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Mobile Robot Path Planners with Memory for

Mobility Diversity Algorithms
Daniel Bonilla Licea, Des McLernon, Mounir Ghogho

Abstract—Mobile robots using wireless communications often
experience small-scale fading and due to this the wireless channel
gain can be low. If the channel gain is poor (due to fading)
the robot can move (a small distance) to another location in
order to improve the channel gain and so compensate fading.
Techniques using this principle are called mobility diversity
algorithms (MDAs). MDAs intelligently explore a number of
points in order to find a location with high channel gain while
using little mechanical energy during the exploration. Up until
now the location of these points has been predetermined. In
this paper, we show how we can adapt their positions by using
channel predictors. Our results show that MDAs, which adapt
the location of those points, can in fact outperform (in terms
of the channel gain obtained and mechanical energy used) the
MDAs that use predetermined locations for those points. These
result will significantly improve the performance of the MDAs
and consequently allow MRs to mitigate poor wireless channel
conditions in an energy efficient manner.

Index Terms—Autonomous Agents, Robotics Communications,
Fading

I. INTRODUCTION

A. Motivation and Overview

W
IRELESS communications is nowadays an important

aspect of mobile robotics and we find in this research

area various problems being studied. In [6] the authors de-

sign a control law for a drone to follow a ground robot

while maintaining a minimum data rate in an optical wireless

communications link; in [9] and [10] the authors consider a

team of autonomous robots in which a leader must perform

a certain task while the other robots must optimize their

position in order to maintain a certain quality in the wire-

less end-to-end communications link from the leader to an

access point; in [8] and [11] the authors consider a similar

problem in which which an autonomous robotic network must

attain a desired target position while maintaining a certain

communications quality; then in [7] the authors maximize

the coverage area of a mobile sensor network while ensuring

wireless communications between its members; in [12] the

authors consider a cooperative mobile sensor network and then

design control laws so that at each iteration the sensor nodes

gather a maximum amount of information. Another important

problem in robotics communications (which is not treated in
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[6]-[12]) is the compensation of small-scale fading in wireless

channels using the mobility of the robot [24]-[?].

Small-scale fading (also called multi-path fading) occurs

in RF wireless links when, due to reflection and refraction,

multiple copies of the transmitted signal arrive simultaneously

at the receiver’s antenna each one with different phase and

then create either constructive or destructive interference. In

consequence the strength of the received signal is a random

variable which varies significantly over very small distances

(on the order of one wavelength). If small-scale fading is not

compensated then it can degrade and even impede wireless

communications. Therefore the need of compensating the

small-scale fading. This can be done using classical diversity

multi-antenna techniques [35] which have originally been

devised in the communications community for transceivers

that cannot control their location (e.g., mobile phones) or

alternatively by using antennas with high directionality as in

[13] and [14]. Nevertheless, it has been shown that we can

by controlling the position of the robot we can compensate

small-scale fading [17]-[?]. This class of techniques have

been referred to as mobility diversity algorithms [21], spatial

diversity [15], jittery movements [19] among other names. In

this article we will refer to this class of techniques as mobility

diversity algorithms (MDAs).

To the author’s knowledge the first work in which mobility

was controlled in order to compensate small-scale fading is

[15]. In that paper the authors consider an RF wireless link ex-

periencing small-scale fading and they showed experimentally

that: (i) when the channel gain is bad due to the small-scale

fading individuals can move in the surroundings to alter the

physical configuration of the scatterers and therefore to alter

the small-scale fading in order to try to obtain high channel

gains in the wireless channel; (ii) it is possible to move the

transmitter very small distances in order to find a position

in which the channel gain is high. In other words the authors

showed that we can take advantage of the small-scale fading by

either altering the physical configuration of the surroundings

or by altering the position of the transmitter. In that paper, the

authors provided mobility to a transmitter node by placing it

on a motorized turntable and so the transmitter moves in a

circular path. The channel is then measured at various points

along that circular path and the node stops at a position when

the channel gain is high. This technique was used by the same

authors in [16] to compensate small-scale fading in a wireless

sensor network.

As mentioned in [15] moving the transmitter allows to

improve significantly the channel gain but the drawback (in

the context of non-mobile nodes) is that the mobility capacity
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must be added to the nodes which can result an expensive

solution. Nevertheless note that in the context of robotics

communications the transceivers are mounted on the mobile

robots and thus they already posses this capacity. The main

problem to be solved in MDAs is how to determine the

location of the points to be explored by the robot. This is

a relatively new problem and the amount of literature dealing

with this it is scarce. Now, we present the most important

works that have considered this problem.

In [17] the authors consider the problem of moving the robot

to compensate small-scale fading but without deviating too

much from its initial position. The authors suggest to make the

robot explore a finite number of points and then make it return

to the point that exhibits the best channel gain. Regarding the

physical configurations of the points explored by the robot

the authors propose two configurations: (i) points arranged in

a circular path; (ii) points arranged in an hexagonal lattice

contained into a circle. The size of both configurations are

calculated in order to obtain independent wireless channels.

Then in [18] the authors corroborated experimentally that

indeed we can improve the channel gain of wireless channels

experiencing small-scale fading by controlling the position of

the robot. In that paper the authors propose to move the robot

in a straight, circular, spiral-like and random paths while taking

samples of the wireless channel in order to find a position with

high channel gain.

Other physical configurations for the points that the robot

explore during an MDA execution are proposed. For example,

in [19] the authors propose to compensate small-scale fading

by exploring N points randomly distributed in a small circle

centered around the robot’s initial position and then making

the robot go to the point with highest channel gain. In that

paper the number of points and the size of the circle are

design parameters arbitrarily determined. In [20] the authors

consider a robotic wireless network and they compensate

small-scale fading using and MDA. In their experiments they

made each robot to explore five positions arranged in a circular

uniform array with central element and radius λ/2 and then it

chooses the best position according to a network metric. That

configuration for the explored points provides five statistically

independent wireless channels. Finally in [21] we presented a

technique to calculate the optimum position of the points in

order to maximize the expected value of the channel channel

gain obtained while minimizing the amount of mechanical

energy used in motion during the MDA execution.

In [15]-[21] the authors propose different configurations for

the points explored by the robot in order to compensate for

the small-scale fading but another variant to this problem is

the one considered in [23] and [24]-[27] where the authors

consider that the mobile robot must follow a predefined path

while communicating with a base station through an RF

wireless channel experiencing small-scale fading. In this case,

as opposed to [15]-[21], in order to compensate the small-scale

fading the authors do not focus on determining the location of

the points where the robot transmits but rather on determining

its velocity profile. The solution in those articles is roughly

based on the idea of following the predetermined path but

spending more time at points (in the predefined path) with high

channel gain (due to constructive interference generated by the

small-scale fading) and less time at points (in the predefined

path) with poor channel gain (due to destructive interference

generated by the small-scale fading). Note that this approach

works due to the fact that in the presence of small-scale fading

channel gain varies significantly over small distances.

In this current article we will focus on the variant of

the problem considered in [15]-[21]. Thus the main problem

considered in this article is to optimally determine the location

of the points explored by the robot, in its close vicinity, in

order to compensate for the small-scale fading. Note that in

[15]-[21] the location of the explored points is predetermined.

