections we work through the stability of these
two equilibria. Because the full global analysis is challenging, we
first treat their quasi-local approximations in a reduced model first
outlined in Nelson et al. (2013). This helps tease out the most
important features. Once this is done, we perform the full global
analysis on the locally isothermal model only.

4 L I N E A R STA B I L I T Y O F T H E L O C A L LY
I S OT H E R M A L D I S C : R E D U C E D MO D E L

In this section we revisit the reduced model of Nelson et al. (2013),
which describes the dynamics of the VSI in locally isothermal discs
with a radial power law in temperature. We begin by outlining the
derivation of this model (a similar derivation is presented in detail
in Appendix A for the locally polytropic disc) and go on to analyse
its most important properties.

We define ε = H/R and consider a thin disc in which ε � 1. We
are interested in slow modes with frequencies and growth rates that
are each O(ε�), with vertical scales 
z that are comparable with the
thickness of the disc (
z ∼ εR) and radial scales 
R that are much
smaller (
R ∼ ε2R), cf. equation (6). If we also consider vertical
velocities that are mildly subsonic or transonic (by a factor ε) and
radial velocities that are very subsonic (by a factor ε2), then we
require O(ε) density perturbations, for consistency. On such small
radial scales, the curvature of the disc can be neglected and the
geometry is locally Cartesian, similar to the classical shearing box
(Goldreich & Lynden-Bell 1965; Umurhan & Regev 2004). In this
limit, we are looking at low-frequency (inertial) dynamics that are
anelastic and in approximate radial geostrophic balance.

The linearized reduced equations for the rescaled veloc-
ity perturbation (u, v, w) and the fractional density perturbation

MNRAS 450, 21–37 (2015)
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� = ρ ′/ρ are (Nelson et al. 2013)

0 = 2v − ∂x�, (23)

∂τ v = −u

2
− qzw

2
, (24)

∂τw = −∂z�, (25)

0 = ∂x(ρ̄u) + ∂z(ρ̄w). (26)

Here τ is rescaled time, and x is a local radial variable. The back-

ground density is ρ = e− z2
2 , after appropriate normalization. The

crucial term for the appearance of the VSI is the last one in equa-
tion (24), which arises from thermal wind balance if there is radial
variation in temperature (see equation 1).

We seek solutions of this system of the form

� = Re
[
�̂(z)ei(kx−ωτ )

]
, (27)

and so on for other variables, where we subsequently drop the hats
for clarity. This allows us to reduce the system to a single ODE that
can be written most simply by defining new (complex) coordinates
ζ = z

√
1 + ikq, as

d2�

dζ 2
− ζ

d�

dζ
+ λ� = 0, (28)

where we have set

λ = ω2k2

1 + ikq
. (29)

This is the well-known Hermite differential equation (the proba-
bilist’s version), which has solutions

� = a1 Heλ(ζ ) + a2 1F1

(
−λ

2
,

1

2
,
ζ 2

2

)
. (30)

The first function is the Hermite function and the second function
is a confluent hypergeometric function of the first kind, with a1, a2

arbitrary constants. Solutions that are polynomially bounded as
|ζ | → ∞ (so that |ρ ′| → 0 as |ζ | → ∞) require λ = n ∈ N and
a2 = 0 (see Okazaki, Kato & Fukue 1987; Kato 2001). The regular
solutions are therefore

� ∝ Hen(ζ ), (31)

with Hen a Hermite polynomial of order n. The corresponding ω can
be obtained from the dispersion relation equation (29). These solu-
tions describe the vertical structure of modes in the low-frequency
limit. Since they are (complex) polynomials in ζ , they describe
global modes which are not localized in the vicinity of any particu-
lar location ζ 
= 0.

4.1 Non-vertically shearing case, q = 0

Before treating the VSI we examine the case when q = 0 in order to
make contact with the existing literature on wave modes in vertically
stratified isothermal discs (namely Lubow & Pringle 1993). This
then can assure us of the validity of the reduced model and the
regime of its applicability.

Since λ is quantized, we obtain a discrete set of frequencies.
When q = 0, these are real and

ω = ±
√

n

k
, (32)

which represents a pair of low-frequency inertial waves7 travelling
in opposite directions. The full isothermal disc allows axisymmetric
waves with frequencies that satisfy the following dispersion relation
(Lubow & Pringle 1993):(−ω2 + nc2

s

)
(−ω2 + 1) − c2

s k
2ω2 = 0. (33)

There are two branches of solutions, which represent either high-
frequency acoustic waves or low-frequency inertial waves. Note that
there are no surface modes in the isothermal disc, since the model
lacks a surface. The inertial waves have ω2 ≈ n/(k2 + n); therefore
equation (32) is a good approximation for modes with k � √

n,
as expected from the assumption 
R/
z ∼ ε. When this is violated,
physically incorrect solutions appear with frequencies larger than 1.
The restriction on the size of the vertical quantum number n means
that the model can never capture purely local modes (for which both
n and k are large).

4.2 Vertically shearing case, q �= 0

When q 
= 0 the disc is unstable to the VSI. The frequencies are
now

ω = ±
√

n

k
(1 + ikq)

1
2 , (34)

which are complex. The growth rate σ = Im[ω] may be computed
from the positive root of

σ 2 = n

2k2

(√
1 + k2q2 − 1

)
. (35)

The unstable modes in this case are the classic inertial waves of the
vertically stratified disc, destabilized by the vertical shear. They are
all global ‘body modes’ that have no localization near to any ζ 
= 0.

In the limit |kq| � 1,

ω = ±
√

n

k

(
1 + i

kq

2
+ O(k2q2)

)
, (36)

which possesses the same frequency as the classical modes, cement-
ing the identification. They grow, however, at the rate σ ≈ √

n|q|/2.
In the opposite limit |kq| � 1,

ω = ±
√

nq

2k
(1 + i) + O

(√
n

k3q

)
, (37)

therefore the growth rate is σ = √
n|q|/(2k), which is no longer

linear in the shear.
Note that the growth rate increases with polynomial order as√
n, which may seem somewhat surprising but can be understood

by considering the vertical shear profile. An isothermal thin disc
lacks a surface, yet |∂z(R�)| ∝ |qz/2|, which increases without
bound as |z| → ∞. Since modes with large n extend over a greater
vertical range, they can better tap into the energy associated with
the larger shear at larger z. Hence it follows that the growth rate
should increase with n (the square root comes from the fact that
n has units of inverse length squared). It should be remembered,
however, that these expressions apply only when the reduced model
is valid, which requires

√
n � k.

