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We provide a characterisation for the size of proofs in tree-like Q-Resolution and tree-like 
QU-Resolution by a Prover–Delayer game, which is inspired by a similar characterisation 
for the proof size in classical tree-like Resolution. This gives one of the first successful 
transfers of one of the lower bound techniques for classical proof systems to QBF proof 
systems. We apply our technique to show the hardness of three classes of formulas for 
tree-like Q-Resolution. In particular, we give a proof of the hardness of the parity formulas 
from Beyersdorff et al. (2015) [10] for tree-like Q-Resolution and of the formulas of Kleine 
Büning et al. (1995) [29] for tree-like QU-Resolution.
© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Proof complexity is a well established field that has rich connections to fundamental problems in computational complex-
ity (the separation of complexity classes) and logic (the separation of theories of bounded arithmetic) [21,30]. In addition to 
these foundational motivations, proof complexity provides the main theoretical approach towards an understanding of the 
performance of SAT solvers, which have gained a wide range of applications for the efficient solution of practical instances of
NP-hard problems. As most modern SAT solvers employ methods based on conflict-driven clause learning (CDCL) [34], they 
correspond to Resolution (though some SAT solvers also implement proof systems that go beyond Resolution, like Gaussian 
elimination [32,41]). Lower bounds to the size and space of Resolution proofs therefore imply sharp bounds for running time 
and memory consumption of SAT algorithms. Consequently, Resolution has received key attention in proof complexity; and 
many ingenious techniques have been devised to understand the complexity of Resolution proofs (cf. [19,40] for surveys).

During the last decade there has been great interest and research activity to extend the success of SAT solvers to the more 
powerful case of quantified Boolean formulas (QBF). Due to its PSPACE completeness, many problems can be expressed far 
more succinctly in QBF than in SAT and thus QBF solving applies to further fields such as formal verification or planning [7,
39]. As for SAT solvers, each execution trace of a QBF solver can be interpreted as a witness for the truth of the QBF or 
respectively as a proof of its unsatisfiability, and there has been great interest in trying to understand which formal systems 
would correspond to the solvers. In particular, a number of Resolution-based proof systems have been developed for QBF, 
most notably Q-Resolution, introduced by Kleine Büning et al. [29], long-distance Q-Resolution [2,43], QU-Resolution [42], 
their combinations LQU(+)-Resolution [3], and ∀Exp+Res [28]. Designing two further calculi IR-calc and IRM-calc, a unifying 
framework for most of these systems has recently been suggested in [9].
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Q-Resolution is the underlying core of these QBF resolution systems, which is why this paper largely focuses on Q-
Resolution (together with its very natural generalisation QU-Resolution). The proof complexity of QBF resolution calculi has 
been recently intensively investigated, and we refer the reader to [3,10] for an in-depth account on these systems and their 
relations.

Understanding the lengths of proofs in QBF resolution systems is very important as lower bounds to the proof size 
directly translate into lower bounds to the running time of the corresponding QBF-solvers. However, in sharp contrast to 
classical proof complexity we do not yet have established and generally applicable methods that could be employed for this 
task. Rather than trying to give a full account on all developments in QBF proof complexity, we therefore briefly sketch the 
situation on conceptual techniques for QBF calculi. It is interesting to compare this situation to the classical case for which 
we refer the reader to [19,40].

Arguably, the main lower bound technique for propositional Resolution is the seminal size-width technique of Ben-Sasson 
and Wigderson [6], establishing lower bounds for the size by lower bounds to the width of proofs. However, as recently 
shown in [12], this technique drastically fails in Q-Resolution. Another classical technique, applicable to Resolution and 
further propositional systems, is feasible interpolation [31,35]. Indeed, this interpolation technique [31] also applies to QBF 
resolution-type systems [11]. Recently, the papers [8,10,18] introduce a new lower bound technique for QBF systems based 
on strategy extraction. Conceptually, strategy extraction and feasible interpolation both import lower bounds from circuit 
complexity and translate them into size of proofs lower bounds. Therefore they apply only to special classes of formulas, 
expressing principles for which we have circuit lower bounds (which are embarrassingly few).

For this reason, all present lower bounds for QBF proof systems — except for recent results proven by the new strategy 
extraction method [8,10] and feasible interpolation [11] — are either shown ad hoc1 or are obtained by lifting known 
classical lower bounds or previous QBF bounds (e.g. [22] and [3]).

Our contribution in this paper is to transfer one of the main game-theoretic methods from classical proof complexity to 
QBF. Game-theoretic techniques have a long tradition in proof complexity, as they provide intuitive and simplified methods 
for lower bounds in Resolution, e.g. for Haken’s exponential bound for the pigeonhole principle in dag-like Resolution [36], 
or the optimal bound in tree-like Resolution [14], and even work for systems stronger than classical Resolution [5] and 
other measures such as proof space [24] and width [1]. A unified game-theoretic approach was recently established in 
[17]. Building on the classic game of Pudlák and Impagliazzo [38] for tree-like Resolution, the papers [14,16] devise an 
asymmetric Prover–Delayer game, which was shown in [15] to even characterise tree-like Resolution size. Thus, in contrast 
to the classic symmetric2 Prover–Delayer game of [38], the asymmetric game in principle allows to always obtain the 
optimal lower bounds,3 which was demonstrated in [14] for the pigeonhole principle.

Inspired by this asymmetric Prover–Delayer game of [14–16], we develop here a Prover–Delayer game which tightly 
characterises the proof size in tree-like Q-Resolution. The general idea behind this game is that a Delayer claims to know 
a satisfying assignment to a false formula, while a Prover asks for values of variables until eventually finding a contradic-
tion. In the course of the game the Delayer scores points proportional to the progress the Prover makes towards reaching 
a contradiction. By an information-theoretic argument we show that the optimal Delayer will score exactly logarithmically 
many points in the size of the smallest tree-like Q-Resolution proof of the formula. Thus exhibiting clever Delayer strategies 
automatically gives lower bounds to the proof size, and in principle these bounds are guaranteed to be optimal. In compar-
ison to the game of [14–16], our formulation here needs a somewhat more powerful Prover, who can forget information as 
well as freely set universal variables. This is necessary as the Prover needs to simulate more complex Q-Resolution proofs 
involving universal variables and rules for them absent in classical Resolution.

In addition we show that a slight modification of the game also characterises the proof size in tree-like QU-Resolution. 
QU-Resolution is a stronger system than Q-Resolution [42] (though this it is not known whether this also holds for the 
tree-like versions).

We illustrate this new technique with three examples. The first was used by Janota and Marques-Silva [28] to separate 
Q-Resolution from the system ∀Exp+Res defined in [28]. We use these separating formulas as an easy first illustration of 
our technique. Our Delayer strategy as well as the analysis here are quite straightforward; in fact, a simple symmetric game 
in the spirit of [38] would suffice to get the lower bound.

The second example is parity formulas recently defined in [10], where they exemplify the new lower bound technique 
based on strategy extraction. In a genuine QBF-way they express the parity principle and transfer the AC0 circuit lower 
bound for parity from [26] to a proof size lower bound in Q-Resolution. Here we give a completely different proof for the 
hardness of these formulas in tree-like Q-Resolution based on our game characterisation. Unlike the proof in [10] our proof 
here is direct and does not depend on any circuit lower bounds.

Our third example is the well-known KBKF(t)-formulas of Kleine Büning, Karpinski and Flögel [29]. In the same work 
[29] where Q-Resolution was introduced, these formulas were suggested as hard formulas for the system. Recently, the 

1 I.e., they are established by an argument specifically designed for the formulas, which does not apply more widely, e.g. [28] or the lower bound for 
KBKF(t) in [10].

2 The terms symmetric and asymmetric refer to the way the Prover is charged for making progress towards a contradiction: in the symmetric game the 
Prover is always charged 1 point, regardless of whether she sets a variable to 0 or 1. In contrast, in the asymmetric version the Prover pays according to a 
probability distribution on 0/1 (which can be very far from the distribution ( 1

2 , 12 ) used in the symmetric game), cf. [15] for details.
3 For specific formulas this optimal lower bound might be very difficult to show via the game though.
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formulas KBKF(t) were even shown to be hard for IR-calc, a system stronger than Q-Resolution [10]. In fact, a number 
of further separations of QBF proof systems builds on the hardness of KBKF(t) [3,23] (cf. also [10] for further details and 
the formal proof). Here we use our new technique to show that these formulas require exponential-size proofs in tree-like 
QU-Resolution, which in contrast to the previous two examples provides a new hardness result. This also has the interesting 
consequence that the formulas of Kleine Büning et al. exponentially separate tree-like and dag-like QU-Resolution, as they 
are known to have short proofs in dag-like QU-Resolution [42].

For the KBKF(t) formulas both the Delayer strategy as well as the scoring analysis are technically involved. It is also 
interesting to remark that here we indeed need the refined asymmetric game. The formulas KBKF(t) have very unbalanced 
proof trees and therefore we cannot use a symmetric Delayer, as symmetric games only yield a lower bound according to 
the largest full binary tree embeddable into the proof tree (cf. [15]).

The remaining part of this paper is organised as follows. We start in Section 2 with setting up notation and reviewing 
Q-Resolution and QU-Resolution. Sections 3 and 4 contain our characterisations of tree-like Q-Resolution and QU-Resolution 
in terms of the Prover–Delayer game. The three mentioned examples for this lower bound technique follow in Sections 5–7, 
containing the hardness proofs for the formulas from [28], the parity formulas from [10], and the KBKF(t) formulas from 
[29], respectively. We conclude with some open directions for future research in Section 8.

1.1. Relations to further work

We remark that although the semantics of QBFs can be defined by a game between an existential and a universal player 
— and this game has also been used in the context of strategy extraction [25] — our game here is conceptually very different 
from the game in [25].

Independently of our work, a Prover–Delayer game similar in spirit to our game has recently been suggested by Chen 
[20] to obtain lower bounds for ‘relaxing QU-Res’, a ‘proof system ensemble’ based on QU-Resolution.

2. Preliminaries

A literal is a Boolean variable or its negation; we say that the literal x is complementary to the literal ¬x and vice versa. 
If l is a literal, ¬l denotes the complementary literal, i.e. ¬¬x = x. A clause is a disjunction of zero or more literals. The 
empty clause is denoted by ⊥, which is semantically equivalent to false. A formula in conjunctive normal form (CNF) is a 
conjunction of clauses. Whenever convenient, a clause is treated as a set of literals and a CNF formula as a set of clauses. 
For a literal l = x or l = ¬x, we write var(l) for x and extend this notation to var(C) for a clause C and var(ψ) for a CNF ψ . 
A (partial) assignment for a CNF ψ is a (partial) function from the variables of ψ to {0, 1}.