In other words, the location of the points is fixed at the

beginning of the MDA execution. We will refer to this class

of configurations for the explored points as predetermined

geometries.

An alternative to predetermined geometries are the adaptive

geometries. In this case the location of the points explored

by the robot are determined online according to the measure-

ments and locations of the previously explored points. This

is achieved using path planners with memory. In [22] we

proposed path planners with memory order one and two for the

MDAs and we observed that, given the number N of explored

points, the performance of the MDA in terms of channel gain

obtained and average distance travelled by the robot during

the MDA execution was better when we used the path planner

with memory order two than when we used the path planner

with memory order one. This suggests that, in the context

of MDAs, the higher the memory order of the path planner

the better the performance of the MDA can be. Furthermore,

since predetermined geometries can be interpreted as the

result of memoryless path planners this would also suggest

that MDAs using path planners with memory can outperform

MDAs with predetermined geometries. In order to confirm

this hypothesis and obtain better performance in the MDAs

we need to develop path planners with higher memory order

for the MDAs.

B. Contribution and Organization

In this paper we will develop path planners with arbitrary

memory order for MDAs. We provide a solid theoretical

foundation for these path planners and finally we will show

that MDAs that use path planners with memory can outperform

those that use predetermined geometries. Since the MDAs

considered in [15]-[21] use predetermined geometries this last

result imply that MDAs using the path planners with memory

presented in this paper outperform the MDAs presented in all

those articles. In more detail, the main contributions of this

article are:

1) Showing the advantages of executing MDAs using path

planners with memory respect to executing them using

predetermined geometries. As mentioned above this

result implies that the MDAs using the path planners

with memory proposed in this paper can outperform the

MDAs presented in [15]-[21].

2) Detailed theoretical analysis for the path planner with

memory order one proposed in [22] when only two
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points are explored. This analysis will allow us to

gain insight into the general properties of the wireless

channels obtained by using path planners with memory

and then observe how these properties differ respect to

the case when predetermined geometries are used.

3) General solutions for the path planner with an arbitrary

memory order. In [22] we proposed a path planner

with memory order one and two. In this paper we

first derive in a more rigourous way path planners with

memory order one and two and then using that theory

we develop path planners with arbitrary memory order.

This is motivated by the fact that according to the results

in [22] it would seem that path planners with higher

memory order can perform better and thus by developing

path planners with higher memory order we can validate

this hypothesis.

4) It is widely known in the communications literature

that correlation degrades the performance of all the

classical diversity techniques ( see chapter 9 of [35]).

In other words in all classical diversity techniques their

performance is maximized when all the channels are

independent. But in this article we show that by con-

trolling in smart way channel correlation (with help of

the path planners with memory) we can improve the

performance of MDAs even respect to the case when

all the wireless channels are independent. Thus showing

that, unlike other classical diversity techniques, MDA

is a unique type of diversity which can benefit from

channel correlation.

In section II we state the mathematical model for the MR

and the model for the wireless channel. We also describe in

more detail the mobility diversity algorithm and we show

how the path planner forms part of it. Then in section III

we derive a path planner with memory one and in section IV

we provide a detailed analysis of it for the special case when

only two points are considered; in section V we derive path

planners with memory order two and then in section VI we

show how to derive path planners with an arbitrary memory

order. Simulations of the path planners are given in section

VII and finally we provide conclusions in section VIII.

II. SYSTEM MODEL

A. Wireless Channel Model

We consider that the MR is trying to communicate with

a stationary node (e.g. another MR, a sensor node or a base

station). We assume that there is no line of sight between

the MR and the stationary node, the signal transmitted by the

stationary node to the MR is narrowband, the environment

is stationary (i.e., it does not change with time during the

execution of the MDA) and there is a large number of

scatterers. Consequently, the wireless channel between the MR

and the stationary node is time-invariant (over the duration that

the MR is stationary) and experiences Rayleigh flat-fading.

Thus, the signal received by the MR when located at position

q at time t. is:

y(t,q) = s(p(t))h(q)x(t) + n(t) (1)

where x(t) is the narrowband signal transmitted by the

stationary node, n(t) ∼ CN (0, σ2
n) is1 the additive white

Gaussian noise. Then s(p(t)) and h(p(t)) ∼ CN (0, 1) are the

shadowing (also known as large-scale fading) [34] and small

scale fading terms respectively (both depending on the MR’s

position, p(t)). We will assume Jakes’ model [30] for the small

scale fading and so h(q) can be considered a bidimensional

homogenous and isotropic [31] random and complex scalar

field with h(q) ∼ CN (0, 1). So the following normalized

spatial correlation function holds:

r(p,q) = E [h(p)h∗(q)] = J0 (2π‖p− q‖2/λ) , (2)

where λ is the wavelength used in the RF transmission by the

stationary node and p,q ∈ R
2 are any two points in the space.

For the reader who may not be familiarized with the

communications literature we clarify that the wireless channel

refers to s(p(t))h(q) and the channel gain refers to its

modulus.

B. Mobility Diversity Algorithm

In this article, we consider an omnidirectional MR2. In par-

ticular we select a three-wheel omnidirectional mobile robot3

(TOMR) [28]. A TOMR is a MR with three omnidirectional

wheels [29], each wheel driven by its own motor. The robot is

equipped with an antenna installed on its geometrical center.

The TOMR’s position at time t in the global coordinate frame

is p(t).
For the MDA we consider the following version of the

MDMTA [21], [?] that maximizes the power of the channel

gain obtained. By definition the initial position of the MR

is the stopping point q1. At time instant tk (with k =
1, 2, · · · , N−1) the MR is located at the stopping point qk and

it estimates the wireless channel at this point. Then, it invokes

a path planner to calculate the position of qk+1 and moves

in straight line towards it. This stage is called the searching

phase. Once the MR reaches qN the searching phase finishes.

Then, it invokes a selection rule to determine the ‘optimum

stopping point’ qopt as the explored stopping point with largest

channel gain and so moves to qopt. At time instant tN+1 it

reaches qopt and then the MDA terminates. This last stage is

called the selection phase. Once the MDA terminates the MR

establishes communication with the stationary node.

The area explored by the MR during the execution of the

MDA is small (on the order of a couple of wavelengths λ) and

so we will assume s(p(t)) ≈ s. This means that the shadowing

term in (1) will be the same for all the stopping points. This

assumption on the shadowing term can be justified by the

experimental results in [3].

As opposed to [21], in this paper we will consider that

the location of the stopping points is adaptive rather than

1Note that CN (0, σ2) means a complex normal random variable with zero
mean, variance σ2 and whose real and imaginary parts are independent and
identically distributed.

2An omnidirectional MR is a mobile robot that can move in any direction
at any time.