Finally, note that the unstable modes here have a wave character,
whereas those issuing from the local Boussinesq calculation grow
monotonically (Urpin & Brandenburg 1998; Urpin 2003). Their

7 Note that these are sometimes referred to as r modes in the literature
(and sometimes inappropriately as g modes even when buoyancy forces are
absent).
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Figure 3. Illustration of the real and imaginary parts of the vertical momenta for a representative selection of the two types of modes in an isothermal disc with
imposed numerical boundaries. Here k = 10, q = −1, H = 5 and N = 300. The figure labels indicate the complex frequencies of the modes. Surface modes are
shown in the top row (the fastest growing mode is in the top-left panel), and body modes are shown in the bottom row. Similar surface modes localized at the
bottom boundary are also obtained. The lowest frequency body mode is plotted in the bottom-right panel and is an n = 1 (n = 0 for w) inertial wave, i.e. the
fundamental ‘corrugation mode’, which is well described by an n = 1 (n = 0 for w) Hermite polynomial in the absence of vertical boundaries, and its complex
frequency is that predicted by equation (34).

scalings with wavenumber also differ. In the isothermal limit with
k/kz � 1 and k � 1, local Boussinesq modes grow at a rate σ ∼√

kzq/k, where kz is the vertical wavenumber. The system, being
scale free, only depends on the ratio of wavenumbers, kz/k. In
contrast, the quasi-global model separates out the vertical and radial
scales, forcing the former to be near H. Consequently, it will always
struggle to reproduce the local limit. Only if we force modes to
localize at a fixed z (such as at a boundary) and then undertake
a plane-wave analysis, can the reduced model produce the local
Boussinesq results (Nelson et al. 2013).

4.3 Vertically shearing case with imposed boundaries:
appearance of surface modes

To connect with recent numerical simulations of a locally isothermal
disc (Nelson et al. 2013; Stoll & Kley 2014), we adopt an artificial
boundary at a finite height in the vertical direction. In realistic
discs there is surely some form of transition at the photosphere,
but whether a numerical boundary adequately mimics this feature is
unclear. We emphasize that within the confines of a strict isothermal
model, a numerical boundary is an artificial addition, yet it has
important effects.

We consider boundary conditions such that the vertical momen-
tum ρ0w = 0 at |z| = H, where H is free parameter (other choices
would lead to similar behaviour for the VSI). To illustrate the un-
stable modes in this case, we solve equations (23)–(26) numerically
using a Chebyshev collocation method on N + 1 points of a Gauss–
Lobatto grid. This results in a matrix eigenvalue problem that can be
solved using a QZ method (Golub & van Loan 1996; Boyd 2001).
Numerical convergence for the eigenvalues is verified by varying
the resolution and comparing eigenvalues.

In the presence of an artificial boundary, a new class of ‘surface
modes’ appears that localize near to the boundaries. These are in
addition to the ‘body modes’ obtained previously. We show the
vertical momenta for several examples of each type of mode in
Fig. 3 for k = 10 and q = −1: the top panel shows a selection of
typical surface modes, and the bottom panel shows typical body
modes. The mode plotted in the top-right panel is one of the slowest
growing surface modes, and its character is intermediate between
the two classes of mode. The appearance of these two classes of
modes was also found by Nelson et al. (2013) and McNally &
Pessah (2014).

Mathematically, the emergence of surface modes can be under-
stood by examining equation (30). In the presence of a boundary
at a finite height, λ is complex and a1 and a2 are both non-zero, in
general. New modes, localized near to |z| = H, appear due to the
need to match boundary conditions at this location, rather than at
infinity (this can be verified by plotting Heλ(ζ ) for λ ∈ C). Thus the
new surface modes rely entirely on the boundary for their existence.

In Fig. 4 we show the dependence of the spectrum on disc height
H. Here the numerical growth rates of the unstable modes are plotted
in the complex frequency plane for three different heights, H = 5,
6, 7. The remaining parameters are k = 10 and q = −1. We also
plot the H = ∞ case (equation 34), which is given by the solid red
line in the figure. Roughly, surface modes correspond to the more
‘vertical’ segment of the spectrum, and the inertial waves to the
more ‘horizontal’ segment.

Obviously, there is no convergence with increasing H, especially
for the surface modes. As the height of the domain is increased, the
maximum growth rate increases in direct proportion with H. This is
what we would expect, since σmax ∝ max|∂z(R�)| = |q|H/2 (even
larger growth rates than shown in Fig. 4 are obtained for modes with
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Figure 4. Growth rate of the unstable modes versus their (real) frequencies
in an isothermal disc with artificial boundaries at |z| = H, illustrating the lack
of convergence as H is varied for cases with k = 10 and q = −1 (converged
results were obtained with N = 300). Note that the maximum growth rate
in this case is approximately |qH|/2. We have also indicated the analytical
prediction of equation (34) with the solid red line to guide the eye (however,
it should be remembered that this represents a set of discrete modes and not
a continuum). The branch that extends approximately vertically represents
surface modes.

k � 10, which asymptotically attain this value). The presence of a
boundary also strongly influences the inertial waves, only the lowest
n of which are well described by equation (34). As H is increased,
however, modes with increasingly larger n converge to the H = ∞
analytical prediction.

The appearance and lack of convergence of the surface modes is a
special pathology of the isothermal model with imposed boundaries.
It makes the interpretation of these surface modes, and their role
in any ensuing turbulence, especially problematic. Are they merely
numerical artefacts? In the next section we argue that they are, in
fact, more than that and that it is the vertically isothermal model
itself that is the problem.

5 LI N E A R STA B I L I T Y O F T H E LO C A L LY
P O LY T RO P I C D I S C : R E D U C E D MO D E L

In this section we analyse a reduced model of the VSI in discs
with a radial power law in entropy. The vertical structure of this
locally polytropic model is a good approximation for an optically
thick disc, and is more realistic than the locally isothermal model
because it possesses upper and lower surfaces. In addition, there is a
well-defined maximum vertical shear rate, which occurs at the disc
surface. Therefore this model is better defined mathematically and
physically.

A formal derivation of the reduced model is relegated to
Appendix A. The same scalings as in Section 4 are adopted, corre-
sponding to anelastic radially geostrophic phenomena. In addition,
thermal diffusion is likely to dominate the thermodynamics of such
slow and short-scale modes. Consequently, we may neglect the en-

tropy perturbation entirely, as well as the stabilizing influence of
stratification.

