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The micromagnetic exchange stiffness is a critical parameter in numerical modeling of magnetization dy-

namics and reversal processes, yet the current literature reports a wide range of values even for such simple

and widely used material as Cobalt.With use of ab-intio estimated Heisenberg parameters we calculate the low

temperature micromagnetic exchange stiffness parameters for hexagonal-close-packed (HCP) and face-centred

cubic Cobalt without previous and our own. For HCP Co they are slightly different in the directions parallel and

perpendicular to the c-axis. We establish the exchange stiffness scaling relation with magnetization A(m)∼m1.8

valid for all sets of parameters for a wide range of temperatures. For HCP Co we find an anisotropic domain

wall width in the range 24− 29 nm which increases slowly with temperature. The results form a critical input

for large-scale temperature-dependent micromagnetics simulations and demonstrate the importance of correct

parameterization for accurate simulation of magnetization dynamics.

I. INTRODUCTION

Many recent applications with appealing technological per-

spectives are based on the magnetization dynamics at high

temperatures. These include magnetization dynamics under

thermal gradients (spin-Seebeck effect) [1], ultrafast laser-

induced magnetization dynamics [2], or heat-assisted mag-

netic recording [3]. The usual way to model magnetization

dynamics in nanostructures is numerical micromagnetics for

which publicly released codes are widely used. Strictly speak-

ing the standard micromagnetics is a zero or low temperature

approximation although the temperature dependent macro-

scopic parameters can be used far from the Curie tempera-

ture TC. Recently, high-temperature micromagnetics based on

the use of the Landau-Lifshitz-Bloch equation[4–6] has been

developed, removing the constraint of the fixed magnetiza-

tion magnitude. For correct modeling the zero temperature

micromagnetic parameters and their temperature dependence

are required.

The temperature dependence of micromagnetic parameters

can be in principle measured experimentally. This is straight-

forward for the saturation magnetization, but more challeng-

ing for the correct macroscopic anisotropy and the exchange

stiffness constants. A limitation of the experimental ap-

proach is that extrinsic (dependence on defects) and intrinsic

(the proper temperature dependence) effects cannot be distin-

guished, nor can different contributions to the macroscopic

parameters be determined, for example coming from interfa-

cial as compared to the bulk anisotropy. In this respect mod-

eling provides a unique method to assess the correct values of

these parameters.

For the correct use of micromagnetics the exchange stiff-

ness A is one of the most important parameters since it defines

the exchange correlation length measuring the Bloch domain

wall thickness δDW = π
√

(A/K), where K is the macroscopic

anisotropy constant. However the literature reveals a large

discrepancy in the value of this parameter for Cobalt.

Hexagonal-close-packed (HCP) Cobalt is the classic high

anisotropy magnetic material due to its high Curie tempera-

ture and large magneto-crystalline anisotropy in the bulk. Ad-

ditives such as Pt and Sm enable HCP Co-based magnets to

be used in current magnetic recording media and permanent

magnets respectively. Yet, Co is not so simple. According

to the measurements, HCP Co undergoes transition to the FCC

phase[7] at temperatures around T = 695K and at around the

same temperature the magnetization easy axis turns perpen-

dicular to the c-axis direction [8].

Micromagnetic simulations frequently assume values of the

exchange stiffness in Co in two different ranges: (1.3−1.5)×
10−11 J/m (e.g.[9, 10]) or (2.2− 3.3)× 10−11 J/m (e.g.[11–

13]). The experimental measurements on the exchange stiff-

ness using Brillouin light scattering report values between

2.5×10−11 J/m [14] and 3.6×10−11 J/m [15]. At the same

time old and forgotten neutron scattering data show higher

values of 4.2×10−11 J/m [16]. The differences are normally

attributed to non-homogeneous pinned structures due to grain

boundaries in non-perfect samples[15].