3Although we restrict our analysis to a TOMR, the technique presented in
this article can be applied to any omnidirectional robot.
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predetermined. The general form of the path planner that we

will use is:

qk+1 = fM(k)

(

QM(k)(k), ĤM(k)(k), k
)

(3)

where M(k) is the memory order of the path plan-

ner, QM(k)(k) = [qk−M(k)+1, qk−M(k)+2, · · · ,qk]T ,

ĤM(k)(k) = [ĥ
(

qk−M(k)+1

)

, ĥ
(

qk−M(k)+2

)

· · · , ĥ (qk)]T ,

ĥ(qk) is the estimation for h(qk) with estimation error

ĥ(qk) − h(qk) ∼ CN (0, σ2
e) and fM(k)(·, ·, ·) is the iterative

path planner function with memory order M(k) (IPPF-M(k))
to be developed and analyzed throughout this article. Note

that the path planner (3) requires an estimate of the small-

scale fading term. Nevertheless the channel estimation process

estimates the product sh(q). Therefore to implement this path

planner the MR needs to have an estimate of s in order to

isolate the shadowing term from the estimate of the product

sh(q). The shadowing term s can be estimated prior to the

MDA execution with a technique like the one stated in [4]

(implemented by this MR or by a robotic network). Hence we

will assume in this article that the MR has an estimate of s.
In addition, since we assume that s is known and that it is

constant for all the stopping points then it has no effect on the

the results and analyses presented in this paper. Therefore, in

order to simplify the notation, we will ignore it in the rest of

the paper.

As mentioned previously, we assume that the MR moves

from stopping point to stopping point in a straight line. In

addition we assume that this is done using an optimal control

law that minimizes the energy needed for motion [32]. So for

the TOMR considered in this paper the energy used in moving

in straight line from qk to qk+1 in a time tk+1 − tk is given

by [21]:

Em (k, k + 1) = K(tk+1 − tk)‖qk+1 − qk‖22 (4)

where K(tk+1−tk) is a function of tk+1−tk and its expression

can be obtained by matching (4) with the energy expression in

[21]. For simplicity, over the rest of the paper we will restrict

tk+1 − tk = T .

During the searching phase, at time instant tk the MR

knows {ĥ(qj)}kj=1 but the IPPF-M(k) has only access to

{ĥ(qj)}kj=k−M(k)+1 because it has memory order M(k) ≤ k.

Now, we define the following M(k)×M(k) correlation matrix

C(k,M(k)) with entries:

Cmn(k,M(k)) = r(qk−M(k)+m,qk−M(k)+n) (5)

and let h̃M(k)(qk+1) be the IPPF-M(k)’s predictor model for

h(qk+1) at time instant tk. It is not difficult to show that:

h̃M(k)(qk+1) =

p(k + 1,M(k) + 1)

[

P−1(k,M(k))ĤM(k)(k)
gk+1

]

where gk+1 ∼ CN (0, 1) and gj and gk are independent if k 6=
j; C(k,M(k)) = P(k,M(k))PT (k,M(k)) with P(k,M(k))
being a lower triangular matrix and p(k+1,M(k)+1) is the

last row of the matrix P(k + 1,M(k) + 1).
For mathematical simplicity we will assume that the esti-

mation error is negligible and so ĥ(qk) = h(qk). Then, in the

simulation section VII we will observe the effect of this error

on the algorithms that have been developed.

III. PATH PLANNERS WITH MEMORY ORDER ONE

In this section we develop the iterative path planner in (3)

with memory order one, i.e., with M(k) = 1. We will refer

to this path planner as IPPF-1 and its general form is:

f1(qk, h(qk), k) = d1(h(qk))v(k) + qk, (6)

v(k) = [cos(ψ(k)) sin(ψ(k))]T (7)

where d1(h(qk)) is a distance function that determines the

distance between the kth and the k+1th stopping points (i.e.,

‖qk+1−qk‖2) and ψ(k) is the direction in which the MR has

to move to arrive at qk+1 departing from qk.

The main objective of an MDA is to obtain high channel

gain while using little mechanical energy. So, one way to op-

timize the IPPF-1 in (6) is to solve the following optimization

problem:

max
d1(h(qk)),ψ(k)

θE [|h(qopt)|]− (1− θ)E

[

N
∑

k=1

Em (k, k + 1)

]

s.t.
qk+1 = d1(h(qk))v(k) + qk k = 1, 2, · · · , N − 1
q1 = 0,
qN+1 = qopt

(8)

The optimization target in (8) is a convex combination of the

expected value of the channel gain at qopt and the negative

of the average mechanical energy used during the MDA

execution. We remind to the reader that qopt is the optimum

stopping point selected by the selection rule, see section II-B.

The design parameter θ ∈ [0, 1] defines the importance of one

term over the other. The motivation for this optimization target

is that we want a path planner that when used as part of the

MDA provides the MR with a high channel gain while using

little mechanical energy. So we can see this as an ‘investment

problem’, where we want to maximize the profit given by

the difference between the income (the optimum channel gain

obtained) and the investment (the energy used in motion).

The first two equality restrictions in (8) refer to the fact that

the stopping points are calculated using the IPPF-1 and that

the first stopping point is at 0. The third equality restriction

is added for notational convenience to simplify the expression

of the term that represents the mechanical energy used during

the whole algorithm execution (i.e., from time instant t1 until

tN+1) in the optimisation target in (8).

This optimization target is a functional that depends on the

functions d1(h(qk)) and ψ(k) and theoretically it could be

solved using dynamic programming [32]. But, in general there

is no an analytical expression for the optimization target in

(8)(specifically for the term E [|h(qopt)|]) so in practice we

must evaluate it by Monte Carlo simulations thus making the

optimization process computationally expensive. This problem

is accentuated by the fact that the optimisation target depends

on two functions rather than a single one.

This can be alleviated by first optimising d1(h(qk)) assum-

ing ψ(k) constant (i.e., ψ(k) = ψ(1)) and then optimize ψ(k)
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using the previously optimized d1(h(qk)). This produces two

optimization problems with smaller search spaces which are

simpler and computationally cheaper to solve than directly

trying to solve (8).

We can further simplify the optimization of d1(h(qk))
by restricting it to be a specific parameterized function and

then optimize its parameters. This is because optimizing a

few parameters of a function is computationally cheaper than

finding the optimal form of the function itself. To achieve this

we first note that for M(k) = 1 the predictor (6) can be written

as:

h̃1(qk+1) = gk+1

√

1− r2(qk,qk+1) + h(qk)r(qk,qk+1),
(9)

with power:

E

[

|h̃1(qk+1)|2
]

= (1 + rk,k+1(|h(qk)|2 − 1)). (10)

For notational simplicity, we will use interchangeably

r(qk,qj) and rk,j in the rest of the paper. From (10) and (2)

we observe that if the MR wants to maximize the power of the

predicted channel at qk+1 it must move near (far) from qk to

experience a high (low) correlation factor rk,k+1 if |h(qk)|2
is high (low). Note that the implementation of this idea results

in iterative path planner with memory order one in [22]. If we

restrict d1(h(qk)) to implement this idea then:

d1 (h (qk)) = 1R+∗(|h (qk) | − η)d+ 1R−(|h (qk) | − η)D,
(11)

where 1R+∗(·) is the indicator function and d < D and η are

the parameters to be optimized according to:

max
d,D,η

θE [|h(qopt)|]− (1− θ)E

[

N
∑

k=1

‖qk+1 − qk‖22

]

s.t.
qk+1 = d1(h(qk))v(k) + qk k = 1, 2, · · · , N − 1,
d1 (h (qk)) = 1R+∗(|h (qk) | − η)d+ 1R−(|h (qk) | − η)D,
q1 = 0, qN+1 = qopt, ψ(k) = ψ(1).