The resulting linearized equations for such perturbations are

0 = 2v − ∂xh, (38)

∂τ v = −u

2
− w

qsz

2γ
, (39)

∂τw = −∂zh, (40)

0 = ∂xu + ∂zw − 2mzw

1 − z2
, (41)

where the pseudo-enthalpy perturbation is h = P′/(1 − z2)m and P′

is the (scaled) pressure perturbation. Rapid thermal diffusion means
that the perturbations evolve isothermally, hence the equations are
similar in form to equations (23)–(26).

We seek solutions of the form

u = Re
[
ũ(z)ei(kx−ωτ )

]
, (42)

and so on for other variables. The resulting system of equations is
equivalent to the single ODE

d2h

dz2
− z

[
2m

1 − z2
+ ikqs

γ

]
dh

dz
+ ω2k2h = 0. (43)

Unfortunately, this cannot be solved in closed form analytically.
However, we can attack the problem using a matched WKBJ
approach, or numerically with the same method as Section 4.3:
Chebyshev collocation on N + 1 points, followed by the eigenso-
lution of the resulting matrix equation using the QZ method. No
explicit boundary conditions are imposed, but implicit regularity
is assumed at |z| = 1 (this gives identical results to imposing a
free-surface condition explicitly).

Finally, we note that the resulting system can be written in a scale-
free manner by transforming our variables to hatted quantities, as
follows:

v = kv̂, w = kŵ, ω = ω̂/k, qs = 2q̂γ /k. (44)

A similar rescaling also applies to the isothermal model. Under this
rescaling the governing equation depends solely on the two param-
eters q̂ and m. Each, discrete, growth rate then has the following
behaviour:

ωn = 1

k
ω̂n(kqs, γ ), (45)

where the function ω̂n is determined numerically.

5.1 Non-vertically shearing case, qs = 0

We first demonstrate that the reduced model correctly captures the
inertial waves in a polytropic disc in the limit of large k, in order to
gain confidence in the reduced model.

The full polytropic disc model without vertical shear (qs = 0)
possesses three different classes of neutrally stable axisymmet-
ric modes: high-frequency acoustic modes, low-frequency iner-
tial modes, and surface gravity modes of intermediate frequency
(Korycansky & Pringle 1995; Ogilvie 1998). The reduced model is
designed to capture only the low-frequency inertial modes.

In Fig. 5 we compare the frequencies of five inertial modes with
vertical mode-numbers (vertical nodes) n = 1, 2, 3, 4, 5 and qs = 0
for several k as predicted by the reduced model and the full poly-
tropic model of Korycansky & Pringle (1995, solving their equa-
tions 4–8). The latter are represented by solid and the former by
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Figure 5. Comparison of the dispersion relation computed numerically
from the locally polytropic reduced model (equations 38–41) with qs = 0
(dashed lines) together with the numerically computed predictions for in-
ertial modes in a polytropic disc (Korycansky & Pringle 1995, solid lines)
with n = 1, 2, 3, 4, 5 vertical nodes adopting γ = 1.4. The reduced model
is only valid when k � O(

√
n).

dashed lines. Unlike the isothermal disc, these frequencies must
generally be obtained numerically. There is general agreement for
k � 20, which illustrates that the reduced model correctly cap-
tures the frequencies of these inertial modes for sufficiently large k.
However, only modes with k ≥ O(

√
n) are correctly captured.

In the limit of large k, a WKBJ analysis shows that the frequencies
take a simple form,

ω = π (2n + m)/(4k), (46)

where n is an integer. Though the formula is most accurate in the
limit of large n, it does well across the whole range of frequencies.
Details of this calculation can be found in Appendix B.

5.2 Vertically shearing case, qs �= 0

When qs 
= 0, the disc is unstable to the VSI. As an illustrative
example, we plot in Fig. 6 the complex frequencies of the unstable
modes computed from the eigenvalue problem equations (38)–(41)
when k = 100, qs = −1 and γ = 1.4 for two different vertical
resolutions N = 200 and 400. The unstable modes (for this k) are
shown to be well resolved using N = 200.

Fig. 6 also shows clearly that a locally polytropic disc can be
unstable to two different types of modes: (a) modestly growing
inertial waves (‘body modes’; these occur on longer radial scales,
as we will show in Fig. 9), and (b) rapidly growing short-wavelength
surface modes (these only occur when |kqs| � 30, as we will also
show in Fig. 9). The growth rates of the two classes of modes are
labelled in Fig. 6. Examples for each type of mode are plotted in
Fig. 7. Hence we find that the VSI in the locally polytropic disc,
with well-defined physical surfaces, is qualitatively similar to the
VSI in the isothermal disc with an imposed artificial surface at a
finite height, as discussed in Section 4.3.

In Fig. 8, we plot the complex frequencies of the unstable modes
when qs = −1 and γ = 1.4 for several values of k. To accurately
capture the fastest growing modes for larger k requires increasing

Figure 6. Growth rates of the unstable modes versus their (real) frequencies
in a polytropic disc with k = 100, qs = −1 and γ = 1.4 computed using
N = 200 and 400 points. This shows that the modes are well captured using
N = 200, and the distribution is similar to the isothermal case in Fig. 4.

the vertical resolution (N = 400 was required to obtain convergence
when k = 300). Fig. 8 shows that the growth rate of the fastest
growing mode increases, and its frequency decreases, as we consider
smaller horizontal length-scales (larger k). For a given |qs|, the
number of rapidly growing surface modes increases with k. All
unstable modes are body modes when k = 10, but as we increase k
surface modes appear, and by k = 300 there is a large population
of them. The maximum growth rate is on track to approach the
maximum vertical shear rate |∂z(R�)| ∼ |qs |H/(2γ ) ≈ 0.357 as
k → ∞, which we expect to provide an upper bound on the growth
rate of the VSI.

In Fig. 9, we have exploited the rescaling of equation (44) to
illustrate the general dependence of the scaled growth rate σ/|qs| of
the VSI as a function of k|qs| for all unstable modes. We do not con-
sider modes with real frequencies that are larger than unity – their
omission results in a region where the VSI is absent in the bottom
left of the figure. Pairs of surface modes appear for sufficiently large
k|qs|. The first, and fastest growing, pair of surface modes appear
when k|qs| � 30, and corresponds to the n = 2 ‘breathing mode’
and the n = 3 inertial mode changing their character. The n = 1 fun-
damental ‘corrugation mode’ is the first to become unstable when
k|qs| � 3, but its growth becomes weaker for larger k|qs|. This is
represented by the curve that crosses all others and ends up at the
bottom right of the figure. As k|qs| → ∞, there are more unstable
modes, and their scaled growth rates approach the scaled maximum
vertical shear rate 1/(2γ ) ≈ 0.357, as expected.

