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Abstract

Physiological novelties are often studied at macro-evolutionary scales such that their

micro-evolutionary origins remain poorly understood. Here, we test the hypothesis that

key components of a complex trait can evolve in isolation and later be combined by

gene flow. We use C4 photosynthesis as a study system, a derived physiology that

increases plant productivity in warm, dry conditions. The grass Alloteropsis semialata
includes C4 and non-C4 genotypes, with some populations using laterally acquired C4-

adaptive loci, providing an outstanding system to track the spread of novel adaptive

mutations. Using genome data from C4 and non-C4 A. semialata individuals spanning

the species’ range, we infer and date past migrations of different parts of the genome.

Our results show that photosynthetic types initially diverged in isolated populations,

where key C4 components were acquired. However, rare but recurrent subsequent gene

flow allowed the spread of adaptive loci across genetic pools. Indeed, laterally

acquired genes for key C4 functions were rapidly passed between populations with

otherwise distinct genomic backgrounds. Thus, our intraspecific study of C4-related

genomic variation indicates that components of adaptive traits can evolve separately

and later be combined through secondary gene flow, leading to the assembly and opti-

mization of evolutionary innovations.
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Introduction

Over evolutionary time, living organisms have been

able to colonize almost every possible environment,

often via the acquisition of novel adaptations. While

impressive changes can be observed across phyla, adap-

tive evolution by natural selection occurs within popu-

lations (e.g. Geber & Griffen 2003; Morjan & Rieseberg

2004). For most complex adaptive novelties, the

intraspecific dynamics that lead to their progressive

emergence are poorly understood. Indeed, if novel

complex traits gain their function only when multiple

anatomical and/or biochemical components work

together, the order of acquisition of such components

raises intriguing questions (Mel�endez-Hevia et al. 1996;

Lenski et al. 2003). One possibility is that the acquisition

of one key component is sufficient to trigger a novel

trait (e.g. Ourisson & Nakatani 1994), allowing the sub-

sequent selection of novel mutations for the other com-

ponents in the genetic pool that fixed the first

component. The alternative would assume that compo-

nents accumulate independently of each other in iso-

lated populations and are later assembled by secondary

gene flow and subsequent selection to form the complex

trait (Morjan & Rieseberg 2004; Leinonen et al. 2006;

Hufford et al. 2013; Ellstrand 2014; Miller et al. 2014).
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Differentiating these scenarios requires the inference of

the order of mutations for a novel complex trait, as well

as their past spread throughout the history of diver-

gence, migration and secondary gene flow in one or

several related species. Such investigations must rely on

study systems in which variation in an adaptive com-

plex trait, and its underlying genomic basis, can be

traced back through time.

C4 photosynthesis is a physiological state, present in

~3% of plant species (Sage 2016), which results from the

co-ordinated action of multiple enzymes and anatomical

components (Hatch 1987; Christin & Osborne 2014). C4

biochemistry relies on well-characterized enzymes that

also exist in non-C4 plants, but with altered abundance,

cellular and subcellular localization, regulation and

kinetics (Kanai & Edwards 1999). The main effect of C4

photosynthesis is an increase in CO2 concentration at

the place of its fixation by the enzyme Rubisco in the

Calvin–Benson cycle (von Caemmerer & Furbank 2003).

This is advantageous in conditions that restrict CO2

availability, especially in warm and arid environments

under the low-CO2 atmosphere that has prevailed for

the last 30 million years (Sage et al. 2012). C4 plants

consequently dominate most open biomes in tropical

and subtropical regions, where they achieve high

growth rates and large biomass (Griffith et al. 2015;

Atkinson et al. 2016). Despite its apparent complexity,

C4 photosynthesis evolved more than 60 times indepen-

dently over the ancestral C3 type (Sage et al. 2011), and

evolutionary transitions were facilitated by the existence

of anatomical and genetic enablers in some groups of

plants (Christin et al. 2013b, 2015). However, the micro-

evolutionary history of photosynthetic transitions is yet

to be addressed.

Most C4 lineages evolved this photosynthetic system

millions of years ago, so that the initial changes linked

to C4 evolution remain obscured (Christin & Osborne

2014). In a couple of groups, closely related species pre-

sent a spectrum of more or less complete C4 traits,

which is interpreted as the footprint of the gradual evo-

lution of C4 (e.g. McKown et al. 2005; Christin et al.

2011; Fisher et al. 2015). These groups provide powerful

systems to reconstruct the order of changes during the

transition to C4 photosynthesis (e.g. McKown & Dengler

2007; Heckmann et al. 2013; Williams et al. 2013). How-

ever, the presumed lack of gene flow among these

related species impedes testing hypotheses about the

importance of secondary gene flow mixing mutations

that were fixed in isolated populations. So far, the pres-

ence of genotypes with different photosynthetic types

has been reported in only one taxon, the grass Alloterop-

sis semialata.