(12)

This optimization problem is obtained by restricting

d1 (h (qk)) to take the form in (11) and absorbing the term

K(T ) of the mechanical energy term (see (4)) into the multi-

plying factor 1− θ. This optimization problem can be solved

numerically using simulated annealing. In general there is no

an analytical expression for the cost function and so it must be

evaluated by simulations but for the particular case of N = 2
stopping points we are able to derive an analytical expression

for the cost function, as shown in subsections IV-B and IV-D.

Note that the cost function in (12) depends indirectly on

the parameters d,D and η. This is because the cost function

depends on the stopping points and these are calculated using

those parameters as it can be seen from the first and second

equality restrictions in (12).

Now, given d1 (h (qk)), the function ψ(k) determines the

distance traveled by the MR during the selection phase4, the

distance among the stopping points and so the correlation

between their wireless channels and consequently it also

4The distance traveled during the searching phase depends only on
d1 (h (qk)) and not on ψ(k).

affects the statistics of h(qopt). So, a poor choice of ψ(k)
can significantly decrease E [h(qopt)|] and/or maximize the

amount of mechanical energy used during the selection phase.

Therefore the necessity of optimizing ψ(k) is clear. Given the

number of stopping points (N ) and the optimized function

d1 (h (qk)) we can optimize ψ(k) by solving the following:

max
ψ

θE [|h(qopt)|]− (1− θ)E
[

‖qopt − qN‖22
]

s.t.
qk+1 = d∗1(h(qk))v(k) + qk k = 1, 2, · · · , N − 1,
q1 = 0,
ψ(k + 1)− ψ(k) = ψ k = 1, 2, · · · , N − 2,

(13)

where d∗1(h(qk)) is the optimized distance function according

to (12). The first term in the cost function is the expected

value of the maximum channel gain obtained by the MR and

the second term is the expected value of the distance traveled

during the selection phase. This is because, as mentioned

previously, only the distance traveled during the selection

phase is affected by ψ(k). In the cost function, the first term

will tend to spread out the stopping points to reduce the

correlation among all the points and to increase E [|h (qopt) |]
but the second term will tend to concentrate the stopping

points around qN to reduce the distance traveled during the

selection phase. Now, the last equality restriction of (13)

reduces the dimension of the search space from N − 2 to 1.

This is done because there is not an analytical expression for

the cost function and so reducing the search space simplifies

significantly the optimization process (although it also reduces

the performance).

So now that we have shown how to optimize d1(h(qk)) and

ψ(k) in (6) we have concluded the design of the IPPF-1 in

(6). In the next section we will analyze some of the properties

of the IPPF-1 presented in this section for the particular case

when N = 2. We will also derive the analytical expression for

the cost function in (12) for the particular case when N = 2.

Finally, it is important to mention that although the IPPF-1

will be executed online its optimization can be done off-line.

IV. IPPF-1 ANALYSIS

In this section we demonstrate some important properties

of the IPPF-1 of the previous section which uses the distance

function (11), we fully characterize it for N = 2 stopping

points and also obtain, for N = 2, an analytical expression

for the cost function in (12).

A. Channel Gain Distributions

When the location of the stopping points is predetermined as

in [21] the channels at all the stopping points are identically

distributed. But, when we use the IPPF-1 to calculate their

location this property does not hold anymore. Now we proceed

to prove this. Consider two stopping points q1 and q2, where

q1 is explored first. So the p.d.f. of |h(q1)| is:

f1(x) = 2x exp
(

−x2
)

. (14)

We use (11) to calculate q2 so the correlation between h(q1)
and h(q2) is r0 = J0

(

2πD
λ

)

if |h(q1)| < η and r1 = J0
(

2πd
λ

)
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if |h(q1)| ≥ η. Since q2 depends on |h(q1)|, and in order to

avoid having a cumbersome notation, we will write in this

section r(|h(q1)|) instead of r(q1,q2(|h(q1)|)), where q1 is

the arbitrary starting point, and so not a function of the channel

gain.

Now, given h(q1) it is easy to demonstrate that

h(q2) is a complex Gaussian random variable with mean

r(|h(q1)|)h(q1) and variance 1−r2(|h(q1)|). Thus, it is easy

to show that the conditional p.d.f. of |h(q2)| given |h(q1)| = x
is a Rician distribution:

f2|1(y|x) = 2y
1−r2(x) exp

(

−y2−r2(x)x2

1−r2(x)

)

I0

(

2r(x)yx
1−r2(x)

)

(15)

where I0(·) is the modified Bessel function of the first kind

and zeroth order. Now, combining (14) and (15) according to

the total probability theorem and using the integrals of [1] we

obtain the p.d.f. of |h(q2)| given by:

f2(y) =

[

1−Q1

( √
2r0y

√

1− r20
,

√
2η

√

1− r20

)

+ Q1

( √
2r1y

√

1− r21
,

√
2η

√

1− r21

)

]

2y exp
(

−y2
)

,

(16)

where Q1(·, ·) is the generalized Marcum Q-function of first

order. Comparing (14) with (16) we clearly observe that

|h(q1)| and |h(q2)| have different distributions. This demon-

strates that when the MR uses (11) to calculate the distance

between stopping points the channels are not in general

identically distributed. This occurs because the correlation

between the channels depends on the realization of |h(q1)|
-see (11).

We have to mention that in [22] a model for the path planner

of memory order one was derived under the assumption that

the channel gain at all the stopping points are identically

distributed. But as we have just demonstrated in this subsection

such a statement is not valid for the when the distance function

(11) is used. Therefore the model derived in [22] to describe

the path planner of memory order one proposed in the same

paper is not totally precise. Nevertheless the main results of

that article are not affected by this.

B. Optimum Channel Gain Properties

In this subsection we derive the c.d.f. of |h(qopt)| which is

the maximum of both channel gains |h(q1)| and |h(q2)|. It is

not difficult to see that5:

Pr (|h(qopt)| < z) =

∫ z

0

∫ z

0

f1,2(x, y)dxdy

=

∫ z

0

∫ z

0

f2|1(y|x)f1(x)dxdy (17)

where f1,2(x, y) is the joint p.d.f. of the channel gains |h(q1)|
and |h(q2)|, f2|1(y|x) already used in (15) is the conditional

p.d.f. of |h(q2)| conditioned on |h(q1)| = x given by (15) and

f1(x) is the marginal p.d.f. of |h(q1)| given by (14). Now, for

5Pr (|h(qopt)| < z) is the probability that |h(qopt)| < z is satisfied.

z < η, doing some simple algebra and using the integrals of

[1], we obtain:

Pr(|h(qopt)| < z) = 1− e−z
2

−e−z2Q1

( √
2z√

1−r2
0

,
√
2r0z√
1−r2

0

)

+ e−z
2

Q1

( √
2r0z√
1−r2

0

,
√
2z√

1−r2
0

)

(18)

and for z ≥ η we have:

Pr(|h(qopt)| < z) = e−z
2

Q1

(

zr1
√
2√

1−r2
1

, z
√
2√

1−r2
1

)

−e−η2Q1

(

ηr1
√
2√

1−r2
1

, z
√
2√

1−r2
1

)

+ e−η
2

Q1

(

r0η
√
2√

1−r2
0

, z
√
2√

1−r2
0

)

−e−z2Q1

(

η
√
2√

1−r2
0

, r0z
√
2√

1−r2
0

)

+ e−z
2

Q1

(

η
√
2√

1−r2
1

, zr1
√
2√

1−r2
1

)

−e−z2Q1

(

z
√
2√

1−r2
1

, zr1
√
2√

1−r2
1

)

+ 1− e−z
2

.