The fastest growing body mode is the n = 1 corrugation mode,
and has a maximum growth rate of approximately 0.1|qs|(1.4/γ )
when |kqs| � 10. The fastest growing mode is a surface mode,
with a maximum growth rate that approaches the maximum vertical
shear rate |∂z(R�)| ≈ |qs |/(2γ ) on the smallest scales. (We have
confirmed the dependence of the fastest growing surface mode on
γ , though we omit this for brevity – this arises because the basic disc
structure varies with γ .) Note that the full polytropic disc possesses
a class of surface modes that are restored by gravity (Korycansky
& Pringle 1995; Ogilvie 1998). However, these are unrelated to the
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Figure 7. The real and imaginary parts of the vertical momenta for several representative examples of both types of modes in a polytropic disc with k = 100,
qs = −1 and γ = 1.4 using N = 200, where the figure labels indicate the complex frequencies of the modes. In the top row we show several examples of surface
modes, with the fastest growing modes plotted in the two top-left panels. In the bottom row we show several examples of body modes. The lowest frequency
mode is plotted in the bottom-right panel, and is an n = 1 (n = 0 for w) inertial wave, i.e. the fundamental ‘corrugation mode’. The other body modes are
higher order body modes.

class of low-frequency surface modes that we have discussed in this
section, and occur in a different frequency range.

Why do surface modes appear when |kqs| � 30? The vertical
shear rate takes its maximum magnitude at the disc surface, so it
makes sense that if localized modes were to appear, they should do
so just below the disc surface. But when |kqs| � 30, it is not possible
for a mode (with an inertial wave character) to become sufficiently
localized close to the disc surface (i.e. 
z cannot be made suffi-
ciently small). The criterion for the appearance of surface modes is
therefore tied to the shortest vertical length-scale permitted.

Finally, in Appendix B we show that the body modes’ growth
rate can be obtained analytically in the limit of small qs:

σ ≈ mqs

πγ (2n + m)
log

[
1

2
π (2n + m)

]
, (47)

where n is a (large) integer. The corresponding wave frequency is
given by equation (46). It should be stressed that the growth rate
σ being at subdominant order is only a rough estimate, because
errors arising from the WKBJ method itself enter at the same order.
Note that the growth rate is linear in the shear, but the larger n,
the smaller σ , in contrast to the isothermal case, but in agreement
with Figs 6 and 8. For general qs an estimate for the surface modes’
maximum growth rate is σ ≈ qs/(2γ ), while its wave frequency
scales as ln k/k. Being leading order, this is a more robust estimate,
which is in approximate agreement with our results.

In summary, the VSI in the locally polytropic model is very sim-
ilar in character to the VSI in the locally isothermal model with
artificially imposed vertical boundaries (Section 4.3). The presence
of a surface, be it physically justified or a numerical convenience,

Figure 8. Growth rates of the unstable modes versus their (real) frequencies
for several values of k in a polytropic disc with qs = −1 and γ = 1.4,
computed using up to N = 400 points (which was found to be sufficient for
all k). This illustrates the dependence of the unstable modes on k.

provides a special location upon which modes can affix themselves
and localize. The polytropic disc however yields solutions that are
clearer to interpret because the location of the surface is spec-
ified (not an adjustable parameter). Consequently, there exists a
well-defined maximum growth rate for the instability, set by the
vertical shear rate at the disc surface.
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Figure 9. Normalized growth rates of all unstable modes as a function
of the scaled radial wavenumber k|qs| in a polytropic disc with γ = 1.4,
computed using N = 200. The absence of unstable modes in the lower left of
the figure results from our elimination of modes with frequencies larger than
1. Surface modes appear in pairs for k|qs| � 30, with the fastest growing
arising from the n = 2 ‘breathing mode’ and the n = 3 inertial mode. The
n = 1 fundamental ‘corrugation mode’ lies along the line that ends up
at the bottom right. The scaled growth rate of the fastest growing surface
mode asymptotically approaches the maximum vertical shear rate (0.357)
as k|qs| → ∞.

6 G L O BA L C A L C U L ATI O N S I N T H E LO C A L LY
ISOTHERMAL DISC

We have so far analysed the VSI using reduced models of locally
isothermal and polytropic discs. Here we present the first two-
dimensional stability calculations of the VSI in a locally isothermal
disc. One motivation for doing so is to verify the validity of the
model analysed in Section 4, another is to reproduce the instability
in a setup that more directly matches that of recent global sim-
ulations (Nelson et al. 2013; Stoll & Kley 2014). An issue with
global stability calculations is that they are computationally de-
manding (primarily regarding their memory usage), so we are lim-
ited to studying the VSI with relatively low resolutions. This is
primarily a problem for capturing the surface modes, since they
occur on very short length-scales. However, the lowest order body
modes have less vertical structure and are better captured in these
calculations.

We consider axisymmetric perturbations (uR, uφ , uz, ρ ′) to the
global disc model of Section 3.1.1, assuming their time-dependence
to be ∝ e−iωt. The equations governing their linear evolution are
then

− iωuR = 2R�uφ − 1

ρ
∂R(c2

s ρ
′) + ρ ′

ρ2
∂R(c2

s ρ) + fR, (48)

− iωuφ = −uR

1

R
∂R(R2�) − uz∂z(R�) + fφ, (49)

− iωuz = − 1

ρ
∂z(c

2
s ρ

′) + ρ ′

ρ2
∂z(c

2
s ρ) + fz, (50)

− iωρ ′ = −uR∂Rρ − uz∂zρ − ρ

R
∂R(RuR) − ρ∂zuz, (51)

where P ′ = c2
s (R)ρ ′, and the background state quantities cs(R),

�(R, z) and ρ(R, z) are defined in Section 3.1.1. To regularize the
solutions in some calculations we include a Navier–Stokes shear
viscosity with constant kinematic viscosity ν, with the extra terms

f = νρ

[
∇2u + 1

3
∇(∇ · u)

]
+ νρ ′∇2U0

+ ν∇ρ ·
[
∇u + (∇u)T − 2

3
(∇ · u)I

]
(52)

+ ν∇ρ ′ · [∇U0 + (∇U0)T
]
,

where U0 = R�eφ . We adopt a 2D cylindrical domain with R ∈
[R0, R1] and z ∈ [ − z0, z0], where z0 is some multiple of H0 = ε (this
differs from the spherical wedge considered by Nelson et al. 2013
and Stoll & Kley 2014, but this difference is probably unimportant).
Our units of length and time are chosen such that R0 = 1 and
�(R0) = 1. If f = 0, boundary conditions are enforced such that

ρuR = 0 at R = R0 and R = R1, (53)

ρuz = 0 at z = −z0 and z = z0, (54)

otherwise we supplement these with stress-free conditions (no tan-
gential stresses) on each boundary. This system is solved (after
writing the equations in terms of momenta rather than velocities)
numerically using a Chebyshev collocation method in both R and
z, with NR + 1 and Nz + 1 points on a Gauss–Lobatto grid, re-
spectively. The resulting generalized eigenvalue problem involves
matrices of size L × L, where L = 4(NR + 1)(Nz + 1), and is solved
using one of two methods: a QZ algorithm to obtain an approxima-
tion of the full spectrum, or an Arnoldi iterative method to obtain an
approximation to a desired part of the spectrum. The QZ method is
computationally expensive when L � 20 000, so our results are then
supplemented by the Arnoldi method, once we determine which
modes to focus on. In what follows we set p = 0, since preliminary
investigation suggested this parameter to be unimportant.