Quantified Boolean Formulas (QBFs) extend propositional logic with quantifiers with the standard semantics that ∀x. Ψ is 
satisfied by the same truth assignments as Ψ [0/x] ∧ Ψ [1/x] and ∃x. Ψ as Ψ [0/x] ∨ Ψ [1/x]. Unless specified otherwise, we 
assume that QBFs are in closed prenex form with a CNF matrix, i.e., we consider the form Q1 X1 . . .Qk Xk. φ, where Xi are 
pairwise disjoint sets of variables; Qi ∈ {∃, ∀} and Qi 	= Qi+1. The formula φ is in CNF and is defined only on variables 
X1 ∪ · · · ∪ Xk . The propositional part φ of a QBF is called the matrix and the rest the prefix. If a variable x is in the set Xi , 
we say that x is at level i and write lev(x) = i; we write lev(l) for lev(var(l)), so against some conventions a higher level is 
more to the right. A closed QBF is false (resp. true), iff it is semantically equivalent to the constant 0 (resp. 1).

Often it is useful to think of a QBF Q1 X1 . . .Qk Xk. φ as a game between the universal and the existential player. In the 
i-th step of the game, the player Qi assigns values to the variables Xi . The existential player wins the game iff the matrix 
φ evaluates to 1 under the assignment constructed in the game. The universal player wins iff the matrix φ evaluates to 0. 
A QBF is false iff there exists a winning strategy for the universal player, i.e. if the universal player can win any possible 
game.

Q-Resolution, by Kleine Büning et al. [29], is a Resolution-like calculus that operates on QBFs in prenex form where the 
matrix is a CNF. The resolution rule allows two clauses to be merged with the removal of an existential pivot. The universal 
reduction rule allows universal literals from a clause C to be removed but only under the condition that they are not 
blocked in C . The rules are given in Fig. 1. In a clause universal variable u is said to be blocked by an existential literal e in 
that clause if and only if lev(u) < lev(e). A refutation of a QBF φ is a derivation of the empty clause. However, as is common 
in the literature, we will use the terms ‘refutation of φ’ and ‘proof of φ’ synonymously.

Q-Resolution derivations can be associated with a graph where vertices are the clauses of the proof and each resolution 
inference C D

E gives rise to two directed edges (C, E) and (D, E). Likewise a universal reduction C
D yields an edge (C, D). 

In general, this graph can be a dag. We speak of tree-like Q-Resolution if we only allow Q-Resolution proofs which have trees 
as its associated graphs. This means that intermediate clauses cannot be used more than once and have to be rederived 
otherwise. There are exponential separations known between tree-like and dag-like Resolution in the classical case (cf. 
[40]), and these easily carry over to an exponential separation between tree-like and dag-like Q-Resolution.

Given a Resolution proof graph, we can think of the tree-like Resolution as the collection of paths connecting the empty 
clause and the original matrix clauses in the graph. This extends to Q-Resolution as well, and brings one important concept: 
∀-reduction does not change the number of paths in the proof.

The size of a proof is defined as the number of symbols in a binary encoding of the proof, which for Resolution is 
equivalent to the number of clauses in the proof (up to a linear factor in the input size). Further, in Q-Resolution this is 
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(Axiom)
C

C1 ∪ {x} C2 ∪ {¬x}
(Res)

C1 ∪ C2

C, C1, C2 are clauses in the matrix. Variable x is existential. If z ∈ C1, then ¬z /∈ C2.

C ∪ {u}
C

C ∪ {¬u}
(∀-Red)

C

Variable u is universal. If x ∈ C is existential, then 
lev(x) < lev(u). C does not contain both u and ¬u.

Fig. 1. The rules of Q-Resolution [29].

even equivalent (again up to a linear factor) to just counting the number of resolution steps. By the shortest or smallest 
(tree-like) proof of a CNF φ we can therefore synonymously refer to the (tree-like) Q-Resolution proof of φ with the minimal 
number of clauses.

QU-Resolution [42] is defined very similarly to Q-Resolution. The only difference is that in the (Res)-rule in Fig. 1 we 
now also allow universal pivots x, i.e. the variable x can be either existential or universal. All remarks above on (tree-like) 
Q-Resolution immediately carry over to (tree-like) QU-Resolution.

3. Prover–Delayer game

In this section, we present a two player game along with a scoring system. The two players will be called Prover and 
Delayer. The game is played on a fully quantified false QBF F with CNF matrix. The game proceeds in rounds and builds a 
partial assignment to the variables in the QBF, starting with the empty assignment, i.e., in the beginning all variables are 
unassigned. In the course of the game the Delayer gets points and tries to score as many points as possible. The Prover tries 
to win the game by falsifying the matrix and giving the Delayer as small a score as possible.

Each round of the game has the following phases:

1. Setting universal variables: The Prover can assign values to any number of universal variables that satisfy the following 
condition: A universal variable u can be assigned a value if every existential variable with a higher quantification level 
than u is currently unassigned.

2. Declare Phase: The Delayer can choose to assign values to any number of unassigned existential variables of his choice. 
The Delayer does not score any points for this.

3. Query Phase: This phase has three stages, similar to the original game:
(a) The Prover queries the value of one existential variable x that is currently unassigned.
(b) The Delayer replies with weights p0 ≥ 0 and p1 ≥ 0 such that p0 + p1 = 1.
(c) The Prover assigns a value for x. If she assigns x = b for some b ∈ {0, 1}, the Delayer scores lg( 1

pb
) points. (If Prover 

picks a value b if pb = 0, then we give the Delayer an infinite score.)
4. Forget Phase: The Prover can choose any number of assigned variables (without regard to how they are quantified) in this 

phase. Every variable chosen by the Prover in this phase will lose its assigned value and hence become an unassigned 
variable.

The Prover wins the game if any clause in F is falsified. In every round, we check if the Prover has won the game after each 
phase.

The game only applies to false QBFs, i.e. the falsity of the formula is given as a ‘promise’. Intuitively, the Delayer claims 
to know a model for the false QBF, which the Prover tries to query. Of course, as there is no model, the Prover can always 
win the game. The crux of the game is therefore not who wins, but how many points the Delayer scores before the Prover 
finally exposes the Delayer’s lie.

Before explaining the connection of the game to Q-Resolution, let us try to provide some intuition on the game semantics. 
The game can be seen as a procedural way of obtaining an assignment that falsifies the matrix of the QBF. At every stage 
of the game, the Prover maintains a partially filled vector with assignments to the variables in the formula. This vector can 
be seen by the Delayer as well. Throughout the game, the Prover can never assign values to existential variables without 
querying them and the Delayer can never assign values to universal variables.

The ‘Setting Universal Variables’ phase, where the Prover can assign values to universal variables, mirrors the ∀-reduction 
rule of Q-Res. This intuition will become clear in the proof of Theorem 1.

The Declare and Query phases are used to assign values to the existential variables. The Declare Phase merely allows us 
to express simple strategies for the Delayer that still score sufficiently many points. The Declare Phase is not integral to the 
characterisation, however it allows lower bound arguments to be made concise by simplifying the states of the game. Note 
that any lower bound to the score in a strategy that uses the Declare phase non-trivially also holds for an optimal strategy 
where the Delayer does not use the Declare Phase at all.
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The Query Phase is the most important phase of the game where the Prover obtains information about existential vari-
ables from the Delayer in exchange for points. The Delayer replies with weights so that the Prover is forced to concede 
points proportional to how much progress she makes in the game towards a contradiction. The intuition behind the scoring 
system defined as log of the inverse of the weights comes from the Shannon entropy and is made clear in the proof of 
Theorem 1. Loosely speaking, the Delayer will charge points proportional to the size of the subtree in the shortest tree-like 
Resolution refutation that the Prover enters by her choice. The query phase therefore corresponds to resolution steps in the 
Q-Resolution proof.

In the Forget Phase, the Prover can choose and delete any variable assignments from the assignment vector obtained 
so far. This phase is especially useful in preparing a universal variable to be assigned a new value in the next round. To 
do so, the Prover chooses the universal variable and all the existential variables with a higher quantification level that are 
currently assigned to lose their assigned values. Once this is done, the universal variable can be assigned a new value in 
the first phase of the next round of the game. This phase can also be used to prevent the Delayer from abusing the Declare 
Phase to stop the assignment of universal variables.

The game ends when the assignment vector holds an assignment that falsifies a clause in the matrix.
As a toy example, consider the following formula:

∃e∀u∃c1∃c2(u ⇒ c1) ∧ (¬u ⇒ c2) ∧ (e ⇒ c1) ∧ (¬e ⇒ c2) ∧ (¬c1 ∨ ¬c2).

We demonstrate a run of the game on the above formula along with the intermediate assignment vectors. Let v denote the 
assignment vector. The vector v will contain assignments in the order 〈e, u, c1, c2〉. The game will end when v is an assign-
ment that falsifies one of the matrix clauses. The game starts with all variables unassigned and hence v = 〈−, −, −, −〉.

– Round 1:
• Setting universal variables: Prover assigns u = 1 and hence v = 〈−, 1, −, −〉.
• Declare Phase: Delayer declares c1 = 1 and c2 = 0. This satisfies all the clauses that do not involve the variable e in 

them. v = 〈−, 1, 1, 0〉
• Query Phase: The Prover queries the variable e. The Delayer replies with p0 = 0 and p1 = 1, thus forcing the Prover 

to set e = 1 and hence v = 〈1, 1, 1, 0〉, for which the Delayer scores lg 1 = 0 points. The assignment does not falsify 
the formula.

• Forget Phase: The Prover forgets the value of u, c1 and c2 while retaining the value of e. Hence v = 〈1, −, −, −〉.
– Round 2:

• Setting universal variables: Prover assigns u = 0 and we have v = 〈1, 0, −, −〉. Note that this is possible since e has a 
lower quantification level than u.

• Declare Phase: Delayer declares c2 = 1. The vector v = 〈1, 0, −, 1〉 now satisfies all clauses that do not involve c1.
• Query Phase: Prover queries the variable c1. The Delayer responds with p0 = 1/2 and p1 = 1/2. The Prover wins the 

game since both 〈1, 0, 1, 1〉 and 〈1, 0, 0, 1〉 falsify the formula. The Delayer scores 1 point.