(19)

And its expected value can easily be calculated as:

E[|h(qopt)|] =
∫ ∞

0

(1− P (|h(qopt)| < z)) dz. (20)

This gives us an analytical expression to calculate the first

term in the cost function of (12) for N = 2. Now, when

the location of both stopping points is predetermined (and so

r0 = r1) we have E[|h(qopt)|] ≤
√
π
(

1− 1√
8

)

and the upper

bound is reached when r1,2 = 0. Nevertheless, if we optimize

the parameters of d1(h(qk)) in (11) according to (11) with

θ = 1 then, for N = 2, we have E[|h(qopt)|] ≈ 1.561 >√
π
(

1− 1√
8

)

≈ 1.458. In other words, if we use the distance

function (11) in the IPPF-1 we can surpass the expected value

of the maximum channel gain obtained when both channels

are independent (note that this is a new and very significant

result). Even if for N = 2 the expected value E[|h(qopt)|]
is just slightly larger with respect to the case in which both

channels are independent this is an important result from a

theoretical perspective and we shall see the implications of

this interesting property later in section VII.

Although we have demonstrated this result for the case of

only two stopping points it is intuitive to see that this result

holds for higher number of stopping points. In addition, since

path planners with higher order memory use more information

in the determining the location of the stopping points it is also

intuitive to see that this result can also hold for path planners

with higher memory order.

C. qopt distribution

When the location of the N stopping points is predeter-

mined it is not difficult to show that the p.m.f. of qopt is

Pr (qopt = qi) = 1/N . But when the MR uses the IPPF-

1 with the distance function (11) this property does not hold

anymore. From the joint p.d.f. f1,2(x, y), given by the product

of (15) and (16), we can calculate directly the p.m.f. of qopt
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by simple integration:

Pr(qopt = q1) =
1
2e

−η2Q1

(

η
√
2√

1−r2
1

, ηr1
√
2√

1−r2
1

)

− 1
2e

−η2
(

Q1

(

ηr1
√
2√

1−r2
1

, η
√
2√

1−r2
1

)

+Q1

(

η
√
2√

1−r2
0

, ηr0
√
2√

1−r2
0

))

+ 1
2e

−η2Q1

(

ηr0
√
2√

1−r2
0

, η
√
2√

1−r2
0

)

+ 1
2

(21)

and Pr(qopt = q2) = 1 − P (qopt = q1). It is easy to see

that in general Pr(qopt = q1) 6= Pr(qopt = q2) which

demonstrates that when the MR uses the IPPF-1 with the

distance function (11) different stopping points (in general)

have different probabilities of exhibiting the maximum channel

gain as opposed to the case in which the location of the

stopping points is predetermined.

D. Mechanical Energy

The mechanical energy is proportional to the squared dis-

tance traveled by the MR between stopping points (see (4)).

So, we first derive the statistics of the distance traveled and

then we derive the statistics for the mechanical energy.

The distance l1 traveled during the searching phase can

easily be shown to have the following p.m.f.:

Pr (l1 = d) = Pr (|h(q1)| ≥ η) = exp(−η2)
Pr (l1 = D) = Pr (|h(q1)| < η) = 1− exp(−η2). (22)

Then we derive the p.m.f. for the distance l2 traveled during

the selection phase. For Pr (l2 = D) we have:

Pr (l2 = D) = Pr (qopt = q1, |h(q1)| < η)

= Pr (η > |h(q1)| > |h(q2)|)
= Pr (η > |h(q1)|, η > |h(q2)|)/2

=
1

2
e−η

2

Q1

(

ηr0
√
2

√

1− r20
,

η
√
2

√

1− r20

)

− 1

2
e−η

2

Q1

(

η
√
2

√

1− r20
,
ηr0

√
2

√

1− r20

)

+
1

2
− 1

2
e−η

2

.

(23)

For Pr (l2 = d) we have:

Pr (l2 = d) = Pr (qopt = q1, |h(q1)| ≥ η)

= Pr(qopt = q1)− Pr (l2 = D) (24)

where Pr(qopt = q1) is given by (21). Now, regarding

Pr (l2 = 0) it is easy to see that:

Pr (l2 = 0) = Pr (qopt = q2) (25)

where Pr (qopt = q2) = 1−Pr(qopt = q1). And the p.m.f. of

the normalized mechanical energy (see (4)) Em (1, 3) /K(T )

used during the MDA execution is:

Pr

(

Em (1, 3)

K(T )
= D2

)

= Pr (qopt = q2, |h(q1)| < η)

= Pr (l1 = D)− Pr (l2 = D)

(26)

Pr

(

Em (1, 3)

K(T )
= d2

)

= Pr (qopt = q2, |h(q1)| ≥ η)

= Pr (l1 = d)− Pr (l2 = d)

(27)

Pr

(

Em (1, 3)

K(T )
= 2D2

)

= Pr (l2 = D) (28)

Pr

(

Em (1, 3)

K(T )
= 2d2

)

= Pr (l2 = d) . (29)

Finally we can easily calculate E[Em (1, 3)] from (22), (23),

(24) and the above equations. So now together with (18), (19)

and (20) we have analytical expressions for both terms of the

cost function in (12) for N = 2.

V. PATH PLANNERS WITH MEMORY ORDER TWO

In this section we derive the IPPF-2. Now, as mentioned

during the design of the IPPF-1, the maximization of an opti-

mization target which does not have an analytical expression

is complicated and computationally expensive. So, in order to

derive the optimum IPPF-2 we will first develop an analytical

optimization target with an analytical expression.

This optimization target must have two elements: the first

element must take into account the optimum channel gain

obtained and the second element must consider the mechanical

energy used for obtaining the optimum channel. In general,

due to the complexity of the problem it is not possible to

obtain an analytical expressions either for E[|h(qopt)|] or for

E[Emech (1, N + 1)] but there are alternative choices as we

shall see later.

Now, if we try to optimize f2

(

Q2(k), Ĥ2(k), k
)

off-line

then we need to optimize this function over its whole domain.