The code has been tested in several ways. First, without viscosity
and with a small radial domain (e.g. R1 = 1.001), we have confirmed
that our code accurately reproduces the inertial and acoustic modes
of the vertically unbounded isothermal disc when q = 0 (Lubow
& Pringle 1993) – except for modes with large n, for which the
confining effect of the vertical boundaries modifies the solutions.
Using a similarly small radial domain, we have verified that vis-
cous damping produces the expected decay rate for a mode with
a given short radial wavelength (νk2 when k � 1). In all calcula-
tions, the discretization inevitably produces many junk modes, that
involve oscillations on the grid scale. Where possible, we eliminate
these modes by comparing eigenvalues for several different resolu-
tions, and by inspecting the spatial structure of the eigenfunctions,
discarding those that oscillate on the grid scale.

6.1 Inviscid calculations

We first illustrate the properties of the VSI in the absence of vis-
cosity. As in the reduced model in Section 4, we obtain two classes
of modes: modestly growing body modes, and rapidly growing sur-
face modes localized near the numerical boundaries in z. As in
Section 4.3, these modes would vanish if the boundaries could be
taken to infinity. However, we do not discard these modes entirely
as they still probably represent physical solutions in some sense
(see Section 5).
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Figure 10. Illustration of the vertical momenta on the (R, z) plane for several body modes in the locally isothermal disc without viscosity with ε = 0.05,
q = −1, z0 = 5ε and R1 = 1.5, obtained using NR = Nz = 40. These modes have vertical structures for uz that are well described by Hermite polynomials
with n = 0, 1, 2 and 3. Many modes with similar vertical structures (but different radial structures) to each of these are also unstable. Also overplotted are three
contours of constant density (solid black lines) with ρ = 10−5, 10−3, 10−1 for reference. The amplitude in each panel is arbitrary.

6.1.1 Body modes

As in Section 4.2, we obtain a set of body modes, essentially classi-
cal inertial waves that grow in the presence of vertical shear. We plot
the vertical momenta for several examples with either even or odd
symmetry in Fig. 10 in a domain with R1 = 1.5 and z0 = 5ε. These
modes have vertical structures with n = 1, 2, 3 and 4 (n = 0, 1, 2,
3 for ρw), which correspond with those obtained in the isothermal
model without boundaries in Section 4.2 (and the bottom panels in
Fig. 3) for various radial structures. The vertical shear is strongest
at the inner radial boundary of the domain, whereas these modes are
concentrated near the outer boundary. We might expect this to be
the case because axisymmetric inertial waves are localized at and
within their turning surfaces, defined by κ = ω (where κ ≈ � is the
epicyclic frequency). The best resolved modes in our calculations
have low frequencies, and thus their turning surfaces lie near or
beyond the outer boundary R1. Consequently such modes prefer the
largest radii possible in the computational domain. Those plotted
here were chosen to illustrate that the global model exhibits body
modes with the same vertical structure as the reduced model in Sec-
tion 4.2. The body modes are modestly growing, with a growth rate
no larger than a third of the maximum vertical shear rate. These are
the unstable modes with the longest wavelengths, and have a radial
scale that is shorter than their vertical scale by a factor O(ε).

6.1.2 Surface modes

Just as in Section 4.3, we obtain a class of rapidly growing short-
wavelength surface modes, which come in pairs with oppositely
signed frequencies. For illustration, we show an example of a typical
surface mode with and without viscosity in Fig. 11.

Without viscosity, the fastest growing mode always occurs on
the smallest available length-scale. To demonstrate this, in the top
panel of Fig. 12 we plot the growth rate and (real) frequencies of the
fastest growing mode versus resolution N in a disc with ε = 0.05
and q = −1, adopting a domain with R0 = 1.0025 for several
different resolutions N = NR = Nz ∈ [20, 30, 40, 50, 60]. Such a
small radial domain is chosen in order to better capture the rapidly
growing surface modes. We also plot the vertical momenta for the
fastest growing mode for several different resolutions in Fig. 13.
As we increase the resolution, the fastest growing mode moves to
lower frequency and exhibits increasingly shorter length-scales. In
addition, its growth rate increases as we increase the resolution,
gradually tending towards the maximum vertical shear rate (which
is |q|H0�0/(2R0) ≈ 0.125). This is because these modes become
increasingly localized in the vicinity of the vertical boundary, where
the vertical shear is maximal. Note that Fig. 12 does not indicate
convergence as N is increased, because it is a different mode that
is plotted (that is most unstable) for each N, and this mode always

MNRAS 450, 21–37 (2015)



Vertical-shear instability 33

Figure 11. Illustration of the vertical momentum on the (R, z) plane for a
typical surface mode with and without viscosity, in an isothermal disc with
ε = 0.05, q = −1, z0 = 5ε and R1 = 1.01. The amplitude is arbitrary.

tracks the grid scale. This is demonstrated further in Fig. 13. Since
these modes always occur on the grid scale, they are necessarily the
most poorly resolved modes.

Another pathology of the isothermal model, that we first showed
in Section 4.3, is that the maximum growth rate depends on the
vertical domain size. To further demonstrate this, we illustrate the
fastest growing mode for calculations with z0 = Hε, with H ∈ [5, 6,
7, 8] in Fig. 14 in a radial domain with R0 = 1.0025. We plot results
using both a fixed resolution of NR = 20 and Nz = 60 (blue circles
and line), and for fixed NR = 20 and Nz/H = 12 (black crosses and
line). The growth rate continues to increase as we increase H. This
is simply explained by the dependence of the vertical shear rate,
which increases without bound as O(z). However, the finite vertical

Figure 12. Growth rate and frequency of the fastest growing surface mode
as a function of numerical resolution N = NR = Nz in an isothermal disc
without viscosity, with ε = 0.05, q = −1, z0 = 5ε and R1 = 1.0025. These
results were computed using an Arnoldi method. The growth rate increases
with resolution N, and the frequency correspondingly decreases, indicating a
lack of convergence. The red dashed line is the maximum vertical shear rate.

resolution does not fully capture the fastest growing mode for each
H (even with fixed Nz/H), therefore the dependence on H is slightly
weaker than the linear extrapolation (red dashed line).