Alloteropsis semialata includes C3 and C4 individuals

(Ellis 1974), and a recent study further described

individuals with only some of the C4 anatomical and

biochemical components, which allow a weak C4 cycle

(i.e. C3–C4 intermediates; Lundgren et al. 2016). Other

species in this genus, Alloteropsis angusta, Alloteropsis

cimicina, Alloteropsis paniculata and Alloteropsis papillosa,

are C4, but perform the C4 cycle using different

enzymes and leaf tissues than A. semialata, which points

to independent realizations of the C4 phenotype (Christin

et al. 2010). Analyses of genes for key C4 enzymes in a

handful of accessions have revealed that some popula-

tions of A. semialata carry C4 genes that have been later-

ally acquired from distant C4 relatives (Christin et al.

2012). The laterally acquired genes include one for

phosphoenolpyruvate carboxykinase (pck) and three dif-

ferent copies for phosphoenolpyruvate carboxylase

(ppc). These laterally acquired genes are integrated into

the C4 cycle of some extant accessions of Alloteropsis

(Christin et al. 2012, 2013a), but genes for other C4

enzymes have been transmitted following the species

tree (vertically inherited), and gained their C4 function

via novel mutations (Christin et al. 2013a). Some C4

Alloteropsis populations presumably still use the verti-

cally inherited ppc and pck homologs for their C4 cycles.

However, the laterally acquired ppc and pck copies

spent millions of years in other C4 species, where they

acquired adaptive mutations that likely increased their

fit for the C4 function before their transfer (Christin

et al. 2012). The potential adaptive value of the laterally

acquired genes, as well as their restriction to some C4

populations, provides a tractable system to elucidate

gene movements that led to the emergence and

strengthening of the complex C4 adaptive trait. How-

ever, the geographical distributions and frequencies of

these laterally acquired genes are still poorly under-

stood, and the genome history of A. semialata remains

largely unexplored.

In this study, we obtain low-coverage whole-genome

sequencing data from A. semialata individuals spread

across the species’ geographical range and differing in

photosynthetic type. We use the data to first infer the

history of isolation and secondary contact, and then to

track the acquisition and spread of the laterally

acquired genes. This biogeographic framework allows

us to test whether the C4 complex trait was assembled

via the sequential fixation of novel mutations within

each isolated gene pool or via gene flow combining

mutations that had been fixed in distinct gene pools

(Fig. 1). In the first scenario, the history of C4-adaptive

mutations, represented by the laterally acquired genes,

would correspond to the sequence of migration and iso-

lation of populations and largely match the history of

the rest of the genome (Fig. 1A). In the second scenario,

the history of C4-adaptive mutations would differ from

that of the rest of the genome, their selection-driven
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spread across genetic lineages resulting in more recent

coalescence times and gene topologies that differ from

the species topology (Fig. 1B). This first intraspecific

spatial genomic analysis of key components of the C4

complex trait opens new avenues to understand the

micro-evolutionary processes that led to macro-

evolutionary innovations.

Material and methods

Sampling, sequencing and genome sizing

A low-coverage whole-genome sequencing approach

(genome skimming) was used to reconstruct the gen-

ome history of Alloteropsis. This approach has become

increasingly attractive for inferring population parame-

ters (e.g. Buerkle & Gompert 2013; Fumagalli et al.

2013) and for studying complex traits (Li et al. 2011). It

also allows de novo assembly of high copy number

regions of the genome, such as organelle genomes (Bes-

nard et al. 2014; Dodsworth 2015), and can be applied

to samples of limited quality and quantity, such as

herbarium or museum collections (Besnard et al. 2014).

Genome-skimming data for eleven Alloteropsis semialata

individuals, and one of each of the congeneric Alloterop-

sis cimicina and Alloteropsis angusta, were retrieved from

a previous study that used them to assemble chloro-

plast genomes (Table S1, Supporting information;

Lundgren et al. 2015, 2016). The photosynthetic type of

these samples has been determined previously, and

they encompass non-C4 individuals with and without a

weak C4 cycle, as well as multiple C4 accessions

(Table S1, Supporting information; Lundgren et al. 2015,

2016). An additional eight Alloteropsis accessions were

sampled here to increase the resolution of genome bio-

geography for the group (Table S1, Supporting informa-

tion). These include one accession from each of the

congeneric species Alloteropsis paniculata and A. angusta,

and six additional A. semialata individuals. These sam-

ples were selected to increase the plastid and photosyn-

thetic diversity, with a special focus on the Zambezian

biogeographic region (spanning Tanzania, Zambia and

the Democratic Republic of Congo – DRC; Linder et al.