On the other hand, if we optimize f2

(

Q2(k), Ĥ2(k), k
)

online at time instant tk then qk, qk−1, h (qk) and h (qk−1)
are all known and therefore we just need to optimize the value

of f2

(

Q2(k), Ĥ2(k), k
)

at a single point rather than finding

the whole optimal function, thus making the optimization

process much simpler. Thus for designing the IPPF-2 we are

going to use the predictor (6) with M(k) = 2. It is easy to see

that in this case (M(k) = 2) the predictor (6) can be written

as:

h̃2(qk+1) = gk+1

√

1− r2
k−1,k+1

+r2
k,k+1

−2rk−1,krk,k+1rk−1,k+1

1−r2
k−1,k

+h(qk)
(

rk,k+1−rk−1,krk−1,k+1

1−r2
k−1,k

)

+h(qk−1)
(

rk−1,k+1−rk−1,krk,k+1

1−r2
k−1,k

)

(30)

where gk+1∼CN (0, 1) and it is not difficult to see that
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h̃2(qk+1) is a complex Gaussian random variable with mean:

µ = h(qk)

(

rk,k+1 − rk−1,krk−1,k+1

1− r2k−1,k

)

+ h(qk−1)

(

rk−1,k+1 − rk−1,krk,k+1

1− r2k−1,k

)

, (31)

and variance:

σ2 = 1−
r2k−1,k+1 + r2k,k+1 − 2rk−1,krk,k+1rk−1,k+1

1− r2k−1,k

. (32)

This implies that |h̃2(qk+1)| is Rician distributed and conse-

quently its first two moments are given by:

E

[

|h̃2(qk+1)|
]

=

(

σ
√
π

2

)

e
−|µ|2

2σ2

·
[(

1 +
|µ|2
σ2

)

I0

( |µ|2
2σ2

)

+

( |µ|2
σ2

)

I1

( |µ|2
2σ2

)]

,

(33)

and:

E

[

|h̃2(qk+1)|2
]

= σ2 + |µ|2. (34)

As mentioned previously, to design the IPPF-2 we need to

construct a cost function that takes into account both the

optimum channel gain obtained and the mechanical energy

used. So, for the first term we can use either (33) or (34)

and for the second term we can use ‖qk+1 − qk‖2, which

corresponds to the normalized mechanical energy that will be

used in moving from qk to qk+1. So, one way to calculate

qk+1 by optimizing the IPPF-2 at Q2(k) and Ĥ2(k) is to

solve:

IPPF-2-A.

max
qk+1

θE
[

|h̃2(qk+1)|n
]

− (1− θ)‖qk+1 − qk‖2
s.t.
(−1)koTk (qk+1 − qk) ≥ 0
ok = [−(yq(k)− yq(k − 1)), xq(k)− xq(k − 1)]

(35)

where xq(k) and yq(k) are the x and y components of the

point qk and n = 1, 2 is a design parameter. The cost function

of this optimization problem is symmetric with respect to the

vector qk−qk−1 meaning that if the cost function is evaluated

at a particular qk+1 and also at its mirrored image respect to

qk−qk−1 then the cost function will produce the same value in

both cases. Thus, we can restrict6 the search space to one semi-

plane7 without eliminating any possible solution. This is done

by the equality restriction. The vector ok defined in the second

restriction (in (35)) is orthogonal to qk − qk−1 and the first

restriction ensures that all the points qk+1 are situated in the

correct semi-plane with respect to qk−qk−1. The term (−1)k

in the second restriction produces a semi-plane “alternation”.

In other words if at the time instant tk the search space is in

the left semi-plane then when invoked again at tk+1 the search

space is in the right semi-plane. This semi-plane alternation

6This restriction makes smaller the searching space and so helps to
accelerate the optimization process.

7Defined with respect to vector qk − qk−1.

avoids the MR following an inwards spiral-like trajectory that

clusters the stopping points, increases the correlation between

the wireless channels and so reduces E[|h(qopt)|] as we will

show in section VII.

Through experimentation we found that if we re-

place the term E

[

|h̃2(p(ti+1))|2
]

in the cost function of

IPPF− 2−A with E

[

|h̃2(qk+1)|2
]

+σ2 = 2σ2+ |µ|2 then

we obtain an IPPF-2 that performs significantly better in terms

of E[|h(qopt)|] as we shall see later in the section VII. This

change produces:

IPPF-2-B.

max
qk+1

θ
(

2σ2 + |µ|2
)

− (1− θ)‖qk+1 − qk‖2
s.t.
(−1)kqTk (qk+1)− qk) ≥ 0
ok = [−(yq(k)− yq(k − 1)), xq(k)− xq(k − 1)].

(36)

Although calculating qk+1 by optimizing online ei-

ther IPPF− 2−A or IPPF− 2−B is computationally

cheaper than doing it offline it still remains expensive for

a MR with low computational capabilities. Thus a different

approach which is computationally cheaper is desirable for

these types of MRs. This approach can be derived from the

superposition of the the distance function (11) which produces

the rule-based path planner with memory order two originally

derived in [22].

Now, for convenience, we re-state in a more practical way

the rule-based path planner with memory order two. We first

assume that q2 is calculated using the IPPF-1 with the distance

function (11) and so either ‖q2−q1‖2 = d or ‖q2−q1‖2 = D.

This rule-based path planner is described by the following set

of rules:

1) If |h(qk)| < η and |h(qk−1)| < η then qk+1 must be

chosen so that rk,k+1 and rk−1,k+1 are small. To achieve

this we need ‖qk+1 − qk‖2 = ‖qk+1 − qk−1‖2 = D.

There will be two solutions: one to the left of the vector

qk − qk−1 and one to its right. We choose the left side

solution if k is odd and the right side solution otherwise.

2) If |h(qk)| ≥ η and |h(qk−1)| < η then qk+1 must be

chosen so that rk,k+1 is large but rk−1,k+1 is small.

To do this we need ‖qk+1 − qk‖2 = d and ‖qk+1 −
qk−1‖2 = D, with d < D. There will be two solutions:

one to the left of the vector qk − qk−1 and one to its

right. We choose the left side solution if k is odd and

the right side solution otherwise.

3) If |h(qk)| ≥ η and |h(qk−1)| ≥ η then qk+1 must be

chosen so that rk,k+1 and rk−1,k+1 are large. To do it we

need ‖qk+1 −qk‖2 = ‖qk+1 −qk−1‖2 = d. There will

be two solutions: one to the left of the vector qk−qk−1

and one to its right. We choose the left side solution if

k is odd and the right side solution otherwise.

4) If |h(qk)| < η and |h(qk−1)| ≥ η then qk+1 must be

chosen so that rk,k+1 is small but rk−1,k+1 is larger.

This is achieved by ‖qk+1 − qk‖2 = D and ‖qk+1 −
qk−1‖2 = D − d.

We have to highlight that if ‖q2−q1‖2 = d or ‖q2−q1‖2 = D
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then this set of four rules is complete. Meaning that if ‖q2 −
q1‖2 = d or ‖q2 − q1‖2 = D we can calculate all the future

stopping points qk with k = 3, 4, ... using only the four set of

rules which compose the rule-based path planner with memory

order two. This is because under the conditions mentioned

above this set of rules consider all the possible scenarios and

so at any time instant tk we will have ‖qk − qk−1‖2 = d or

‖qk − qk−1‖2 = D and consequently we will always be able

to calculate qk+1 using one of the four rules composing this

path planner.