The maximum growth rate for the surface modes compares rea-
sonably well with the numerical simulations of Nelson et al. (2013)
for similar parameters (they obtain a growth rate of 0.125 whereas
our maximum growth rate is approximately 0.1 for N = 60, for
example – the difference is due to the inevitably smaller resolution
in our case). However, growth rates are unconverged with respect
to both (a) the numerical grid resolution and (b) the vertical domain
size. The fastest growing mode occurs on the smallest available
length-scale, which is always the grid scale. In addition, the fastest
growing mode occurs at the boundaries in z. Since the boundary
is artificially imposed and this choice sets the maximum growth
rate, our results are strongly dependent on an arbitrary parameter H,
which is far from ideal. These problems will also afflict non-linear
simulations of the VSI in locally isothermal models.

6.2 Viscous calculations

Although the dependence on the vertical boundary cannot be re-
moved, convergence with respect to resolution can be addressed
via the inclusion of viscosity. This is necessary for the problem
to be well-posed. As we will demonstrate here, even when we in-
clude viscosity, the dominant modes prefer the smallest available
length-scales.

In Fig. 15, we plot the unstable modes on the complex frequency
plane for converged modes in a domain with z0 = 5ε in various radial
domains with several values of ν. Note that these figures are busier
than say Fig. 6 because they include modes of all resolvable vertical
and radial quantum numbers; in Fig. 6, the radial wavenumber k is
restricted to take only one value.

The left-hand panel shows unstable modes when R0 = 1.5.
Two classes of instability are obtained in this case: the VSI with
ω � 0.4 and the viscous overstability with ω � 0.4, which have been
separated visually by the blue dot–dashed vertical line. The viscous
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Figure 13. Illustration of the vertical momenta on the (R, z) plane for the fastest growing surface mode without viscosity for several different resolutions, in a
locally isothermal disc with ε = 0.05, q = −1, z0 = 5ε and R1 = 1.0025. These have increasing resolution from left-hand to right-hand panels, as indicated
in the figure labels. This shows that the fastest growing surface modes occur on the smallest available length-scales; hence this problem is ill-posed because
modes on the numerical grid scale will always be the fastest growing. Note the compressed radial scale, which was chosen to capture such rapidly growing
surface modes – these modes are actually inclined by a small angle to the vertical, as we expect. The amplitude in each panel is arbitrary.

Figure 14. Growth rate of the fastest growing surface modes versus vertical
domain size in a locally isothermal disc without viscosity for several values
of z0 = Hε, with ε = 0.05, q = −1 and R1 = 1.0025. Results were computed
using an Arnoldi method with fixed resolution NR = 20, Nz = 60 (blue circles
and line) and with NR = 20 and a fixed value of Nz/H = 12 (black crosses
and line). The growth rate of the fastest growing mode increases with H,
indicating the lack of convergence as we increase the vertical size of our
domain.

overstability (Kato 1978; Kley, Papaloizou & Lin 1993; Latter &
Ogilvie 2006) preferentially excites modes with little vertical struc-
ture and long radial wavelengths k−1 � O(H0), with frequencies
comparable with the local rotational frequency and growth rates
O(νk2). This can be distinguished from the VSI, which occurs only
when q 
= 0, preferentially excites waves with short radial wave-
lengths, ω � 1, and has growth rates bounded above by the maxi-
mum vertical shear rate. When q = 0, only the viscous overstability
persists – this is modified by vertical shear when q = −1, but is
found to remain in the same region of the complex plane. Given
that our focus here is on the VSI, we will not discuss these modes
any further.

The VSI is absent if the viscosity is too large (ν � 10−6) since
it preferentially excites (in this case) body modes with short radial

wavelengths which are damped by a weak viscosity. We note that a
similar order of magnitude for ν is required to obtain the VSI in nu-
merical simulations (Nelson et al. 2013). The fastest growing mode
when ν = 10−6 is a body mode that has n = 1 (i.e. the fundamental
‘corrugation mode’) with a radial wavelength of approximately 0.05
(similar to the top-left panel of Fig. 10).

The right-hand panel in Fig. 15 plots the unstable modes in a
smaller radial domain of R0 = 1.05, for several viscosities. The
smaller domain is chosen so as to permit a greater radial resolution.
This demonstrates that as we decrease the viscosity, (a) there are
more unstable modes and (b) the fastest growing mode has a larger
growth rate, in tune with our expectations from the reduced model.
The increase in the number of unstable modes is because the smaller
the ν the shorter the viscous cut-off; consequently, there is a wider
range of length-scales that are potentially unstable (cf. Fig. 8). When
ν = 10−6 there is only one unstable mode in this case, which we
omit for clarity.

We also observe that the fastest growing modes occur on the
shortest available length-scales, since the mode frequency decreases
with decreasing ν. However, we note that there are many unstable
modes, with the fastest growth rate being somewhat smaller than
the maximum magnitude of the vertical shear (0.125) as a result
of viscous damping. Surface modes appear, and become dominant
when ν � 10−7.

6.3 Summary

Our results in this section are in accord with the reduced model
introduced by Nelson et al. (2013) and revisited in Section 4 but
with imposed vertical boundaries. We obtain the same classes of
modes and they have similar growth rates in both models (and
compared with numerical simulations) in a finite vertical domain.
We have highlighted that the VSI preferentially excites ultrashort-
scale disturbances which occur on the smallest available length-
scales, be they numerical or viscous. Adoption of explicit viscosity
is therefore required to obtain results that are converged with respect
to resolution.

True isothermal discs do not exhibit surface modes, as we have
explained in Section 4. Only the presence of a rigid boundary per-
mits those modes to exist, but such a model is poorly defined given
the freedom regarding our choice of z0. Given the notable lack of
convergence as the vertical domain size is varied, this indicates that
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Figure 15. Growth rate of unstable modes versus their (real) frequencies in a locally isothermal disc with ε = 0.05, z0 = 5ε, R1 = 1.5 and 1.05 for several
viscosities (resolution is listed in the figure labels). The dot–dashed line in the left-hand panel demarcates the low-frequency VSI modes from the viscously
overstable modes. The VSI appears only when ν � 10−6. As the viscosity is decreased, there are more unstable modes, which occur on shorter length-scales,
and their maximum growth rates increase. (We caution that some of the eigenvalues in the right-hand panel for ν = 10−8 in particular do not appear to be
converged with the adopted resolution – however, we do not expect any of our conclusions to be adversely affected by this.)

the vertically isothermal model is not well suited for studying the
linear properties of the VSI.