Typically the Bloch domain wall width in HCP Co is as-

sumed to be between of 10-15 nm, following classical books

in magnetism (e.g. Refs.[17, 18]). We note here that the use of

different exchange stiffness values may completely alter the

result of a micromagnetic simulation since it defines the oc-

currence of different reversal modes, associated with different

coercivities, as well as it may change the type of the reversal

mode, for example from transverse to the vortex-like domain

wall in HCP Co nanowires[19].

It is well known that both the anisotropy and the exchange

stiffness in magnetic materials decrease with temperature.

Since typically anisotropy decreases faster than the exchange

stiffness, the domain wall width increases with temperature,

which is widely observed experimentally (see, for example

Ref.[20]). The correct temperature dependence of the ex-

change stiffness is important for applications since it may de-

fine the transition from incoherent to coherent reversal modes

as well as change the domain wall velocity. Also, the change

in the domain wall width with temperature has been deter-

mined as the key factor in its motion under thermal gradients

[21] as well as for the ultra-fast magnetization dynamics re-

sponse [22]. Thus accurately determining the rate of change
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of the domain wall width with temperature is very important

from both fundamental and applied points of view.

In the present article starting with parametrizations of the

Heisenberg Hamiltonian with ab-initio electronic structure

calculations, we evaluate the exchange stiffness parameter and

the domain wall width as a function of temperature. We de-

termine the domain wall width at low temperatures as large as

24-29 nm, depending on the Heisenberg model parametriza-

tion. This value is larger than frequently assumed, and it in-

creases with temperature. We also determine the scaling rela-

tion with magnetization of both the exchange stiffness param-

eter and the domain wall width.

II. MODELING RESULTS

A. The Heisenberg exchange parameterization

To evaluate the domain wall width and the exchange stiff-

ness in Co, we use a hierarchical multi-scale approach, pro-

posed for FePt by Kazantseva et al [5, 23]. We define the

atomic exchange parameters for Co for the Heisenberg spin

Hamiltonian

H =−1

2
∑
i 6= j

Ji jSi ·S j −∑
i

kuS2
z , (1)

where Si are classical unit vectors describing the magnetic

moment directions on site i, Ji j is the interatomic exchange

interaction, and ku is the local uniaxial anisotropy constant

per atom.

The long-range pair-wise exchange parameters can be eval-

uated on the basis of ab-initio methods by mapping the elec-

tronic structure calculation onto the Heisenberg model. The

first set of these parameters for HCP Co at T = 0 K was eval-

uated by Turek et al [24] and for FCC Co by Pajda et al [25]

with experimental lattice parameters. Very recently a new set

data has been published by Kvashnin et al [26]. Since the cal-

culated exchange parameters in these two works are different,

we have performed our own calculations of the Heisenberg

exchange parameters (see Table I).

Our first principles calculation is based on the Local Spin-

Density Approximation and bulk Korringa-Kohn-Rostokker

(KKR) method in the Atomic Sphere Approximation (ASA)

[27, 35]. The partial waves in the KKR-ASA calculations

have been expanded up to the orbital lmax = 3 (spd f basis)

inside the atomic spheres, for all non-equivalent atomic sites.

The exchange parameters have been calculated using the mag-

netic force theorem [29]. The exchange constants were esti-

mated in ferromagnetic ground state at T = 0 K, which give a

reasonable estimation also at non-zero temperatures for both

fcc and hcp Co. Our method of the exchange constants calcu-

lation is essentially the same as that of Pajda et al [25], how-

ever, we used a more extended basis for partial wave expan-

sion (lmax = 3) than Pajda et al who used lmax = 2. Because of

that our exchange constants are closer to Kvashnin et al [26],

who used a full potential methodology. Previously, the appli-

cation of our approach has allowed a successful description of

magnetism in various transition metal systems [30, 31].