It is true that the Delayer can score more points by not declaring any assignments in the Declare Phase. However, when 
showing lower bounds to the score obtained by the Delayer in an optimal strategy, we use the Declare Phase merely to 
simplify presentation.

We will now show that our game characterises tree like Q-Resolution.

Theorem 1. If φ has a tree-like Q-Resolution proof of size at most s, then there exists a Prover strategy such that any Delayer scores at 
most lg� s

2 � points.

Proof. Let Π be a tree-like Q-Resolution refutation of φ of size ≤ s. Informally, the Prover plays according to Π , starting 
at the empty clause and following a path in the tree to one of the axioms. At a Resolution inference the Prover will query 
the resolved variable and at a universal reduction she will set the universal variable. The Prover will keep the invariant that 
at each moment in the game, the current assignment α assigns exactly all literals from the current clause C on the path 
in Π , and moreover α falsifies C . This invariant holds in the beginning at the empty clause, and in the end, Prover wins by 
falsifying an axiom.

We will now give details and first describe a randomised Prover strategy, i.e. the Prover chooses her answer to Delayer’s 
queries randomly. We will later derandomise the Prover and make her strategy deterministic. Let the Prover be at a vertex 
in Π labeled with clause C . We describe what the Prover does in the three stages: Setting universal variables, Query phase 
and the Forget phase.

Setting universal variables: If the current clause C was derived in the proof Π by a ∀-reduction C∨z
C , then Prover sets 

z = 0. This is possible as the current assignment contains only variables from C and all existential variables in C have a 
lower quantification level than z. Prover then moves down to the clause C ∨ z. The Prover repeats this till arriving at a 
clause derived by the Resolution rule (or winning the game). Analogous reasoning applies for ∀-reduction steps C∨¬z

C where 
Prover sets z = 1.

Query phase: Prover is now at a clause in Π that was derived by a Q-Resolution step C1∨x C2∨¬x
C1∨C2

. If the Delayer already 
set the value of x in his Declare phase, then Prover just follows this choice and moves on in the proof tree, possibly setting 
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further universal variables. She does this until she reaches a clause derived by Resolution, where the resolved variable x is 
unassigned. Prover queries x. On Delayer replying with weights w0 and w1, the Prover chooses x = i with probability wi .

If x = 0, then Prover defines S to be the set of all variables not in C1 ∨ x and proceeds down to the subtree under that 
clause. Else, she defines S to be all variables not in C2 ∨ ¬x and proceeds down to the corresponding subtree.

Forget phase: The Prover forgets all variables in the set S .
For a fixed Delayer D , let qD,� denote the probability (over all random choices made within the game) that the game 

ends at leaf �. Let πD be the corresponding distribution induced on the leaves.
For the Prover strategy described above, we have the following claim:

Claim. If the game ends at a leaf �, then the Delayer scores exactly α� = lg
(

1
qD,�

)
points.

To prove the claim, note that since Π is a tree-like Q-Resolution proof, there is exactly one path from the root of Π to �. 
Let p be the unique path that leads to the leaf � and let the number of random choices made along p be m. Then, we have 
qD,� = ∏m

i=1 qi where qi is the probability for the ith random choice made along p. Since p is the unique path that leads 
to �, the number of points α� scored by the Delayer when the game ends at � is exactly the number of points scored when 
the game proceeds along the path p. The number of points scored by the Delayer along p is given by:

α� =
m∑

i=1

lg

(
1

qi

)
= lg

(∏
i

1

qi

)
= lg

(
1

qD,�

)
,

which proves the claim.
The Prover strategy we described is randomised. The expected score over all leaves � is the following expression:

∑
leaves �∈Π

qD,�α� =
∑

leaves �∈Π

qD,� lg

(
1

qD,�

)
.

By definition, the latter sum is exactly the Shannon entropy H(πD ) of the distribution πD . Since D is fixed, this entropy 
will be maximum when πD is the uniform distribution; i.e., H(πD) is maximum when, for all leaves �, the probability that 
the game ends at � is the same. A tree like Q-Resolution proof of size s has at most �s/2� leaves. So the support of the 
distribution πD has size at most �s/2� and hence H(qD,�) ≤ lg�s/2�.

If the expected score with the randomised Prover is ≤ lg�s/2�, then there is a deterministic Prover who restricts the 
scores to at most lg�s/2�. Now we derandomise the Prover by just fixing her random choices accordingly.

We remark that the Delayer actually does not play against the randomised Prover (hence the Delayer cannot exploit that 
the Prover is randomised), but only against the deterministic Prover, which we know must exist by the argument above. By 
the probabilistic method, this deterministic Prover prevents every Delayer to earn more than lg�s/2� points. �

To obtain the characterisation of Q-Resolution we also need to show the opposite direction, exhibiting an optimal De-
layer:

Theorem 2. Let φ be an unsatisfiable QBF and let s be the size of a shortest tree-like Q-Resolution proof for φ . Then there exists a 
Delayer who scores at least lg�s/2� points against any Prover.

Proof. For any unsatisfiable QBF φ, let L(φ) denote the number of leaves in the shortest tree-like Q-Resolution proof of φ. 
For a partial assignment a to variables in φ, let φ|a denote the formula φ restricted to the partial assignment a.

The Delayer starts with an empty partial assignment a and changes a throughout the game. On receiving a query for an 
existential variable x, the Delayer does the following:

1. Updates a to reflect any changes made by the Prover to any of the variables. These changes include assignments made 
to both universal variables as well as existential variables.

2. Computes the quantities �0 = L(φ|a,x=0) and �1 = L(φ|a,x=1).
3. Replies with weights w0 = �0

�0+�1
and w1 = �1

�0+�1
.

We show by induction on the number of existential variables n in φ that the Delayer always scores at least lg L(φ)

points. In the base case we have n = 0, L(φ) = 0 and the Delayer scores at least 0 points. Assume the statement is true for 
all n < k. Now for n = k, consider the first query by the Prover, after she possibly made some universal choices according 
to the partial assignment a. Let the queried variable be x. If the Prover chose x = b where b ∈ {0, 1}, then the Delayer 
scores lg 1

wb
for this step alone. After assigning x = b, the formula φ|a,x=b has k − 1 existential variables and hence we use 

induction hypothesis to conclude that the remaining rounds in the game give the Delayer at least lg L(φ|a,x=b). Hence the 
total score is:
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lg

(
1

wb

)
+ lg L(φ|a,x=b) = lg

L(φ|a,x=0) + L(φ|a,x=1)

L(φ|a,x=b)
+ lg L(φ|a,x=b)

= lg
(
L(φ|a,x=0) + L(φ|a,x=1)

) ≥ lg L(φ|a) ≥ lg L(φ).

The last inequality holds, because if φ|a is unsatisfiable at all, then we can refute φ by deriving a universal clause just 
containing all variables in the domain of a and then ∀-reduce.

The theorem follows since for any binary tree of size s, the number of leaves is �s/2�. �
4. Adaptation of the game characterisation to QU-Resolution

In this section we extend our characterisation to the stronger system of QU-Resolution and show that a small modifica-
tion to the two-player game tightly characterises the size in tree-like QU-Resolution.

The only modification of the game for QU-Resolution is in the query phase where the Prover may also query any uni-
versal variable u not already assigned. The Delayer replies with weights p0 ≥ 0 and p1 ≥ 0 such that p0 + p1 = 1. The 
Prover then assigns a value for u and if she assigns u = b for some b ∈ {0, 1}, the Delayer scores lg( 1

pb
) points. The “Set-

ting the Universal Variable” stage still remains with the same restrictions as before, since ∀-reduction is also present in 
QU-Resolution.

For this modified game we can show:

Theorem 3. If φ has a tree-like QU-Resolution proof π of size at most s, then there exists a Prover strategy such that any Delayer scores 
at most lg� s

2 � points.

Proof. We use the same argument as in Theorem 1, i.e., the Prover follows the proof Π in reverse order. Now the only 
addition is that Π may have resolution steps on universal variables. When this occurs the Prover queries that universal 
variable as she would for existential variables.

The rest of the argument remains the same: a randomised Prover can choose the value of the query variables accord-
ing to the weights the Delayer gives, and the Delayer gets an expected score less than or equal to the Shannon entropy. 
A de-randomised Prover can therefore always force the Delayer to get less than this score. �

To complete the characterisation we show that the converse holds as well, similarly as in Theorem 2.

Theorem 4. Let φ be an unsatisfiable QBF and let s be the size of a shortest tree-like QU-Resolution proof for φ . Then there exists a 
Delayer who scores at least lg�s/2� points against any Prover.

Proof. We adapt the proof of Theorem 2 and only list the changes here.
On receiving a query for universal variable u, the Delayer does the following, just as he would for existential variables:

1. Updates a to reflect any changes made by the Prover to any of the variables. These changes include assignments made 
to both universal variables as well as existential variables.

2. Computes the quantities �0 = L(φ|a,u=0) and �1 = L(φ|a,u=1).
3. Replies with weights w0 = �0

�0+�1
and w1 = �1

�0+�1
.

The induction now proceeds on the number of variables (not just existential). In the inductive step, the same inequality 
lg

(
1

wb

)
+ lg L(φ|a,x=b) ≥ lg L(φ|a) is obtained and the characterisation therefore holds. �

5. A first example

We consider the following formulas studied by Janota and Marques-Silva [28]:

Fn = ∃e1∀u1∃c1
1c2

1 · · · ∃ei∀ui∃c1
i c2

i · · · ∃en∀un∃c1
nc2

n :
n∧

i=1

(ei ⇒ c1
i ) ∧ (ui ⇒ c1

i ) ∧ (¬ei ⇒ c2
i ) ∧ (¬ui ⇒ c2

i ) ∧
n∨

i=1

(¬c1
i ∨ ¬c2

i )

These formulas were used in [28] to show that ∀Exp+Res does not simulate Q-Resolution, i.e., Fn requires exponential-size 
proofs in ∀Exp+Res, but has polynomial-size Q-Resolution proofs. Janota and Marques-Silva [28] also show that ∀Exp+Res
p-simulates tree-like Q-resolution, and hence it follows that Fn is also hard for the latter system.

Consider the original hardness proof of Fn for tree-like Q-Resolution (or ∀Exp+Res as it was described originally in [28]). 
It basically describes that there are exponentially many paths from the axioms to the empty clause, each of which corre-
sponds with an assignment to the universal variables. As it is necessary that all assignments are included, the lower bound 
follows. We reprove this result using our characterisation.
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Algorithm 1 Declare Routine.
for all clauses (�1 ⇒ �2) in Fn do

if �1 = 1 then Declare �2 = 1.
if �2 = 0 and var(�1) /∈ U then Declare �1 = 0.

end for

Let U = {u1, u2, . . . , un} be the set of all universal variables. In the following, we show a Delayer strategy that scores at 
least n points against any Prover.