7 D I S C U S S I O N A N D C O N C L U S I O N S

We have analysed the linear stability of astrophysical discs with
vertical shear, as a result of their radial variations in tempera-
ture or entropy. Such variations are expected to be present in real
discs, as indicated by both observations and theory (e.g. Chiang &
Goldreich 1997; Andrews & Williams 2005), and generally lead
to vertical shear, thereby rendering the disc unstable to a hydro-
dynamic instability. Recent non-linear simulations of the resulting
VSI have highlighted its potential to drive hydrodynamic activity
in MRI-stable regions of protoplanetary discs (Arlt & Urpin 2004;
Nelson et al. 2013; Stoll & Kley 2014). The aim of this work was to
better understand the nature of the linear instability in two simple
disc models: the locally isothermal disc with a radial power law
in temperature (building on previous work by Nelson et al. 2013)
as well as the locally polytropic disc with a radial power law in
entropy.

In both models, there are two classes of unstable modes: mod-
estly growing (vertically) global body modes, and rapidly growing
ultrashort-scale surface modes.8 The latter only appear in discs with
a vertical surface and, though this is not the case in strictly isother-
mal models, realistic discs should exhibit a density feature/transition
upon which such modes can affix themselves. Ironically, artifi-
cially imposed boundaries present realistic behaviour even if this
behaviour is a numerical artefact! The value of such models beyond
the qualitative is unclear, however.

A separate issue is that surface modes preferentially occur on
the smallest available length-scales. This necessitates the inclusion
of viscosity to obtain convergence in any numerical simulation,
otherwise the results will inevitably depend on numerical resolution.

8 The surface modes are somewhat analogous to the modes that appear
in fingering convection, another type of double-diffusive instability (e.g.
Brown et al. 2013).

It may be that the VSI saturates on length-scales much smaller
than can be reached by non-linear global simulations, which would
consequently pump power to artificially larger scales and hence
misrepresent the ensuing turbulent state. This however will be very
difficult to test numerically.

We have restricted our study to the locally isothermal and locally
polytropic models, since studying the linear VSI in a more realis-
tic model would require the two-dimensional disc structure to be
computed numerically after accounting for the various sources of
heating and cooling, which are uncertain. In any case, it is unlikely
that there is much to be gained from doing this, owing to the sim-
ilarity in its properties in both the locally isothermal disc (with an
artificial boundary) and the locally polytropic disc.

As shown by recent work, the non-linear evolution of the VSI
leads to wave activity or turbulence, which transports angular mo-
mentum vertically in order to eliminate the vertical shear (Arlt &
Urpin 2004; Nelson et al. 2013; Stoll & Kley 2014). It may also
transport angular momentum radially to enable the disc to accrete
at modest levels. The amount of such hydrodynamical activity in
reality depends on the battle between the external heating of the
disc, and the efficiency of the VSI in eliminating the ensuing ver-
tical shear. The disc must be externally heated sufficiently strongly
or the VSI will eventually win out, leading to a very low level or
no turbulence (as observed in Stoll & Kley 2014). That this process
can occur on time-scales that are not very long may preclude the use
of local computational models to determine the transport properties
of the VSI. This is unfortunate, because global simulations of the
VSI that are able to capture the fastest growing modes (even in the
presence of viscosity) are computationally very challenging. Never-
theless, it would be worthwhile to determine the non-linear outcome
of the VSI in more realistic disc models (continuing from Stoll &
Kley 2014) to determine its longevity and transport properties.

An interesting byproduct of the VSI’s saturation is its radial trans-
portation of angular momentum. If the VSI is sufficiently active in
protoplanetary dead zones, it may provide the stresses necessary
for these regions to accrete. The saturation of the VSI could be
controlled by the smallest-scale surface modes, which may be in-
effectual in this regard because of their small scales. On the other

MNRAS 450, 21–37 (2015)



36 A. J. Barker and H. N. Latter

hand, longer wavelength body modes carry greater quantities of
angular momentum, but only if the saturated state endows them
with sufficient power. If this is the case a crude upper limit on the
α associated with this transport is of order ε3 ∼ 10−4 (which is
roughly consistent with previous simulations). On the other hand,
Stoll & Kley (2014) show that the measured α decreases with res-
olution, and is moreover unconverged, a result that suggests that it
is in fact the smallest scales that are controlling the transport, not
the largest, and that in real discs the value of α could be negligible.
Obviously much more work is required to further test these ideas.
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A P P E N D I X A : D E R I VAT I O N O F A R E D U C E D
M O D E L FO R T H E V S I I N A L O C A L LY
POLY TROPI C DI SC

We look for linear axisymmetric perturbations (uR, uφ , uz, P′, ρ ′, S′)
to equations (8)–(10), to which we also include thermal diffusion
in the entropy equation of the form 1

ρT
∇ · [χ∇T ] , where χ =

χ (ρ, T , κ) = 16σT 3

3κρ
is the thermal conductivity. We will end up

neglecting thermal diffusion when constructing the basic state, but
will include it when considering the small-scale perturbations. The
motivation is that we are considering slow perturbations with very
short radial length-scales, on which thermal diffusion is very rapid,
so the perturbations evolve approximately isothermally.

The system of linearized equations is

∂t uR = 2R�uφ − 1

ρ
∂RP ′ + ρ ′

ρ2
∂RP , (A1)

∂t uφ = −uR

1

R
∂R(R2�) − uz∂Z(R�), (A2)

∂t uz = − 1

ρ
∂ZP ′ + ρ ′

ρ2
∂ZP , (A3)

∂t ρ
′ = −uR∂Rρ − uz∂Zρ − ρ

R
∂R(RuR) − ρ∂Zuz, (A4)

∂t S
′ = −uR∂RS − uz∂ZS + 1

ρT
∇ · (χ∇T ′). (A5)

We adopt a non-dimensionalization such that our fiducial radius
has R0 = 1 and �0 = 1, and take ε = H0/R0 = H0 as our small
parameter. To obtain a reduced model, we consider slow dynamics
on vertical scales comparable with the disc thickness and radial
scales that are much smaller. We also assume that the resulting
velocities are comparable with the sound speed, with the exception
of the radial velocity, which is assumed to be much slower. In
particular, we define a slow time-scale τ = εt such that ∂t = ε∂τ ,
along with new radial coordinate x and vertical coordinate z, such
that