The exchange parameters show dominant ferromagnetic in-

teractions up to the third nearest neighbours and the typical

RKKY oscillating asymptote. In what follows we include the

exchange interactions up to 6 nearest neighbours. To evaluate

temperature dependent properties we use classical Langevin

dynamics simulations based on the integration of a set of

stochastic Landau-Lifshitz-Gilbert (LLG) equations[32] with

internal fields defined by the Hamiltonian (1). The result-

ing Curie temperatures are summarized in Table II (HCP Co)

and III (FCC Co) for the different sets of parameters. The

Tc = 1480K value, which we calculate here by the Langevin

dynamics approach with the parameters of Turek et al is

close to the most frequently cited experimental value for Co

TC = 1385K (e.g. the book [18]) measured in [33, 34]). Be-

cause of that agreement, this parametrisation gives a suitable

for magnetisation dynamics modeling curve M(T ) and we

therefore use values from Turek et al [24] in the dynamical

simulation of the domain wall width. The Curie temperatures

for both HCP (Tc = 1250 K) and FCC (Tc = 1300 K) phases cal-

culated with our parameters are also close to the experimental

one (see Table I) although they are below it. At the same time

the calculations by Kvashnin et al [26]) give a smaller Curie

temperature TC = 1100 K but in agreement with the value of

1131 K cited in the book by Cullity [43].

TABLE I. Calculated exchange parameters for HCP and FCC cobalt

up to the first 6 shells. R0 j is the shell position in units of lattice

constant, Ns is the number of equivalent sites in the shell.

Co (HCP) Co(FCC)

R0 j Ns J0 j(mRy) R0 j Ns J0 j(mRy)

(100) 6 1.77 ( 1
2

1
2 0) 12 1.87

( 1
2

1

2
√

3

√

2
3 ) 6 2.08

(1−1√
3

√

2
3 ) 6 0.28 (100) 6 0.16

(00

√

8
3 ) 2 0.49 (1 1

2
1
2 ) 24 0.21

(0
√

30) 6 0.21 (110) 12 -0.23

(1 2√
3

√

2
3 ) 12 0.18

(10

√

8
3 ) 12 -0.06 ( 3

2
1
2 0) 24 0.06

(200) 6 -0.15 (111) 8 0.09

We note that our estimations of Tc do not include the ef-

fects of longitudinal spin fluctuations at high temperatures and

renormalization of the exchange constants due to the spin dis-

order in a paramagnetic state [35]. Thus the obtained Tc val-

ues cannot be considered as a test of the exchange constants

quality which are calculated from the low temperature ferro-

magnetic reference state. Besides, although the exchange con-

stants calculated in the ferromagnetic ground state should be

used at the temperatures much lower than experimental mag-

netic ordering temperature. Note that within the disordered

local moment approach the dependence of the Heisenberg ex-

change coupling constants for HCP Co has been found to be

very weak [36] in the considered here range of temperatures.

Finally, experimentally HCP Co has been reported to un-

dergo a transition to the FCC structure[7] at temperatures
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around T = 695K. Since the dependence of the Curie tem-

perature on the structure is found here to be small, this transi-

tion could be disregarded in relation to the exchange stiffness

evaluation.

B. Exchange stiffness: analytical approach

The calculated ab-initio Heisenberg exchange parameters

allow the evaluation of the exchange stiffness at zero temper-

ature via the formula

Aν(0) = (1/(4 ·Vat))∑
j

Jν
0 j(r

ν
0 − rν

j )
2 (2)

which can be obtained assuming the continuous long-wave

length function for the spin distribution in the Heisenberg

Hamiltonian. This formula is a generalization of the one

found in the classical books (see example, [37]). Here Vat

is the atomic volume ( we assume the experimental value

Vat = 1.1 ·10−29m3) , r j are the atomic positions from the ori-

gin and ν = x,y,z stand for cartesian coordinates. Assuming

that the c-axis of HCP Co coincides with the z-axis, we obtain

slightly different exchange stiffness parameters, parallel and

perpendicular to it, summarized for different sets of parame-

ters in Table II.

For the FCC Co the obtained exchange stiffness value is

isotropic and similar to the HCP value. These values are sim-

ilar to the upper bound or larger than typically used in micro-

magnetic simulations, frequently by a factor of 2 times. They

are also close to the upper bound measured by the Brillouin

scattering [15].