We have already shown how to obtain path planners with

memory order one and two. So, in the next section we show

how to derive path planners with an arbitrary memory order,

IPPF-M(k)

VI. PATH PLANNERS WITH MEMORY ORDER M

In this section to simplify the notation we will make no

difference between M(k) and M . To derive the path planners

with memory order M we first note that according to (6) the

prediction model h̃M (qk+1) is a complex Gaussian random

variable with mean:

µM = pM+1,1:M (k + 1,M + 1)P−1(k,M)ĤM (k), (37)

and variance:

σ2
M = p2M+1,M+1(k + 1,M + 1), (38)

where pM+1,1:M (k + 1,M + 1) is a vector containing the

first M entries of the last row of the matrix P(k+1,M + 1)
and pM+1,M+1 is the last entry of the the last row of the

same matrix P(k+1,M + 1). Since h̃M (qk+1) is a complex

Gaussian random variable then first two moments of its

modulus are:

E

[

|h̃M (qk+1)|
]

=

(

σM
√
π

2

)

e
−|µM |2

2σ2
M ·

[(

1 +
|µM |2
σ2
M

)

I0

( |µM |2
2σ2

M

)

+

( |µM |2
σ2
M

)

I1

( |µM |2
2σ2

M

)]

(39)

E

[

|h̃M (qk+1)|2
]

= σ2
M + |µM |2. (40)

It is interesting to note (compare (39) and (40) with (33) and

(34)) that the first two moments of the channel predictor of

order M (|h̃M (qk+1)|) have the same form as the two first

moments of the channel predictor of order 2 (|h̃2(qk+1)|). The

only differences are that µM 6= µ and σ2
M 6= σ2, see (31), (32),

(37) and (38). Therefore, we can use this similarity to extend

the IPPF-2 to derive the IPPF-M with an arbitrary memory

order M using the same approach. So we can optimize the

IPPF-M at QM (k) and ĤM (k) by solving:

IPPF-M.

max
qk+1

θE
[

|h̃M (qk+1)|n
]

− (1− θ)‖qk+1 − qk‖2
s.t.
2 < M ≤ k, n = 1, 2

(41)

where θ ∈ [0, 1], n and M are design parameters. Regarding

the memory order parameter M we must mention that to

use the IPPF-M with full memory order we must choose

M(k) = k − 1 and so the memory order of the path planner

increases at each iteration. Now, similar to IPPF− 2−A if

this optimization problem is solved online rather than off-line

it becomes easier to solve. But as opposed to IPPF− 2−A

the cost function of IPPF−M(k) has no symmetries and so

we do not reduce the search space in the same way. Another

difference with IPPF− 2−A is that the cost function is

computationally more expensive to evaluate8 but as we shall

see in section VII its performance is significantly better.

VII. SIMULATIONS

In the simulations, we selected the robot parameters to

fit the TOMR used in [2] which describes a real robot. We

consider the estimation error to have a variance σ2
e = 0.05, we

select a wavelength λ = 14.02cm, corresponding to a carrier

frequency of 2.14GHz, and T = 833.775ms.
We will first test the path planners with memory order one

and compare them with memoryless path planners. So we first

consider the following MDAs:

1) MDA1(N): In this MDA the stopping points are prede-

termined. They are uniformly distributed along a straight

line and the distance between adjacent stopping points

is ‖qk − qk+1‖2 ≈ 0.3827λ.

2) MDA2(N): This MDA uses an IPPF-1. The distance

function used is obtained by solving off-line (12) for

N = 2 with θ = 0.99. In addition we select ψ(k) = 0
so the stopping points will lie into a straight line.

3) MDA3(N): Similar to MDA2(N) but the angle ψ is

optimized according to (13) with θ = 0.9 and for each

different number of stopping points variable N .

In addition, for reference purposes we plot the upper bound for

E[|h(qopt)|2] for the case when the MDA uses predetermined

geometries. This upper bound is reached when all the N
wireless channels considered are independent. This can be

confirmed by first taking into account that, from a communica-

tions point of view, MDAs with predetermined geometries are

mathematically equivalent to the selection combining multi-

antenna diversity technique [34] and then taking into account

that the performance of such diversity technique is degraded

by channel correlation [35].

First of all, the most striking aspect that we observe in Fig.

1 is that the MDA’s using the IPPF-1 surpass E[|h(qopt)|2]
for the case when all the channels are independent. In section

IV-B we demonstrated that for N = 2 if we use the distance

function (11) then the channel gain obtained can be higher than

when all the wireless channels are independent. The results in

Fig 1 confirm this result and show that this is actually true for

any number of stopping points.

Since all the MDAs in [15]-[21] use predetermined ge-

ometries then their performance respect to the channel gain

obtained is maximized when all the channels are independent.

In addition, as we have just observed from Fig. 1 the MDA2

8Because the cost function of IPPF-M(k) depends on µM , see (37), and to
calculate this term we first need to calculate the correlation matrix C(k,M)
(see section II-B), then we need to obtain its Cholesky decomposition to obtain
the matrix P(k,M) and finally we need to invert this matrix.
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and MDA3 produce higher values of E[|h(qopt)|2] than when

all the channels are independent. Therefore the MDAs using

our path planner with memory order one outperform all the

MDAs in [15]-[21] respect to E[|h(qopt)|2]. Also note that the

improvement in E[|h(qopt)|2] for the MDAs 2 and 3 respect

to the case in which all channels are independent comes

from the use of the path planner with memory order one that

introduces correlation between the channels only in certain

cases. Thus showing that unlike most diversity techniques in

which correlation degrades their performance [35] MDAs can

improve their performance by controlling the correlation in an

intelligent way as we did in the development of the IPPF-1.

To the authors knowledge this is the first diversity technique

in which correlation has been shown to be beneficial.

From Figs. 1-2 we observe that the MDA2(N) outperforms

in terms of E[|h(qopt)|2] and the mechanical energy used

the MDA1(N) (which uses predetermined stopping points ar-

ranged along a straight line). Now, the MDA3(N) also uses an

IPPF-1 with the same distance function as the MDA2(N) but

instead of moving in a straight line it optimizes the direction

vectors (see Direction−OP) and therefore reduces the dis-

tance traveled during the selection phase. As we can observe

in the figures, in terms of E[|h(qopt)|2] both the MDA2(N)
and the MDA3(N) have practically the same performance but

the MDA3(N) uses significantly less mechanical energy due

to the reduction in the distance traveled during the selection

phase. Now, we observe that for the special case of N = 3
stopping points MDA3(N) produces higher E[|h(qopt)|2] than

MDA2(N). This is because the optimal angle ψ for this

particular case is around 120 degrees and so in some cases

the resultant geometries match the geometries that would be

produced by a path planner with memory order two. Therefore,

in this particular case for N = 3, the IPPF-1 used by the

MDA2(N) acts as an approximation for an IPPF-2 and this is

why MDA3(N) produces better E[|h(qopt)|2] than MDA3(3).
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Figure 1. E[|h(qopt)|2] obtained by the MDAs as a function of the number
(N ) of stopping points.