2012; Table S1, Supporting information), where the

majority of the chloroplast and photosynthetic diversi-

ties are found (Lundgren et al. 2015, 2016). Three of the

newly sequenced A. semialata accessions (‘DRC3’,

‘TAN3’ and ‘KEN1’) were previously characterized with

stable carbon isotopes (Lundgren et al. 2015), which can

distinguish plants grown using mainly C4 photosynthe-

sis from those that acquired a significant portion of

their carbon via the ancestral C3 cycle, whether or not it

is complemented by a weak C4 cycle (Smith & Brown

1973; Cerling et al. 1997). One of these three accessions

(‘TAN3’) is isotopically intermediate, indicating that a

strong C4 cycle occurs, but that some atmospheric car-

bon is still fixed directly by the C3 cycle (Peisker 1986;

Monson et al. 1988). For four of the new samples, car-

bon isotopes were measured on a leaf fragment as pre-

viously described (Lundgren et al. 2015), which

revealed that all of them had carbon isotope values

within the C4 range (Table S1, Supporting information).

DNA was extracted, quality checked and sequenced

as described in Lundgren et al. (2015), except that the

DNA of these accessions was not sonicated prior to the

library preparation due to the high degree of DNA

degradation in these herbarium specimens. Each sample

was individually barcoded and pooled with 23 other

samples (from the same or unrelated projects) before

paired-end sequencing (100–150 bp) on one Illumina

lane (HiSeq-2500 or HiSeq-3000) at the Genopole plat-

form of Toulouse or at the Genoscope platform of Evry

(only A. paniculata; Table S1, Supporting information).

The final data set consisted of sequence data for a total

of 21 individuals, sequenced in six different runs

(Table S1, Supporting information).

The genome size was estimated for accessions for

which live material was available by flow cytometry fol-

lowing the one-step protocol of Dole�zel et al. (2007)

with minor modifications as described in Clark et al.

(2016). We selected Oryza sativa IR36 (2C = 1 pg; Ben-

nett & Smith 1991) and the Ebihara buffer (Ebihara et al.

(A)

(B)

Fig. 1 Competing scenarios for the assembly of a complex trait.

(A) The trait is assembled by sequential fixation of mutations

within each genetic pool. (B) Mutations that were fixed in iso-

lation are later assembled via secondary gene flow. The species

tree is outlined by thick grey branches, and coloured branches

indicate novel mutations on individual genes. Individual gene

trees are drawn on the right. In scenario A, the histories of

adaptive mutations correspond to the history of the rest of the

genome and all gene trees are concordant, while in scenario B,

the histories of the adaptive mutations differ from that of the

rest of the genome, with gene trees that do not match the spe-

cies tree.
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2005) as the most appropriate internal standard and

nuclei isolation buffer for all but one accessions

(Table S1, Supporting information). For the ‘RSA3’

accession, whose C-value was estimated to be about

three time larger than other accessions, we used the

Pisum sativum ‘Ctirad’ standard (2C = 9.09 pg; Dole�zel

et al. 1992) and the GPB buffer (Loureiro et al. 2007),

supplemented with 3% of PVP.

Assembly and analyses of chloroplast genomes

Complete chloroplast genomes were de novo assembled

for the newly sequenced individuals using the genome

walking method described in Lundgren et al. (2015).

The newly generated chloroplast genomes were manu-

ally aligned with those already available, and a time-

calibrated phylogenetic tree was inferred with BEAST v.

1.5.4 (Drummond & Rambaut 2007), as described in

Lundgren et al. (2015). Monophyly of the outgroup

(A. cimicina + A. paniculata) and the ingroup (A. an-

gusta + A. semialata) was enforced to root the phy-

logeny, which is consistent with all previous analyses

(Ibrahim et al. 2009; Christin et al. 2012; GPWGII 2012;

Lundgren et al. 2015). The root of the tree was fixed to

11 Ma (as found by Lundgren et al. 2015), which was

achieved with a normal distribution of mean of 11 and

standard deviation of 0.0001. Two different analyses

were run for 20 000 000 generations, sampling a tree

every 1000 generations. After checking the convergence

of the runs in TRACER v. 1.5.0 (Drummond & Rambaut

2007), the burn-in period was set to 2 000 000 genera-

tions, and the maximum credibility tree was identified

from the trees sampled after the burn-in period in both

analyses, mapping median ages on nodes.

Genotyping across the nuclear genome

A reference genome for Alloteropsis is currently lacking.