To determine the theoretical exchange stiffness scaling with

magnetization (i.e. temperature), we employ the classical

spectral density method (CSDM) for spinwaves [41, 42], pre-

viously shown to have a good agreement with the Langevin

simulations in simple cubic lattice materials and FePt [42, 45].

The method is based on the use of Green’s functions in re-

ciprocal space which first leads to an infinite set of coupled

equations for thermally averaged moments of all orders. The

spectral density is assumed to be a delta-function. The follow-

ing decoupling scheme which leaves the equations for the first

two moments only (found to be sufficient for the exchange in-

teractions [41, 42]) is then assumed

〈Sz
kSz

−k〉 ∼= 〈Sz
k〉〈Sz

−k〉−
1

2
(1−m2)〈S+k S−−k〉, (3)

where m is the average magnetization, S±k is the Fourier trans-

form of S±i = Sx
i ± S

y
i variables and Sz

k of Sz
i variable. The

Fourier transform of the exchange parameters is defined in

terms of the variable

γq =
J(q)

J(0)
= ∑

j

J0 j

J(0)
· e−iq·(r0−r j), (4)

where J(0) is the is the zero wave-vector component J(0) =
z1 · J01 + z2 · J02 + ..., z0 j is the number of neighbors with

the same J0 j interaction,~r0 and~r j are position vectors of the

atoms 0 and j respectively. The decoupled equations give the

following dispersion relation [42]

ωq = J0mQ(m)(1− γq), (5)

where at low temperatures the function Q(m) scales with mag-

netization m as Q(m) ∝ m−ε and the scaling parameter ε is

defined by the ratio of the sums ε = G/W :

W = ∑
q

1

1− γq

, G = ∑
q

γq

1− γq

, (6)

These sums were numerically evaluated over the first Bril-

louin zone giving ε ≈ 0.19 for parameters of Turek et al [24]

and ε ≈ 0.21 for the other two sets. The spinwave dispersion

relation (5) is directly related to the exchange stiffness param-

eter leading to the scaling relation A(T ) = A(0) ·m2−ε ∝ m1.8

for all cases (see Table II and Table III for more precise val-

ues). The difference with the mean-field exponent ε = 2

comes from spin-spin correlations [42]. This result is com-

pared in Fig. 3 with direct estimations of the exchange stiff-

ness parameter via the temperature-dependent domain wall

width simulations (see below), showing good agreement up

to very high temperatures. To reconcile different approaches

we have presented normalized values A(T )/A(0) as a function

of normalized temperature T/Tc. A very similar scaling expo-

nent ensures that for normalized values the results are almost

the same for all models.

TABLE II. Results for different Co HCP parameterizations.

Turek et al [24] Kvashnin et al [26] This work

Exchange stiffness

Plane xy (10−11 J/m) 4.38 2.95 3.33

c-axis (10−11 J/m) 4.73 3.02 3.62

Domain wall width T = 0 K

Plane xy(nm) 28.49 23.42 24.88

c-axis (nm) 29.60 23.70 25.96

CSDM

ε 0.186 0.208 0.207

A ∼ m1.81 A ∼ m1.79 A ∼ m1.79

TC(K) 1480 1100 1250

TABLE III. Results for different Co FCC parameterizations.

Pajda et al [25] This work

Exchange stiffness (10−11 J/m) 4.41 3.62

CSDM ε ∼ 0.177 ε ∼ 0.180

A ∼ m1.82 A ∼ m1.82

T c(K) 1550 1300

C. Modeling of the temperature-dependent domain wall width

The domain wall width depends on the anisotropy value.