Declare Phase: The Delayer executes the declare routine in Algorithm 1 repeatedly till reaching a fixed point (i.e., until 
calling the algorithm does not produce any changes to the current assignment). The intuition here is that the Delayer does 
not want to falsify any small clause as this can lead to the Prover winning early.

Query Phase: For any variable queried by Prover, Delayer responds with weights 
(

1
2 , 1

2

)
.

For i ∈ [n], let Ti = {ei, c1
i , c

2
i }. Let C = ∨n

i=1(¬c1
i ∨ ¬c2

i ). Except for C , all other clauses have only two literals. Note that 
our declare routine in Algorithm 1 simplifies which variable can be queried and avoids having to specify a case-by-case 
response for the Delayer on the queried variable.

Note that we only need to specify the Delayer strategy, who does not deal with universal variables. Hence we do not 
have to give details on what happens in phase 1 (setting of universal variables) and phase 4 (forget phase).

Lemma 5. Algorithm 1 never falsifies a clause that has only two literals.

Proof. Algorithm 1 declares values for either a variable ci or an ei . We look at each of these cases below: Setting either c1
i

or c2
i : Note that in the formula F , except for the clause C , the variables c1

i and c2
i appear as positive literals and on the 

right hand side of implications. Hence setting either c1
i or c2

i to 1 does not falsify any clause.
Setting an ei : Algorithm 1 declares a value for ei only when at least one of c1

i or c2
i has value 0. Suppose w.l.o.g. that 

c2
i had value 0 before Algorithm 1 was executed. Then Algorithm 1 assigns ei to 1. However, note that if ei was unassigned 

when Algorithm 1 was called, then it must be the case that c1
i is not set to 0 (because otherwise ei would have been set 

in some previous execution of Algorithm 1). Hence assigning 1 to ei does not falsify the clause (ei ⇒ c1
i ) because c1

i was 
either true or unassigned before execution of Algorithm 1. �
Lemma 6. If the Delayer uses the strategy outlined above, then for any winning Prover strategy, the clause falsified is C .

Proof. Suppose the clause falsified was D . We will show that if D 	= C , then the Delayer did not use our strategy. In 
other words we show the Delayer succeeds in delaying the contradiction until all literals in C are refuted. We consider the 
following cases:

1. D involves variable ui for some i ∈ [n]:
Note that ui appears in clauses with either c1

i or c2
i . Since both c1

i and c2
i block ui , it has to be the case that when 

ui was set by the Prover, the variables c1
i and c2

i were unassigned. Now it is straightforward to see that if the Delayer 
indeed used the declare routine described in Algorithm 1, then all clauses involving ui become satisfied after ui is set 
by the Prover.

2. D is (ei ⇒ c1
i ) or (¬ei ⇒ c2

i ):
Suppose w.l.o.g. that D = (ei ⇒ c1

i ). As a consequence of Lemma 5, it must be the case that D was falsified because of 
the Prover choosing a value for either ei or c1

i . So we have two cases:
– Prover chose a value for ei to falsify D: So ei was unassigned just before the query phase began. But if Algorithm 1

left ei unassigned, then this means ci is unassigned or c1
i 	= 0. Hence if the Delayer indeed used Algorithm 1, D could 

not have been falsified.
– Prover chose a value for c1

i to falsify D: Following an argument just like the previous case, if the Delayer indeed used 
Algorithm 1, then ci would be unassigned at the start of the query phase only if ei = 0 or ei was unassigned. In both 
these cases D cannot be falsified by choosing a value for c1

i . �
Theorem 7. Delayer scores at least n points against any Prover strategy.

Proof. From Lemma 6, it is sufficient to show that any Prover strategy that falsifies C will give the Delayer a score of at 
least n. C can be falsified only if all variables c1

i , c2
i have been assigned to 1. We observe that for any i ∈ [n], the Prover can 

get at most one of c1
i or c2

i to be declared for free by setting ui appropriately. To assign the other ci to 1, the Prover can 
either query ci directly and set it to 1 or query ei and set it appropriately. Both these ways give the Delayer 1 point. Hence 
for every i ∈ [n], the Delayer scores at least 1 point. �
With Theorem 1 this reproves the hardness of Fn for tree-like Q-Resolution, already implicitly established in [28]:
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Algorithm 2 Declare Routine.
1: if x1 and x2 are assigned and t2 is unassigned then
2: t2 ← x1 ⊕ x2

3: end if
4: for i = 2 to i = n − 1 do
5: if ti and xi+1 are assigned and ti+1 is unassigned then
6: ti+1 ← ti ⊕ xi+1
7: end if
8: end for
9: if z is assigned and tn is unassigned then

10: tn ← ¬z
11: end if
12: for i = n to 3 do
13: if ti and xi are assigned and ti−1 is unassigned then
14: ti−1 ← xi ⊕ ti

15: end if
16: end for
17: if x2 and t2 are assigned and x1 is unassigned then
18: x1 ← t2 ⊕ x2

19: end if
20: if x1 and t2 are assigned and x2 is unassigned then
21: x2 ← x1 ⊕ t2

22: end if
23: for i = 2 to i = n − 1 do
24: if ti and ti+1 are assigned and xi+1 is unassigned then
25: xi+1 ← ti ⊕ ti+1
26: end if
27: end for

Corollary 8. The formulas Fn require tree-like Q-Resolution proofs of size Ω(2n).

Note that this bound is essentially tight as it is easy to construct tree-like Q-Resolution refutations of size O (2n).

6. Hardness of QBFs expressing parity

We now provide a second example, QParity, defined in [10]. This was presented in [10] as a lower bound to Q-Resolution 
and thus a lower bound to tree-like Q-Resolution. It demonstrated a weakness of Q-Resolution that could be exploited when 
the Herbrand function of a lone universal variable is not in AC0. Here that function is Parity(x1, . . . , xn) = x1 ⊕ · · · ⊕ xn .

The proof in [10] uses a novel lower bound technique based on strategy extraction, which transfers the AC0 lower bound 
for Parity from [26] to Q-Resolution. Here we use our game characterisation to prove the lower bound again. This proof is 
not dependent on any circuit lower bound.

For n > 1 define QParityn as follows. Let xor(o1, o2, o) be the set of clauses {¬o1 ∨ ¬o2 ∨ ¬o, o1 ∨ o2 ∨ ¬o, ¬o1 ∨ o2
∨ o, o1 ∨ ¬o2 ∨ o}, which defines o to be o1 ⊕ o2. Define QParityn as

∃x1, . . . , xn ∀z ∃t2, . . . , tn. xor(x1, x2, t2) ∪
⋃n

i=3
xor(ti−1, xi, ti) ∪ {z ∨ tn,¬z ∨ ¬tn}.

Intuitively, these formulas express via the universally quantified z that there exists an input x1, . . . , xn for which x1 ⊕· · ·⊕ xn

is both 0 and 1. Hence, for the universal player the only way to falsify the formula is to play z as the opposite value of 
x1 ⊕ · · · ⊕ xn , which means he has to compute the Parity function. This is crucially exploited in [10] for the lower bound.

When playing our Prover–Delayer game on these formulas, the Prover queries xi and ti variables, or can set the value 
of z. In setting the value of z she deletes all progress made on the ti variables, but retains all the information on the xi

variables.
Observe the Delayer has the luxury that if z is set at the beginning of the game he can answer in a way that will never 

contradict the CNF at least until the value of z is changed. When z = 0 the Delayer is trying to build an assignment on the x
variables that gives Parity(x1, . . . , xn) = 1 and tries to make the t variables consistent with that. When z = 1 the Delayer is 
trying to build an assignment on the x variables that gives Parity(x1, . . . , xn) = 0 and is still trying to make the t variables 
consistent with that. In fact, as long as the Delayer is playing in this way the Delayer cannot lose.

We formulate this as a strategy below. Like in Section 5 we utilise a declare routine (Algorithm 2) for the Delayer to 
simplify the analysis, with a similar objective: to satisfy a clause that is one existential literal away from unsatisfiability. 
For this we need to look at all the parity equations ti ⊕ xi = ti+1. Setting one variable might trigger further assignments. 
A detailed analysis is carried out below.

Observation 9. Performing Algorithm 2 twice gives the same result as performing Algorithm 2 once.
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Proof. Algorithm 2 breaks down into three parts:

1. the first part is from line 1 to line 8. Each declaration here declares a ti and the index i increases with each loop;
2. the second part is from line 9 to 16. Each declaration here declares a ti and the index i decreases with each loop;
3. the final part is from 17 to 27 and declares xi where the t values are given already.

Observe that because part 1 increases the index in the loops and that ti is a precondition for ti+1, the ti being defined 
propagates in increasing i. Suppose that t j was not defined when it was checked as a precondition for defining t j+1 here. 
Then it will not be defined for the remainder of this part of the algorithm since the check is passed. The equivalent happens 
for conditions not met in part 2.

Let us suppose t j is changed due to part 2, then it must be that t j+1 is defined and so no declare happens from applying 
part 1 again. Therefore a declaration in part 2 cannot affect a condition in part 1. This is likewise true vice versa.

It is impossible for an x j to trigger any condition in any other part of the algorithm as any variable it triggers must be 
defined as a precondition. �

After the declare routine, the strategy of the Delayer now becomes very simple. When queried on any unassigned exis-
tential variable the Delayer sets p0 = p1 = 1

2 .
We now turn to the analysis.

Lemma 10. At most two xi variables are declared or assigned per turn.

Proof. Suppose on any given turn the variable xi is queried and therefore assigned a new value. Then it cannot be the 
precondition of two different declarations since xi can only be a precondition for ti or ti−1 in which case the other is 
required to be defined already as a precondition. As a result of the declaration more t j variables can be declared, but only 
with consecutively increasing or decreasing index (not both). It may or may not end with another xk being declared, but 
then as tk and tk−1 must be assigned this cannot propagate.

Suppose on any given turn the variable ti is queried. This can be the precondition to two different declarations, if these 
are t j variables these can propagate upwards or downwards. Eventually this results in some xk being declared, but then as 
tk and tk−1 must be assigned this cannot propagate. Therefore only two xk can be declared.