Now, to evaluate the performance of the path planners with

memory order two we consider the following MDAs:

1) MDA4(N): This MDA uses an IPPF-2. The IPPF-2 is

obtained by solving online IPPF− 2−A with θ =
0.99 and n = 1.
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Figure 2. E[Em (1, N + 1)] for different MDAs as a function of the number
(N ) of stopping points.

2) MDA5(N): Similar to MDA4(N) but with n = 2.

3) MDA6(N): Similar to MDA5(N) but without the ‘semi-

plane alternation’ mechanism mentioned in section V.

4) MDA7(N): This MDA uses an IPPF-2. The IPPF-2 is

obtained by solving online IPPF− 2−B with θ =
0.99.

5) MDA8(N): This MDA uses the rule-based path planner

with memory order two and the values of its parameters

(d, D and η) are the same ones used for the MDA3(N).
Note that this is the path planner with memory order

two that we proposed in [22].

Note that IPPF-2s require two stopping points to start working

so in order to calculate the second stopping point in the MDAs

4-8 we use the IPPF-1 used in the MDA2(N) and to calculate

the remaining stopping points we will use the corresponding

IPPF-2.

We observe first in Figs 3-4 that they can outperform the

MDAs using IPPF-1. The MDA4(N) uses an IPPF-2 that at

time instant tk maximizes E[|h̃(p(tk+1))|]. We observe that

for N = 3 produces approximately the same E[|h(qopt)|2]
as MDA1(3) while using less mechanical energy but then

for N > 3 its performance in terms of E[|h(qopt)|2] is

lower than the simple MDA1(N) which uses a memoryless

path planner. Now, the MDA5(N) uses a similar IPPF but

instead of maximizing at time instant tk E[|h̃(p(tk+1))|]
it maximizes E[|h̃(p(tk+1))|2]. This small difference has a

significant impact on the performance as we can see in Figs.

3-4. For a small number of stopping points it outperforms

the MDAs using the IPPF-1 in terms of E[|h(qopt)|2] as

well as in terms of the mechanical energy used. But then for

N > 6 its performance in terms of E[|h(qopt)|2] becomes

lower than the MDAs using the IPPF-1 and even lower than the

MDA1(N). Now, the only difference between the MDA5(N)
and MDA6(N) is that the MDA6(N) does not use the ‘semi-

plane alternation’ mechanism mentioned in section V. In Fig.

3 we observe that the lack of this ‘semi-plane alternation’

mechanism reduces the performance in terms of E[|h(qopt)|2]
and also makes the MR consume slightly more mechanical

energy, see Fig. 4. This is because the lack of ‘semi-plane alter-

nation’ mechanism generates an inwards spiral-like trajectory



11

that increases the correlation among the channels and therefore

reduces E[|h(qopt)|2]. This shows the benefits of introducing

the ‘semi-plane alternation’ mechanism into the IPPF-2.

As we mentioned, MDA4(N) uses an IPPF-2 that maxi-

mizes the gain of the channel predictor while MDA5(N) uses

an IPPF-2 that maximizes the power of the channel predictor

but MDA7(N) uses an IPPF-2 that maximizes a cost function

slightly differently, see IPPF− 2−B, that does not have a

physical interpretation. Nevertheless we can observe in Fig.

3 that in terms of the channel power it outperforms all the

previously considered MDAs and in terms of the mechanical

energy it uses less energy than the MDAs using the IPPF-

1. This suggests that we might find more cost functions

for IPPF− 2−B that do not necessarily have a physical

interpretation but produce better results.

To finish with the analysis of the IPPF-2s we consider the

MDA8(N) which uses a rule-based path planner. As we can

observe from Figs 3-4 the MDA8(N) has a good performance

in terms of E[|h(qopt)|2] and of the mechanical energy used.

For a higher number of stopping points it produces a slightly

lower E[|h(qopt)|2] than the MDAs using the IPPF-1 but uses

considerably less mechanical energy. Now, the MDA8(N)
(which we proposed in [22]) is only outperformed in both

aspects by the MDA7(N). Nevertheless the MDA8(N) uses

a rule based IPPF-2 which does not require any complex

calculation during the MDA execution while the MDA7(N)
uses an IPPF which requires solving an optimization problem

at each stopping point thus making it computationally more

expensive.
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Figure 3. E[|h(qopt)|2] obtained by the MDAs as a function of the number
(N ) of stopping points.

Finally we consider MDAs using path planners with arbi-

trary memory order:

1) MDA9(N): This MDA uses an IPPF-M(k). The IPPF-

M(k) is obtained by solving online at time instant tk
IPPF−M(k) with θ = 0.99, n = 1 and M(k) =
k − 1.

2) MDA10(N): Similar to MDA10(N) but with n = 2.

As we can observe in Figs. 5-6 the MDA9(N) and

MDA10(N) outperform significantly all the previous MDAs

in terms of E[|h(qopt)|2] as well as in terms of the mechanical

energy used. By comparing these MDAs with those using
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Figure 4. E[Em (1, N + 1)] for different MDAs as a function of the number
(N ) of stopping points.

an IPPF-2 and an IPPF-1 we note that in general an IPPF

with higher memory can have better performance. We also

note that MDA10(N) performs better than MDA9(N). From

the perspective of E[|h(qopt)|2] this means that the higher

is the memory of the path planner the higher the expected

value of the channel power at qopt can be. It is interesting to

note that the IPPFs that maximize the power of the channel

predictor perform better than those which optimize the gain of

the channel predictor –compare MDA9(N) with MDA10(N)
and MDA4(N) with MDA5(N).
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Figure 5. E[|h(qopt)|2] obtained by the MDAs as a function of the number
(N ) of stopping points.

So in summary we have confirmed our initial hypothesis

regarding the fact that as the memory order increases the

performance of MDAs using path planners with memory

improves in terms of channel gain obtained and mechanical

energy used. We have also shown that MDAs using path

planners with memory can outperform MDAs using prede-

termined geometries. In [19] the authors used a very simple

MDA with predetermined geometry to compensate fading in

the context of a robotic wireless network. Therefore MDAs

using path planners with memory can be used to improve

the performance of robotic wireless networks. Consider also

the following application, a mobile robot has to establish and

maintain a wireless link with some static node in a wireless
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Figure 6. E[Em (1, N + 1)] for different MDAs as a function of the number
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network. The channel exhibits small-scale fading and the robot

cannot move far from its initial position. Then the robot can

execute an MDA using a path planner with memory in order

to compensate small-scale fading without moving too much

from its initial position. Assume that after some minutes the

environment changes then the channel gain observed by the

robot may be poor now but it can execute once again the MDA

to compensate the small-scale fading.

VIII. CONCLUSIONS

For mobile robots, we showed that mobility diversity algo-

rithms (MDAs) using path planners with memory can outper-

form (both in terms of mechanical energy used and the channel

gain obtained at the optimum stopping point) the MDAs

using predetermined stopping points. This important result

confirms the superiority of our adaptive path planners. We

also derived path planners for any memory order and showed

that as the memory of the path planner increases so does the

performance of the MDA using it. We also showed that MDAs

can take advantage of channel correlation to improve their

performance unlike all the other diversity techniques. Future

work will extend these results to consider multiples wireless

links simultaneously.
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