R − 1 = ε2x, ∂R = ε−2∂x, (A6)

Z = εz, ∂Z = ε−1∂z. (A7)

This allows us to neglect curvature and to consider the geometry as
locally Cartesian, similar to the classical shearing box (Goldreich &
Lynden-Bell 1965; Umurhan & Regev 2004). We also define scaled
velocity components (u, v, w) such that

uR = ε2u, uφ = εv, uz = εw, (A8)

and appropriately scale the perturbed pressure, density and entropy
for the approximation to be consistent as follows:

P ′ = ε3P̃ , ρ ′ = ερ̃, S ′ = εS̃. (A9)

The background pressure is also rescaled as P = ε2P̃0. We also
note that ∂R acting on background quantities (e.g. ρ) is O(1) and ∂z

acting on background quantities is O(ε−1). Under the above scaling
assumptions (and neglecting thermal diffusion), the basic state in
Section 3.1.2 can be written

ρ = ρ0

[
1 − z2

H 2
0

]m

, (A10)

P = P0

[
1 − z2

H 2
0

]m+1

, (A11)

R� = R0�0

[
1 + qsz

2

4γ
ε2

] 1
2

, (A12)
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where the disc thickness is

H0 =
√

2(1 + m)
P0

ρ0
. (A13)

Finally, we take χ = χ̃εβ , where β is an ordering parameter.
We require β > 2 so that thermal diffusion can be neglected when
constructing the basic state, since

− ρT (u · ∇S) = ∇ · (χ∇T )

= ε−2+β
[
χ̃∂2

zT + ∂zχ̃∂zT
]

+ εβ
[
χ̃∂2

RT + ∂Rχ̃∂RT
]
, (A14)

where the left-hand side is O(1). For the perturbations, we have

∇ · (
χ∇T ′) = ε−3+β χ̃∂2

x T̃ + ε−1+β χ̃∂2
z T̃

+ ε−1+β∂Rχ̃∂x T̃ + ε−1+β∂zχ̃∂zT̃ . (A15)

The dominant term here is clearly the first one, and this dominates
over all other terms in equation (A5) as long as β < 3, since the lead-
ing order term on the left-hand side of equation (A5) is w∂zS, which
is O(1). If β < 3, the influence of a stabilizing entropy gradient on
the perturbations is eliminated by rapid thermal diffusion. We will
therefore consider β ∈ (2, 3). While this choice may seem contrived,
what this means physically is that we are neglecting thermal diffu-
sion for the basic state, but we are considering it to dominate the
thermal evolution of the perturbations, which evolve isothermally.

Applying these scaling assumptions to equations (A1)–(A5) leads
to the reduced model

0 = 2v − ∂xh (A16)

∂τ v = −u

2
− w

qsz

2γ
(A17)

∂τw = −∂zh (A18)

0 = ρ [∂xu + ∂zw] + w∂zρ (A19)

at leading order, where the psuedo-enthalpy perturbation is h =
P̃ /ρ. The perturbations are in radial geostrophic balance and are
anelastic.

A P P E N D I X B: W K B J A NA LY S I S O F TH E
L O C A L LY P O LY T RO P I C R E D U C E D MO D E L

In this section we obtain approximate analytic solutions to equa-
tion (43) in the limit of large k. To ease the calculation, we
first rescale ω and qs, introducing the quantities ω̂ = kω and
q̂ = kqs/(2γ ). The limit of large k then becomes the limit of large
ω̂ and q̂. Next, equation (43) is transformed into Schrödinger form

d2H

dz2
+

[
ω̂2 + m

1 − (m − 1)z2

(1 − z2)2
+ iq̂

1 − (1 + 2m)z2

1 − z2
+ q̂2z2

]
H

= 0, (B1)

for the new dependent variable H = (1 − z2)m/2e−iq̂z2/2h(z). Note
that asymptotically equation (B1) is the harmonic oscillator equa-
tion for all z except for small regions near the boundaries at z = ±1.

Near the upper boundary z = 1, equation (B1) may be approxi-
mated by

d2H

dz2
+

[
ω̂2 + q̂2 + m(2 − m)

4(1 − z)2
− imq̂

1 − z

]
H = 0, (B2)

which admits a solution in terms of generalized Laguerre functions
and the Tricomi hypergeometric function. Only the former, however
is regular at the boundary. The appropriate solution is hence

H ≈ (1 − z2)m/2e−� (1−z)Lm−1
−μ [2� (1 − z)], (B3)

where Lm−1
−μ is the generalized Laguerre function, � =√

−ω̂2 − q̂2, and

μ = m

2

(
1 + i q̂

�

)
. (B4)

In the limit of large � , the solution takes the following asymptotic
form far from the boundary:

H ∼ �(m − μ) exp[φ(z)] + �(μ) exp[−φ(z)], (B5)

where � is the gamma function, and the complex phase function is

φ(z) = � (1 − z) + i m q̂

2�
ln[2� (1 − z)] + iπμ

2
. (B6)

This solution, in fact, should hold throughout the rest of the domain
and so we impose boundary conditions (evenness or oddness) at the
mid-plane. This yields the eigenvalue equation

� + imq̂

2�
log(2� ) − 1

2
log

(
�(μ)

�(m − μ)

)
+ 1

2
iπ (n + μ) = 0,

(B7)

where n is an integer.
Equation (B7) is transcendental in � . However, in the non-

vertically shearing case it can be solved easily and we obtain the
very simple dispersion relation

ω = π

4k
(2n + m) , (B8)

recalling that n is an integer, and m is the polytropic index.
For general q̂, equation (B7) must be solved via a root-finding

algorithm, usually an easier task than tackling the ODE itself. How-
ever, when q̂ ∼ 1 (meaning kqs � 1), we find that the wave fre-
quencies of the unstable body modes are given by equation (B8) to
leading order, while the growth rate is

σ ≈ mqs

πγ (2n + m)
log

[
1

2
π (2n + m)

]
. (B9)

The growth rate is linear in the shear, but the larger n, the smaller σ ,
in contrast to the isothermal case. This therefore predicts the n = 1
body mode to grow fastest at small k, as we have observed in Fig. 9
(though the growth rate is only correct to within an O(1) factor, as
might be expected for such small k).

Estimates for the surface mode frequencies can be obtained by
equating the first and second terms in equation (B7), assuming that
n is not too large. To leading order in large k, this balance yields

ω ≈ iqs

2γ
+ m ln k

4k
. (B10)

Thus the growth rates of the surface modes are proportional to qs,
and their wave frequencies are typically a factor ln k/k smaller.
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