Now suppose the universal player changes the value of z. If there are x j and xk that are unassigned with j < k then 
the declare phase from lines 1 to 8 may set a number of variables ti increasing in i, satisfying all xor(ti−1, xi, ti). We also 
notice that this propagation must stop before t j as x j is unassigned. Likewise from Algorithm 2, lines 9 to 16 a downward 
propagation of ti variables may occur, satisfying the clauses from z ∨ tn , ¬z ∨ ¬tn and xor(ti, xi+1, ti+1). However this stops 
before tk−1. No xi values can now be set as it requires ti−1 and ti to be assigned and xi to be unassigned. This is impossible 
as the only unassigned xi values are for j ≤ i ≤ k but there are no t variables assigned in between them. �
Lemma 11. The game cannot end in the query phase.

Proof. Suppose that the game ends in the query phase. Then there is some clause C in the matrix of QParityn that is 
falsified by the assignment of literal l to 0 in the query phase. This means that before the query phase all literals except l
in C were refuted, but var(l) was unassigned. Either C ∈ xor(x1, x2, t2), C = ¬z ∨ ¬tn , C = z ∨ tn or C ∈ xor(ti−1, xi, ti) for 
some i, 3 ≤ i ≤ n. We use Algorithm 2 to show that if all other literals in C are defined then l cannot be unassigned.

Suppose C ∈ xor(x1, x2, t2). We use Lines 18, 21 and 2 to show that l cannot be x1, x2 or t2, respectively. Then suppose 
C = ¬z ∨ ¬tn then l cannot be ¬z as only existential variables can be queried but cannot be ¬tn due to Line 10. Now 
suppose C = z ∨ tn . Then l cannot be z as only existential variables can be queried, but it cannot be tn due to Line 10. 
Finally suppose that for some i, 3 ≤ i ≤ n, C ∈ xor(ti−1, xi, ti). Then we use Lines 14, 25 and 6 to show that l cannot be ti−1, 
xi or ti , respectively. �

It is also clear that the Prover cannot win simply by setting the universal variables. To do so she must win on the clauses 
z ∨ tn or ¬z ∨ ¬tn , but tn must be unassigned after the universal variables are set. Therefore the Prover must win in the 
declare phase.

Lemma 12. The Prover cannot win until all xi are assigned.

Proof. The Prover must win on the declare phase by Lemma 11. Now suppose the Prover wins on a declare phase when 
some x j is unassigned. This must be triggered by either setting the universal variables or by querying a variable.

Let us suppose that this change was triggered by setting the universal variable z. Then all ti variables are unassigned 
at the start of the declare phase. From Lines 1 to 8 a number of ti variables may be set, satisfying each corresponding 
xor(ti−1, xi, ti). We also notice that this propagation must stop before t j as x j is unassigned. Likewise from Lines 9 to 16 a 
downward propagation of ti variables may occur, satisfying the clauses from z ∨ tn , ¬z ∨¬tn and xor(ti, xi+1, ti+1). However 
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this stops before t j−1. So far no clause has been falsified. In the final section of the algorithm in Lines 17 to 27 the only xi
variable that can be declared is x j , which contradicts our assumption.

Now let us suppose the change was triggered by a queried or declared variable. If x1 is queried then it cannot imme-
diately contradict a clause but it can trigger a declaration of x2 or t2. Likewise if x2 is queried then it cannot immediately 
contradict a clause but it can trigger a declaration of x1 or t2. If for i > 1, xi is assigned then it cannot immediately con-
tradict a clause but it can trigger a declaration of ti−1 or ti (but not both). If for i > 1, ti is set then it cannot immediately 
contradict a clause but it can trigger a declaration of ti−1 or xi and xi+1 or ti .

Now suppose that ti+1 is declared in Line 6. It cannot cause a contradiction of xor(ti, xi+1, ti+1) by definition. For 
xor(ti+1, xi+2, ti+2) observe that if xi+2, ti+2 were assigned then they were assigned before the algorithm was executed 
by the previous declare phase. It now may trigger a declaration of xi+1 or ti .

Now suppose that ti−1 is declared by Line 14, it cannot cause a contradiction of xor(ti−1, xi, ti) by definition. For 
xor(ti−2, xi−1, ti−1) observe that if xi−1, ti−2 were assigned then they were either both assigned before the algorithm was 
executed in the previous declare phase, or ti−2 is assigned by an upwards propagation earlier in the algorithm which means 
that the queried variable this turn must have index j < i − 1, but since this ti−1 is declared as a result of downwards 
propagation this j ≥ i − 1. This means we cannot get a contradiction here. It now may trigger a declaration of xi+1 or ti .

tn will always be declared immediately after setting the universal variable.
Now suppose that xi+1 is declared by Line 18, 21 or 25, it cannot cause a contradiction in xor(ti−1, xi, ti) (nor 

xor(x1, x2, t2)) by definition. It cannot trigger any more declarations. �
We can now easily count the score of the Delayer for our strategy and combine the above analysis into the following 

result:

Theorem 13. There exists a Delayer strategy that scores at least n
2 points against any Prover in the Prover–Delayer game on QParityn.

Proof. Each turn a variable is queried and by Lemma 10 at most two xi variables get assigned. The Delayer always gets one 
point so gets at least n

2 points before the game is finished as all the xi variables must be set (Lemma 12). �
Corollary 14. Every tree-like Q-Resolution refutation of QParityn is of size at least 2n.

We remark that in this example we again use the ‘symmetric’ Delayer score scheme ( 1
2 , 12 ), which also corresponds to 

the information-theoretic intuition behind the game as the Prover learns exactly the same from a parity variable being 
assigned 0 or 1. This also means that the lower bound argument might be made with just the logical reasoning on the 
graph level (e.g., show that for any assignment of x variables there is a setup of t variables which creates a (unique) path 
from the empty clause to one of (z ∨ tn) or (¬z ∨ ¬tn)). The Prover–Delayer game approach is a smart way of showing that 
there is an exponential number of such paths.

7. Hardness of the formulas of Kleine Büning et al

In our third example we look at a family of formulas first defined by Kleine Büning, Karpinski and Flögel [29]. The 
formulas are known to be hard for Q-Resolution and indeed for the stronger system IR-calc [10]. However, it is known that 
there exist short dag-like proofs in QU-Resolution [42]. In contrast, we use our characterisation to show that these formulas 
remain hard in tree-like QU-Resolution.

Definition 15 (Kleine Büning, Karpinski and Flögel [29]). Consider the clauses

C− = {¬y0}
C0 = {y0,¬y0

1,¬y1
1}

C0
i = {y0

i , xi,¬y0
i+1,¬y1

i+1} C1
i = {y1

i ,¬xi,¬y0
i+1,¬y1

i+1} for i ∈ [t − 1]
C0

t = {y0
t , xt,¬yt+1, . . . ,¬yt+t} C1

t = {y1
t ,¬xt,¬yt+1, . . . ,¬yt+t}

C0
t+i = {xi, yt+i} C1

t+i = {¬xi, yt+i} for i ∈ [t]
The KBKF(t) formulae are then defined as the conjunction of these clauses under the quantifier prefix ∃y0, y0

1,

y1
1 ∀x1 ∃y0

2, y
1
2 ∀x2, . . . ,∀xt−1 ∃y0

t , y1
t ∀xt ∃yt+1 . . . yt+t .

Let us verify that the KBKF(t) formulas are indeed false QBFs and — at the same time — provide some intuition about 
them. The existential player starts by playing y0 = 0 because of clause C− . Clause C0 forces the existential player to set 
one of y1,0, y1,1 to 0. Assume the existential player chooses y0

1 = 0 and y1
1 = 1. If the universal player tries to win, he 

will counter with x1 = 0, thus forcing the existential player again to set one of y0, y1 to 0. This continues for t rounds, 
2 2
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y1
1 y1

2 y1
t

y0 . . . yt+1 yt+2 . . . y2t

y0
1 y0

2 y0
t

Fig. 2. Variables of KBKF(t).

leaving in each round a choice of y0
i = 0 or y1

i = 0 to the existential player, to which the universal counters by setting xi
accordingly. Finally, the existential player is forced to set one of yt+1, . . . , y2t to 0. This will contradict one of the clauses 
C0

t+1, C
1
t+1, . . . , C

0
2t, C

1
2t , and the universal player wins.

We now want to show an exponential lower bound on proof size for the KBKF(t) formulas via our game. We will 
assume throughout that t > 2. Intuitively, the strategies here are similar to the strategies described in the game semantics: 
the Prover is forced to set xi in increasing i while the Delayer gets a choice of the weights of the values of y0

j , y
1
j and 

declares variables to avoid contradictions. Unlike in the semantic game, the variables are not queried in any fixed order. 
Instead of setting y0

j , y
1
j for slowly increasing j and the contradiction being propagated forwards towards the variables 

in the innermost block like in the description above, a large j may be queried and a contradiction may be propagated 
‘backwards’ towards the variables in the outermost blocks. When either y0

j = 0, y1
j = 0 the contradiction is propagated 

forwards towards the yt+i variables, and when y0
j = 1, y1

j = 1 the contradiction is propagated backwards to latest yc
i = 0

variable. Recall that setting both y0
j = y1

j = 1 only sets one of y0
j−1, y

1
j−1 to 1 depending on how xi−1 is set, so it is useful 

to the Delayer to make sure that setting y0
j or y1

j to 1 is worth less points than setting y0
j−1 or y1

j−1 to 1, and likewise 
the Delayer wants the Prover to make less progress setting high j y j variables to 0. Taking all of these into consideration 
a careful Delayer can set the right weights to gain enough points whichever way the Prover makes progress. We give an 
informal description of such a Delayer strategy.

7.1. Delayer strategy – informal description

We think of the existential variables of KBKF(t) to be arranged as shown in Fig. 2.
At any point of time during a run of the game, there is a partial assignment to the variables of the formula that has 

been constructed by the Prover and Delayer. We define the following:

Definition 16. For any partial assignment a to the variables, we define za to be the index of the rightmost column (see 
Fig. 2) where a assigns a 0 to one or more variables in the column. If no such column exists, then za = 0.