The ab-initio estimation of this value is difficult and not too
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much reliable. To be more specific, we simply use an exper-

imental realistic value for HCP Co ku = 5.83× 10−24 J/atom,

corresponding to the macroscopic constant K = 0.53 × 106

J/m3 [39]. Note that a constant atomic anisotropy value

gives a temperature-dependent macroscopic anisotropy. There

may be an additional temperature dependence of the on-site

anisotropy which is difficult to estimate. Specifically, the

intrinsic change of anisotropy happens via the temperature-

induced transformation from HCP to FCC structure. However,

we note that a different anisotropy value changes the domain

wall width but is not important for the determination of the

temperature dependence of the exchange stiffness parameter.

The evaluated HCP exchange stiffness parameter and the

anisotropy value ku = 5.83 × 10−24 J/atom via the formula

δDW = π
√

A/K gives the zero-temperature domain wall

widths summarized in Table II. The widths are slightly dif-

ferent parallel and perpendicular to the c-axis direction. For

values from Turek et al [24] they are as large as 29 nm while

the two other sets of parameters give smaller values around

24-25 nm. In any case these values are significantly larger

than the range 10-15 nm cited in classical books [17, 18].

The domain wall width at any temperature can be mod-

eled directly by Langevin dynamics simulations using the

parametrized Heisenberg Hamiltonian (1). For this purpose

we have used two codes for atomistic simulations: our home-

made one as well as the publicly available VAMPIRE code

[32, 38]. We used a system size of up to 80 nm in length and

with a cross-sectional area of 250 nm2 in order to fully contain

the domain wall. The domain wall is constrained in the system

by applying anti-periodic boundary conditions. The resulting

domain wall profile for two temperatures is presented in Fig.1,

based on the parameters of Turek et al [24]. The results clearly

show an increase in the domain wall width with temperature.
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FIG. 1. Simulated domain wall profiles (crosses) for temperatures

T = 3 K and T = 500 K, using the exchange values of Turek et al

[24] showing a reduction in the equilibrium magnetization at elevated

temperature and an increase in the domain wall width from 29.6 nm

to 32.3 nm. The lines shows the fitting to the domain wall profile,

Eq.(7).

To determine the domain wall width from the simulations,

we fit the magnetization profile to

mz(x) = me tanh(π(x− x0)/δDW ) (7)

where me is the equilibrium magnetization. The results are

in excellent agreement with analytical estimations presented

In Table II. For example, using the parameters of Turek et

al [24] we obtain for low temperatures δx
DW = 28.50 nm,

δz
DW = 29.59 nm with our program and δx

DW = 28.50 nm,

δz
DW = 29.57 nm with the VAMPIRE code in a very good

agreement with our direct estimation of δx
DW = 28.49 nm and

δz
DW = 29.60 nm.

Next, the domain wall profile was evaluated at all tem-

peratures up to the Curie temperature, see Fig. 2, showing

a clear increase of the domain wall width with temperature.

The logarithm of the low-temperature part of the domain wall

width, can be fitted to a power law as a function of magnetiza-

tion. This way we obtained low-temperature scaling behavior

δDW ∼ m−0.59 in both x and z directions. The comparison of

this scaling law with the domain wall width extracted from

the direct simulations, shows that it correctly describes the

behavior up to temperatures around 800 K, see Fig. 2. We

stress again that we have not taken into account here the tran-

sition to FCC structure which would result in strong anisotropy

decrease and further increase the domain wall width with tem-

perature.
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FIG. 2. Temperature dependence of the domain wall width (normal-

ized to T = 0 K value. The symbols indicate the data extracted from

direct simulations while the solid line line shows a low temperature

scaling law with magnetization δDW ∼ m−0.59. the dashed line is the

guideline corresponding to the smoothed data.