For convenience, we will drop the subscript and just say z when the partial assignment is clear from context. We usually 
mention the time during a run of the game at which we are referring to z instead of explicitly mentioning the induced 
partial assignment. z is important for the Delayer strategy and lower bound because it is the main measure of progress of 
the game. The idea behind the Delayer strategy is the following: We observe that for all i < t − 2 and j ∈ {0, 1}, to falsify 
the clause C j

i , it is necessary that y j
i is set to 0, xi is set to j and both y0

i+1 and y1
i+1 are set to 1. The strategy we design 

will not let the Prover win on clauses C0
i or C1

i for any i < (t − 2). We do this by declaring either y0
i+1 or y1

i+1 to 0 at a 
well chosen time. Furthermore, we will show the following statements: (1) When the game ends, z ≥ t and (2) After any 
round in the game, the Delayer has a score of at least αz where α > 0 is a global constant. It is easy to see that the lower 
bound of Ω(t) for the score of the Delayer follows from statements (1) and (2).

We now give the idea behind the declare routine and the weights. We will give details later.
Declare routine: The importance of the declare routine is to simplify the Delayer strategy for the reader. Since KBKF is 

the most complicated example we present here, this is where the declare routine benefits us the most. What is gained here 
is that we can simplify much of the information needed from the current assignment for the Delayer query strategy to just 
information on z.

We will use the declare routine shown in Algorithm 3. This declare routine is designed specifically to make sure that 
the game does not end at a clause Cb

i for any i < (t − 2) and that statement (1) (at the end of the game z = t) holds. Note 
that line 17 of Algorithm 3 is very similar to the idea behind the declare routine in Section 5, i.e., if in any round there is 
a clause C that has only one existential variable y unassigned and C |y=b is unsatisfiable, then we declare y = ¬b in the 
immediate declare phase.

We will give away values of variables y0
j and y1

j for all j < z for free in the declare phase in a way that it neither ends 
the game, nor make any progress in the game. We first ensure that the Prover cannot exploit an unassigned universal literal 
(lines 9, 11 and 24 of Algorithm 3) so that at least one of y0

j or y1
j is set to zero. This allows the Delayer to answer any 

query of x j to satisfy whichever of C0
j , C

1
j is not satisfied (but score no points). Giving away the values of these variables 

does not prevent the Delayer scoring enough because the points are scored on the variables y0
j and y1

j for all j > z.
There are still some complications for the Delayer strategy; the Prover can set all universal variables to 1, then query 

y0
t , y0

t−1, etc. until y0
1, choosing 1 each time. Subsequently, the Delayer will be forced to set y1

1 to 0, then y1
2 to 0 etc. until 

y1
t = 0. Then the Prover need only query the variables in C1

t to get a contradiction. To counter such strategies, the Delayer 
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Algorithm 3 Declare Routine.
1: y0

z ← 1, y1
z ← 1

2: z′ := z
3: if yxz

z 	= 0 or xz unassigned then
4: for all i > z do y0

i ← 1; y1
i ← 1

5: end if
6: for i = 1 to z − 1 do
7: if xi is unassigned or at least one of y0

i+1 or y1
i+1 not set to 1 then

8: if y0
i = 0 then

9: y1
i ← 1

10: else if y1
i 	= 1 then

11: y0
i ← 1

12: end if
13: end if
14: end for
15: for i = t − 1 to 1 do
16: for j = 0 to 1 do
17: if C j

i is not satisfied with only one unassigned literal l then satisfy C j
i with that literal (if existential).

18: end for
19: end for
20: if z ≤ t − 2, xz, xz+1 are assigned, yxz

z = 0 and either y0
z+2 = 1 or y1

z+2 = 1 then y
1−xz+1
z+1 ← 0

21: if z 	= z′ , xz assigned and yxz
z = 0 then

22: if xz+1 unassigned then y0
z+1 ← 0 else y1−xz

z+1 ← 0
23: end if
24: for all i < z do y0

i ← 0, y1
i ← 0

declares y0
1 to 0 instead of allowing it to be queried for the usual score. This is achieved in line 20 of Algorithm 3. It allows 

the value of z to increase, but in this case only by 1 and when some constant score has already been achieved.
Scoring: At the start of the game, we have z = 0, and at the end, we will have z ≥ t . We will make sure that z increases 

monotonically. So the higher the value of z, the closer the Prover is to winning the game. Intuitively, the value of z is a 
mark of progress in the game for the Prover. Hence our scoring is designed so that the Prover is charged for increasing the 
value of z.

At some intermediate round in the game, if the Prover queries variable y0
i or y1

i for some i > z, our strategy charges 
a score proportional to (i − z) for letting the Prover set the variable queried to 0. However, in some cases, we will have 
to adjust this so that the Delayer scores more if the declare phase immediately forces z to an even higher value. If the 
effect is not immediate the Delayer can force the Prover to change the universal variables by declaring a 0 at y1

i+1 or y0
i+1

depending on the universal variables (see line 21 of Algorithm 3).

7.2. Delayer strategy – details

We now give full details of the Delayer strategy.
Declare Phase: The Delayer sets y0 to 0 in the declare phase of the first round.
Let F be the set of all existential variables that were chosen to be forgotten by the Prover in the forget phase of the 

previous round. The Delayer first does the following “Reset Step”: For all variables y in F that had value 0 just before the 
forget phase of the previous round, the Delayer declares y = 0. This Reset Step keeps the state of the game simple.

After the reset step, the Delayer executes Algorithm 3 repeatedly until reaching a fixed point. The notation y ← b means 
that the Delayer declares y = b if and only if y is an unassigned variable. Also, we assume that z is updated automatically 
to be the index of the rightmost column that contains a 0 (see Fig. 2).

We observe the following about the reset step:

Observation 17. The reset step ensures that z always increases monotonically (when z is measured at the beginning of each query 
phase).

Line 24 of Algorithm 3 leads to the following observation:

Observation 18. After the declare phase, for all i < z ≤ t, the existential variables y0
i and y1

i have been assigned a value.

Observation 19. For all i > z for c ∈ {0, 1}, if a line in Algorithm 3 potentially sets yc
i to 1 and another line potentially sets yc

i to 0, the 
line that sets yc

i to 1 comes first.

Observation 20. For all i < t, y0 and y1 cannot both be set to 0.
i i
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Proof. Let i < t . Assume y0
i and y1

i are not both 0 at the beginning of the Declare phase. This is true when the game 
begins. Note that the reset step cannot cause the first occurrence of both y0

i and y1
i being assigned zero. So we focus on 

Algorithm 3. Let β be the partial assignment before the Declare phase begins. We show the statement by a case analysis on 
the state of the variables y0

i and y1
i in β . We have the following cases:

1. At least one of y0
i and y1

i is assigned 1.
2. One of y0

i and y1
i is assigned 0 and the other is unassigned.

3. Both y0
i and y1

i are unassigned.

For Case 1: Note that by the definition of “←”, Algorithm 3 does not change the value of an already assigned variable. 
Hence the observation follows.

In Case 2, without loss of generality, let y0
i = 0 and y1

i be unassigned. Since y0
i = 0, i ≤ zβ . If i = zβ , then the observation 

follows due to Line 1. If i < zβ , then we have two cases:

– The condition in Line 7 passes. Then, the observation follows due to Line 9.
– The condition in Line 7 fails. In this case, y0

i+1 = y1
i+1 = 1 and xi is assigned. Since the game had not terminated before 

the beginning of this Declare phase, it must be the case that xi = 1 (because otherwise, C0
i is falsified in β already). 

This means the clause C1
i has only one unassigned literal, namely y1

i and Line 17 assigns y1
i = 1.

In Case 3, note that i 	= zβ by definition of zβ . So we have two cases:

– Case i < zβ . In this case, the observation follows from Line 11.
– Case i > zβ . Note that the variables y0

i and y1
i occur together in clauses C0

i−1 and C1
i−1. Since both the variables are 

unassigned, Line 17 cannot trigger on these clauses. If Line 17 triggers on clause C0
i (or C1

i ), then y0
i (y1

i resp.) occurs 
as a positive literal, and hence will be assigned 1.

It remains to show that Line 24 does not contradict our statement. Note that so far, whenever i ≤ zβ , we have shown 
that either y0

i or y1
i gets assigned 1. Hence, Line 24 cannot affect both y0

i and y1
i when i ≤ zβ . The only case that remains 

is zβ < i < z: We observe that only lines 17, 20 and 22 can change the value of z. If Line 17 assigns y0
zβ+1 (or y1

zβ+1) to 0, 
then it means that already y1

zβ+1 = 1 (y0
zβ+1 = 1 resp.). Lines 20 and 22 increase z, by at most 1 since they do not assign 0

to variables beyond yb
z+1. Hence the condition zβ < i < z on Line 24 makes sure the statement holds.

In fact, the statement even holds at the end of every Query phase. The reason is that at the end of the Declare phase, 
all existential variables yb

i where i ≤ z are already assigned. More formally, we have the following cases on the state of y0
i

and y1
i just before the Query phase begins:

1. Both y0
i and y1

i were unassigned, then the Query phase can query at most one of them. Hence both cannot be as-
signed 0.

2. Variable y0
i = 0 and y1

i was unassigned or vice versa. Since y0
i = 0, we have i ≤ z. So y1

i could not have been unassigned 
after the Declare phase. Hence this case never occurs. �

We now proceed to describe the query phase.
Query Phase: Let the queried variable be yb

i . From Observation 18, it is easy to see that i ≥ z. We have the following 
cases:

– If i > t , then the Delayer replies with weights w0 = 2z−t−1 and w1 = 1 − w0.
– Else z ≤ i ≤ t . We have three cases:

• If z = i the Delayer replies with weights w0 = 0 and w1 = 1.
• If xi is unassigned, then the Delayer replies with weights w0 = 2z−i and w1 = 1 − w0.
• Else xi holds a value. Then we have the following cases:

∗ If b = ¬xi , then the Delayer replies with weights w0 = 2z−i and w1 = 1 − w0.
∗ Else b = xi and Delayer replies with weight w0 = 2z− j , where j is the largest index such that ∀k : z < k ≤ j, xk is 

assigned and y1−xk
k = 1. Weight w1 = 1 − w0.

Now suppose the queried variable is xi .

– If y0
i = 1 or y1

i = 0 then the Delayer replies with weights w0 = 1 and w1 = 0.
– Else, if y1

i = 1 or y0
i = 0 then the Delayer replies with weights w0 = 0 and w1 = 1.

– Otherwise w0 = w1 = 1/2.
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We now analyze the above Delayer strategy. We want to argue that as z increases so does the Delayer score and that z
increases sufficiently in total.

We define α f
n , αu

n , αd
n , αq

n to be the assignments immediately after the forget, setting universal variables, declare and 
query phase, respectively, of the nth round of the Prover–Delayer game.

We start our analysis with the following lemma:

Lemma 21. Let the game be played on KBKF(t) by a Delayer using our strategy against any Prover. Then, at the end of the game, z ≥ t.

Proof. Fix any point during the game. We show that if z < t , neither the Query phase nor the Declare phase can falsify the 
formula. Since the game ends only when the formula is falsified, the lemma follows.

It is easy to see that the “Setting Universal Variables” phase and the “Forget phase” cannot falsify the formula.
Note that for a clause Cb

j to be falsified, it requires x j = b, yb
j = 0, y0

j+1 = y1
j+1 = 1. In particular, it requires yb

j = 0. So if 
Cb

j is falsified, then it must be that j ≤ z < t by Definition 16.
Query phase: The Query phase can assign a value to at most one existential variable. Recall that the Declare phase runs 

Algorithm 3 till reaching a fixed point. Hence Line 17 makes sure that at the start of the Query phase, none of the Cb
j for 

j < t have just one unassigned literal. Hence the Query phase cannot falsify a clause.
When universal variables are queried, the Delayer responds by not setting xi to b. This exploits Observation 20 and thus 

never falsifies a clause.
Declare phase: It is easy to see that the reset step does not falsify a clause. So we focus on Algorithm 3. Fix any 

j ∈ [t − 1] such that j ≤ z < t . We will show, without loss of generality, that clause C0
j is not falsified by repeated calling of 

Algorithm 3. We assume x j = 0 when the algorithm is called because otherwise C0
j is already satisfied.

Suppose Algorithm 3 is executed with unassigned variables in C0
j . We will assume we get the contradiction in this 

iteration of the algorithm. We have the following cases:

1. y0
j is unassigned. In this case, if j = z′ , then Line 1 satisfies C0

i . If j < z′ , and the condition on Line 7 fails the algorithm 
reaches Line 17 and C0

j is satisfied. Similarly if j > z′ then the algorithm reaches Line 17. By Observation 19, we must 
already have y1

j+1 = y0
j+1 = 1 and so C0

j is satisfied.

2. y0
j = 0 and we have y0

j+1 unassigned and y1
j+1 = 1 (or vice versa). In this case, clearly z′ 	= j + 1 and so Line 1 has no 

effect. Even if the condition on Line 7 passes for i = ( j + 1), the conditions in the inner code fragment fail. Hence Line 7
does not falsify C0

j when i = j.

It only remains to show that Line 17 does not falsify C0
j when i = ( j + 1). We have the following cases based on the 

state of the y j+2 literals at the beginning of Algorithm 3:
– y0

j+2 = 0 or y1
j+2 = 0. In this case Line 17 can never set y0

j+1 to 1.

– Neither y0
j+2 nor y1

j+2 are assigned. In this case z′ 	= j + 2. If ( j + 2) > z′ then it is impossible to set both y j+2

variables to 1 in the algorithm as the universal variable x j+2 is essential to Line 17. Hence, we have ( j + 2) < z′ . Then 
this is the first run of Algorithm 3 in this Declare phase. Otherwise, Line 24 in the previous run would not leave both 
variables unassigned.
We now have to consider the result of the previous declare phase. But first we note that any change in a universal 
variable xi for any i ≤ j + 2 after the previous declare phase would not make the declare phase falsify C0

j . The reason 
is that if such an xi is changed, then it cannot happen that both y0

k and y1
k for k > j + 2 are set to 1 after the reset 

step. Since Line 17 requires a pair y0
k and y1

k for k > j + 2 set to 1 already in order to set another variable to 1, the 
clause C0

j cannot be falsified. Recall that we use αd
n−1 to denote the assignment of the game immediately after the 

declare phase in the (n − 1)th round. We assume that j + 2 	= zαd
n−1

since otherwise, the reset step would ensure that 

one of the y j+2 variables will be set to 0. We will show that in each of the following cases, C0
j cannot be falsified in 

the nth round:
• Case j + 2 > zαd

n−1
. It must be that yc

z′ is the queried variable in round n − 1. This means that y1
j+1 = 1 and y0

j = 0

in αd
n−1. Then, either y0

j+1 = 0 as a result of Line 17 of the current declare phase or the universal variable x j was 
changed before the reset step which we have already argued cannot happen.

• Case j + 2 < zαd
n−1

. In this case, all of y0
j , y0

j+1 and y1
j+1 must be assigned due to Observation 18. Since we assume 

that no clause was falsified in the (n − 1)th round itself, it cannot be the case that both the y j+1 were assigned 1
and y0

j was assigned 0. So this case is also ruled out.

With all the cases exhausted we can conclude that both y0
j+2 and y1

j+2 unassigned at the beginning of Algorithm 3
is impossible.
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– y0
j+2 = 1 or y1

j+2 = 1. This is the only possibility left, without loss of generality y1
j+2 = 1. We use Line 20 to show this 

is impossible and finally prove via contradiction that Line 17 cannot falsify clause C0
j . Suppose that y0

j = 0, x j = 0

and y1
j+1 = 1 in αd

n−1.

Then y0
j+1 = 0 must already be in αd

n−1. Hence one of these values changes before the current run of Algorithm 3. It 
cannot be x j , as the Delayer will not set x j = 0 when y0

j = 0 in a query phase. The Prover setting it directly means 
that y1

j+1 cannot be set to 1. The Prover could have queried y0
j or y1

j+1:

• If y0
j = 0 is set in the query phase, then it was unassigned at the beginning of the query phase. So the values 

from variables yc
k for k > j in αd

n−1 did not imply y0
j = 1 before the query phase. Hence y0

j+1 cannot be possibly 
be declared to 1 by Line 17. If y0

j = 0 is set in a previous iteration of Algorithm 3 then we need to show that 
we cannot get a contradiction on C0

j in a subsequent iteration of Algorithm 3. Note that in the next iteration, if 
we reach C0

j for Line 17 (and we do not already have y0
j+1 assigned), it will be set to 0. This means, if we get 

the contradiction, Line 17 on C0
j+1 will have to have set y0

j+1 = 1 immediately before we get to Line 17 on C0
j . 

However note that by Observation 19 before Line 17 we have not set any other variable to 1 after setting y0
j = 0 in 

the last iteration of Algorithm 3. This means that we do not have any change in a variable that can set a variable 
yc

k for k ≥ j to 1 that would not have happened already in the previous iteration of Algorithm 3.
• If y1

j+1 = 1 is set in the query phase then y0
j = 0 and y1

j+2 = 1 must be true in αd
n−1. So Line 20 must have already 

set y0
j+1 = 0.

If y1
j+1 = 1 is set in the declare phase in a previous iteration of Algorithm 3 then x j = 1 if y1

j+1 is set by Line 17, 
or y0

j+1 must be already assigned because j + 1 < z′ if y1
j+1 = 1 is set by some other line.

3. Variables y0
j+1 and y1

j+1 are unassigned and y0
j = 0. This means z 	= ( j + 1). Hence, Line 1 does not affect these 

variables. If the condition on Line 7 passes for i = j + 1, then at most one of these variables gets assigned 1.
We now need to consider Line 17 and the possibility that both y0

j+1 and y1
j+1 can be assigned to 1. It is impossible 

that Line 17 sets both y0
j+1 and y1

j+1 to 1, because the variable it can set depends on the universal variable, i.e. it can 
only set y

x j+1
j+1 . The remaining possibility is that Line 11 sets y0

j+1 to 1 and then Line 17 sets y1
j+1 to 1. In that case 

j + 1 < z′ (note again that we must be in the first iteration of the Algorithm this declare phase). Assume we are in the 
nth round. We study what happens in the n − 1th round. First note that we eliminate the possibility that x j changes 
value in the “Setting of universal variables” phase, this would mean that there is no pair y0

k and y1
k for k > j + 1 to be 

both set to 1 after the reset step and will mean Line 17 cannot set any variables to 1 in the declare phase later. Next 
we look at the cases after the previous declare phase.
– We know that j + 1 	= zαd

n−1
because otherwise one of y0

j+1 or y1
j+1 will be set to 0.

– If j + 1 < zαd
n−1

then y0
j+1, y1

j+1 and y0
j are assigned in αd

n−1. Variables y0
j+1, y1

j+1 must be set to 1 as the reset step 

will assign them again if they are 0. Variable y0
j must be set to 0 because it cannot be queried to 0 before the next 

declare phase if already set to 1. This means that since we are not expecting a contradiction until the nth round, 
x j 	= 0 in αd

n−1. Variable x j would have to be queried since we have eliminated the possibility it can be set by the 
Prover. However the Delayer will not set x j = 0.

– If j + 1 > zαd
n−1

then the queried variable must be yc
z′ . This means that y0

j = 0 in αd
n−1. Suppose we have some 

variables yc
k for j + 1 ≤ k < z′ set to 1. These could be used in Line 17 to set other variables to 1, in turn those 

variables could set more variables to 1. However, this would have reached fix-point in the last declare phase. A change 
in between the declare phases cannot affect this fix-point. Forgetting assignments and setting universal variables 
requires the deletion of those variables essential for new variables to be set to 1. Knowing this, it can only be that 
y1

j+1 is set to 1 already in αd
n−1 and is set again in Algorithm 3 in the next round. However since x j does not change 

value between these two points then y0
j+1 is set to 0 already in αd

n−1 by Line 17 not allowing it to be 1 again. �
Remark 22. After the Query phase, except in the case when yc

i gets queried to 0, the value of z can increment by at most 2, 
during the Declare phase.

This can be seen as follows. For any increase it is required that, before the query phase on turn k, yxz
z = 0, and that for 

all c ∈ {0, 1}, yc
z+1 is unassigned. Additionally, if xz+1 is assigned then for all c ∈ {0, 1} yc

z+2 are unassigned (Line 17 or 20
of Algorithm 3 would be triggered otherwise). If the Prover chose to assign 1 to the variable queried and it results in a 
change of z, then it must cause any of y0

z+1, y1
z+1, y0

z+2 or y1
z+2 to be set to 1, incrementing z by one using Line 17 or 

20 of Algorithm 3. In the case of Line 20 no more increases can occur as the universal variable xz is either unassigned or 
the wrong polarity for any progress to be made. A second increase can happen when y

1−xz+1
z+1 is set to 1, here Line 17 sets 

y
xz+1
z+1 to 0 and then Line 22 increases z by one but ensures again that xz is either unassigned or the wrong polarity for any 

further progress to be made in this query phase.
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Let i ∈ [t], c ∈ {0, 1} and z′ ∈ [t − 1]. Let r1 be the Delayer score at the point during the game when z = z′ and all y∗
j for 

j > z are unassigned. Let r2 be Delayer score when yc
i gets assigned 1 for the very first time. For all i > z, we define sz(yc

i )

to be r2 − r1.
Of note is that sz(yc

i ) for i > z + 1 does not depend on the values of y0
j , y

1
j for j < i when the game is being played 

as described. This can be seen because we describe the Delayer strategy in query phase without any dependence on these 
values, the scores on these values and the assignment of these values cannot cause higher index values to be declared to 1. 
Algorithm 3 conforms to this: observe that any line that triggers a value of y1

i or y0
i for i > z to be 1 requires that a value 

of y1
k or y0

k for k > i to be set to 1 or a value of y
xi−1
i−1 to be set to 0. The second is impossible as we assume z is not 

changing in this time.
Combining Observation 17 with the fact that at the start of the game z = 0, Lemma 21 implies that the Prover increases 

z by at least t in the process of winning the game. We will now measure the scores that the Delayer accumulates.