D. Modeling of the temperature-dependent exchange stiffness

The simulated temperature dependence of the domain wall

width allows the temperature dependence of the exchange

stiffness parameter A to be calculated via the formula δDW =
π
√

A/K. For this purpose we first evaluate the tempera-

ture dependence of the macroscopic anisotropy K using the

constrained Monte Carlo method [40], implemented in the
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VAMPIRE code. The evaluation shows that the macroscopic

anisotropy closely follows the Callen-Callen law K(m) ∼ m3

practically up to 1200 K. Using the temperature dependent

values of the anisotropy and the domain wall width resulting

from our simulations we calculate the exchange stiffness for

the whole temperature range, as shown in Fig. 3. The sim-

ulated data are compared with the CSDM prediction of the

scaling behaviour A(T ) ∼ m1.81 showing a good agreement

up to very high temperatures.
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FIG. 3. Temperature dependence of the exchange stiffness parame-

ter from atomistic simulations and theory. The symbols indicate the

data extracted from direct evaluation of the domain wall profile. The

line plots the scaling relation A(T ) = A(0)m1.8. The upper panel a)

represents the data obtained via the direct estimation in the classical

Heisenberg model while the panel b) represents the re-scaled data

according to Eq. 8.

Finally, we recall that the classical Heisenberg model leads

to a temperature-dependent magnetization m(T ) described by

the Langevin function. This functional form typically is not

in agreement with the experimentally measured one, particu-

larly for HCP Co [44], which is known to be better described

by the Brillouin function with S = 1/2 [43]. Thus the low

and high temperature experimental and our asymptotes for

m(T ) are significantly different. For example, at low tempera-

tures the Langevin function gives a linear dependence on tem-

perature, while the Brillouin function gives the well-known

1−const(T/TC)
3/2 Bloch law. Note that in terms of the mag-

netization (and not temperature) the classical and quantum

cases give similar behavior [45]. To overcome the problem

of the incorrect temperature dependence of the magnetiza-

tion in the simulation and to make our results more useful for

comparison with experiments, we assume that the experimen-

tally measured magnetization obeys the Curie-Bloch relation

m(T ) = (1− (T/TC)
α)β

with β = 0.34 and α = 2.369 for Co

[46]. We then apply temperature rescaling as suggested in

Ref. [46] with the function

T

TC

=
(Tres

TC

)α
(8)

where Tres is a new (experimental) temperature. The resulting

temperature dependence of the stiffness parameter is shown

in Fig. 3(b) taking into account the correct temperature de-

pendence of the magnetization fluctuations.

III. CONCLUSIONS

In conclusion, using a multi-scale approach we have es-

timated the temperature dependent domain wall width and

the exchange stiffness parameter in Co. We have used two

parametrizations of the Heisenberg Hamiltonian available in

the literature as well as our own.

The low temperature values for the exchange stiffness pa-

rameter appear to be frequently larger than the widely used

ones and more consistent with upper estimation by the Bril-

louin scattering method [15] and even with old neutron mea-

surements [16]. The values appear to be very similar for FCC

and HCP Co. The domain wall width for HCP Co at low tem-

peratures was found to be in the interval 24-29 nm. By means

of the theoretical CSDM and direct Langevin dynamics sim-

ulations we have found the magnetization scaling exponents

for both domain wall width (δDW ∼ m−0.6, HCP Co) and the

exchange stiffness (A ∼ m1.8) parameters. Note that in the

fitting of numerical data, the differences between the approxi-

mate scaling exponents 0.6 for the domain wall width and 1.8
for the exchange stiffness and the ones with more digits ob-

tained from the theory are not distinguishable. Consequently,

we may say that these exponents are almost the same for dif-

ferent parametrizations. The exchange stiffness scaling expo-

nent is also the same for FCC and HCP Co. The agreement

between direct estimations from the domain wall width and

the classical spectral density method gives us confidence in

our results.

Our findings are important for both zero and high-

temperature micromagnetics, as they may change the bound-

aries between the occurrence of different reversal modes.

They could lead to markedly different results for simulations

of the spin-Seebeck effect or high temperature domain wall

dynamics. We stress that the multiscale approach, is essen-

tially parameter free since all input parameters to the atom-

istic spin model are determined from ab-initio calculations.

We suggest that, although our estimates of exchange stiffness

are at the upper end of the spectrum of experimental values,
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our model calculations provide an important benchmark for

the fundamental magnetic properties of Co.
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