Lemma 23. For all z < t − 1 and i < t, each of sz(y0
i ) and sz(y1

i ) is at least 2t−i lg 2t−z

2t−z−1 .

Proof. We show this via backwards induction on i starting from i = t − 1. The induction hypothesis is that sz(y1
i ) =

2sz(y1
i+1) ≥ 2t−i lg 2t−z

2t−z−1 .

Base Case: Variable y1
t−1 can be set to 1 by querying it to 1 which costs lg 2t−1−z

2t−1−z−1
or by setting xt−1 to 1 and having 

both y1
t , y0

t set to 1.
Variable y1

t can be set to 1 by querying it or by querying all variables in the next existential level. However, asymptoti-

cally it will be cheaper to query it directly. Hence the minimum cost of y1
t to 1 is lg 2t−z

2t−z−1 . Similarly for y0
t so the minimum 

cost so sz(y1
t−1) = 2 lg 2t−z

2t−z−1 = (which is cheaper than lg 2t−1−z

2t−1−z−1
)

Inductive Step: We will show sz(y1
i ) = 2sz(y1

i+1). To do this, we use the fact that sz(y1
i ) is a minimum score and that 

a Prover strategy exists that sets y1
i to 1 with score 2sz(y1

i+1). Suppose in the first round, the Prover sets xz appropriately 
(so yxz

z = 0) and then sets xi = 1. Since all existential variables of greater level are unassigned, she could then somehow 
set y0

i+1 = 1 at cost sz(y1
i+1). Subsequently, she could still change all universal variables at level greater than lev(y0

i+1) and 
delete all existential variables afterwards, and thus can get y1

i+1 = 1 at cost sz(y1
i+1) without deleting y0

z+1. At this point, 
y1

i = 1 by the declare phase. This means sz(y1
i ) is at most 2sz(y1

i+1), we argue that this is the cheapest strategy.

Suppose sz(y1
i ) 	= 2sz(y1

i+1). We will show that it is then cheapest to query y1
i immediately. We observe that the only 

ways that y1
i can be declared to 1 when z < i is in Line 17 of Algorithm 3, this requires both y0

i+1, y
1
i+1 to be set to 1. 

sz(y0
i+1) = sz(y1

i+1) by symmetry, in order to set these both to 1 either they have to be queried or they can be declared. 
Only y

xi+1
i+1 can be declared to 1. The score required to get y

1−xi+1
i+1 = 1 is always sz(y0

i+1) no matter which other variables 
y0

k , y1
k , for k > i are set to 1. This is due to the only line in Algorithm 3 that can set a yi+1 variable to be 1 being Line 17

and that requiring the universal variable having a different value which involves resetting all these variables. Since progress 
cannot be shared on setting the two variables to 1, the total cost is 2sz(y1

i+1). Instead we suppose that y1
i is queried but 

not immediately. In order to make any gains we look at the description of the query phase; that when xi = 1, w0 = 2z− j , 
where j is the largest index such that ∀k : z < k ≤ j, xk is assigned and y1−xk

k = 1. However this requires that y1−xk
k = 1

since the universal variable is not agreeing with these values, progress cannot be shared (similar to the argument above) 
for setting each of these variables to 1. So the total cost is 

∑k
j=i+1 sz(y1

j ) plus the cost of the final query which is greater 
than sz(y1

k ). Since for j > i, the induction hypothesis holds, we have sz(y1
j ) = 2sz(y1

j+1) and the total score is greater than 
equal to 2sz(y1

i+1) but we have assumed this not the case.

If sz(y1
i ) 	= 2sz(y1

i+1) it is cheapest for the Prover to query y1
i immediately. This gives the Delayer lg( 2i−z

2i−z−1
) = 2i +

2 − 2z − lg(22i+2−2z − 2i+2−z) points. Instead the Prover could query both y0
i+1 and y1

i+1 and this gives 2 lg 2i+1−z

2i+1−z−1
=

2i + 2 − 2z − lg(22i+2−2z − 2i+2−z + 1), which is slightly cheaper. Hence, we have sz(y1
i ) = 2sz(y1

i+1).

Recursively sz(y1
i ) = 2t−i sz(y1

t ). By symmetry, sz(y0
i ) = sz(y1

i ) as at the beginning the Prover is free to switch the polar-
ities of all the universal variables with no cost. Note that the Delayer strategy on universal variables prevents the universal 
player from switching the polarities of xi during the query phase, so we can assume the Prover has to stick with her 
choices or use the forget phase. There is no advantage to leaving the universal variables unassigned at the beginning and 
then querying them later as the score only increases when the Prover chooses 0 for some existential variable on level i and 
in that case the Delayer is defiant and does not allow the Prover to set xi to a value useful for the Prover on that query 
phase. �
Observation 24. Assume yxi

i is queried, j − z points are scored, and the Prover sets yxi
i to 0. Then z increases by at most j + 1 − z as 

long as j < t.
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Proof. When yxi
i is queried and j − z points are scored and the Prover sets yxi

i to 0, the Delayer then declares all yxk
k

for i < k ≤ j to 0 by Line 17. For some c, yc
j+1 is set to 0, by Line 17 if y1−c

j+1 is already set to 1, both y0
j+1 and y1

j+1
cannot already be set to 1 if j + 1 ≤ t by Lemma 21. If neither variable are set then yc

j+1 is set to 0 by Line 20 or 22. In 
each of these situations the yc

j+1 variable set to 0 does not have c = x j+1 as this would contradict the maximality of j or 
Lines 20 and 22. This means that no further changes are made to z in the declare phase. �

We now know that during a run of the game, z increases from 0 to t . It remains to show that the Delayer scores Ω(z)
points during any particular run of the game on KBKF(t) for large enough t:

Lemma 25. There exist constants t0 > 0 and α > 0 such that for all t > t0 , at any point of time during a run of the game on KBKF(t), 
the Delayer has a score of at least αz.

Proof. We will take the lemma as an inductive hypothesis on z. On the first turn the Delayer sets z = 0 and the Delayer 
has zero points.

The value of z can change from the Prover picking a 0 for yc
i in the query phase. In this case the Delayer either scores 

j − z points when the 0 moves down to j + 1 in the declare phase or scores i − z points otherwise. When z does not change 
in the declare phase, it is the only case where the Prover is not forced to delete all the higher level existential literals and 
switch the universal variable xi and so may get the z to be incremented by 1 at a cheaper cost than s(y0

z+2) (which will be 
our lower bound when 1 is assigned by the Prover to an existential variable to force a change in z). However this is not a 
problem as we only get this once per time z is changed, hence the Delayer gets at least n

2 points if z changes by n.
As remarked earlier, the value of z can change by at most 2 if Prover chooses to assign 1 to a queried variable. This 

can result from 1 being assigned after a query on yc
z+1 or y1−c

z+1. In this case, as y0
z+2 and y1

z+2 are unassigned or xz+1 is 
unassigned, the cost of these are 1 for a potential of and increase of z by 2, so the Prover gets enough points. Now we only 
need to look at the case where a y0

z+2 or y1
z+2 gets set to 1 and we start with unassigned existential literals for higher levels 

than z. Here we know from Lemma 23 that the minimum cost is 1
4 2t−z lg( 2t−z

2t−z−1 ). Note that t is the only variable in this 
expression since at any fixed point of time during a run of the game, the value of z is fixed. This quantity can be written 
as f (x) = 1

4 x lg( x
x−1 ) where x = 2t−z . It is easy to see that the limit of f (x) as x tends to infinity is the constant 1

4 ln 2 . This 
implies that f (x) ∈ Ω(1). So the Delayer gets Ω(1) points each time the Prover increments z by 1. More precisely, using 
the definition of big-Omega, there exists constants t0 > 0 and α > 0 such that for all games played on KBKF(t) for a t > t0, 
the Delayer scores at least α points each time the Prover increases z by 1. �

Combining Lemma 21 and Lemma 25, we have:

Theorem 26. There exists a Delayer strategy that scores Ω(t) against any Prover in the Prover–Delayer game on KBKF(t).

Combining Theorem 26 and Theorem 3, we obtain:

Corollary 27. The formulas KBKF(t) require tree-like QU-Resolution proofs of size 2Ω(t).

As KBKF(t) are easy for QU-Resolution [42], they therefore provide an exponential separation between tree-like and 
dag-like QU-Resolution by Corollary 27.

8. Conclusion

In this paper we have shown that lower bound techniques from classical proof complexity can be transferred to the 
more complex setting of QBF proof systems. We have demonstrated this with respect to a game-theoretic method, even 
obtaining characterisations of tree-like proof size in Q-Resolution and QU-Resolution. Although tree-like (Q-)Resolution is a 
weak system, it is an important one as it corresponds to runs of the plain DLL algorithm, which serves as the basis of most 
SAT and QBF-solvers.4

We point out that the game characterisation shown here inherently only applies to tree-like proof systems and cannot be 
used for the stronger dag-like model. However, there are different game approaches that also apply to dag-like proofs. In this 
direction, an interesting question for further research is to determine whether the very general game-theoretic approaches 
of Pudlák [36] or Pudlák and Buss [5,37] can also be utilised for QBF systems.

Another direction of further work is to determine if our game can be extended to capture long-distance Q-Resolution 
[2,43] and whether there is a dual variant of the game for cube Q-resolution proofs (cf. [33]).

4 We stress tough that tree-like (Q-)Resolution just corresponds to the plain DLL procedure. In practice, DLL-based SAT solvers are equipped with clause 
learning and restarts, which allows them to construct also dag-like proofs. In the context of SAT solving, clause learning combined with restarts corresponds 
to general Resolution [4]. For the situation in QBF we refer to the recent work [27].
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