However, the grass Setaria italica (comment name: Fox-

tail millet) belongs to the same tribe as Alloteropsis (Pan-

iceae) and has a well-assembled reference genome

(JGIV2.0.27; Bennetzen et al. 2012). Setaria and Alloteropsis

diverged approximately 20 Ma (Christin et al. 2012), a

time that is sufficient for a complete turnover of non-

coding sequences (Ammiraju et al. 2008). However,

reads corresponding to coding regions across the gen-

ome can still be reliably mapped (see Results).

Raw sequencing reads were quality filtered using the

NGS QC TOOLKIT v. 2.3.3 (Patel & Jain 2012). Reads with

more than 20% of the bases having a quality score

below Q20 and reads with ambiguous bases were

removed. Furthermore, low-quality bases (<Q20) were

trimmed from the 3’ end of the remaining reads. The

filtered reads were mapped to the Setaria reference

genome, using BOWTIE2 v. 2.2.3 (Langmead et al. 2009).

Raw alignment files were cleaned using SAMTOOLS v.1.2

(Li et al. 2009) and PICARD TOOLS v.1.92 (http://pica

rd.sourceforge.net/). PCR duplicates were removed,

and only uniquely aligned reads in proper pairs were

kept. This will remove most of the reads mapped to

repetitive sequences, such as transposable elements,

while retaining reads mapping to sequences that have

been duplicated after the split of Alloteropsis and Setaria.

The cleaned alignments were used to call single nucleo-

tide polymorphic variants (SNPs) with SAMTOOLS v.

0.1.19 using the mpileup function followed by the vcfu-

til.pl script with default setting supplied with the pro-

gram. The South African C4 individual ‘RSA3’ was

excluded during SNP calling to avoid any bias that

might result from the presence of more than two alleles

in this polyploid (see Lundgren et al. 2015 and Table S1,

Supporting information). Genotypes of each accession,

including ‘RSA3’, at all called SNP positions were

extracted from the alignments using the mpileup func-

tion in SAMTOOLS v.0.1.19, supplying the program with

the positions of the called SNPs, and in-house devel-

oped scripts for further processing (Appendix S1, Sup-

porting information). The low-coverage data caused

genotype probabilities to be low, which precluded effec-

tive filtering based on these probabilities. Therefore,

fixed genotype calls were used. To evaluate the propor-

tion of SNPs corresponding to exon sequences, annota-

tions were extracted for the 25 727 coding regions of

the Setaria genome with homologs in maize and rice

genomes (from now on referred to as SZR homologs).

The positions of the raw SNPs were intersected with

the SZR homolog annotations in BEDTOOLS v.2.19.1 using

default settings (Quinlan & Hall 2010).

SNPs with coverage above 2.5 times the genomewide

coverage (Table S2, Supporting information) were con-

verted to unknown genotype calls. Furthermore, geno-

types with more than two allele calls were also

converted to missing data, and finally, positions with

more than 50% missing data/unknown genotypes were

discarded. The remaining 170 629 positions were used

to infer a phylogenetic tree, using PhyML (Guindon

et al. 2010) and a GTR substitution model (the best fit

model as determined by hierarchical likelihood ratio

tests), after coding heterozygous sites with IUPAC

codes. Support was evaluated with 100-bootstrap pseu-

doreplicates. The low-coverage data likely cause some

alleles to be missed, leading to an overestimate of

homozygosity. However, no bias is expected in the

missing allele, so that the low coverage is unlikely to

lead to spurious groupings.

To test for a bias due to uneven coverage across sam-

ples (Table S2, Supporting information), we repeated

the phylogenetic analysis on a resampled alignment,

© 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
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where all samples have the same number of bases

mapped to the Setaria genome. Reads were randomly

sampled without replacement from the filtered align-

ment files until the number of bases across the sampled

reads equalled that of the sample with the lowest cover-

age (Appendix S2, Supporting information). These

reanalyses were first conducted with all samples, which

resulted in a low number of positions constrained to

the samples with the lowest coverage. While analyses

on the resampled data set were consistent with the

whole-data set analyses, the limited number of charac-

ters resulted in reduced support. We consequently

repeated the resampling allowing for the full alignment

of the two A. semialata samples with the lowest cover-

age and alignment success (‘AUS1’ and ‘RSA2’) to be

retained at a slightly lower coverage than the rest of the

samples. SNPs were called as outlined above, which

allowed for the retention of 22 821 SNPs.

Genetic structure and test for secondary gene flow

Preliminary cluster analyses with a focus on A. semialata

showed that a more stringent filtering of the SNPs

improved convergence of the analyses. Only positions

with <10% missing data (2607 SNPs) within this species

were consequently kept for analyses of its population

structure, using the STRUCTURE software (Pritchard et al.

2000). Ten independent analyses were run for each

number of population components (K) from one to ten,

under the admixture model. The adequate run length

and burn-in periods were determined through prelimi-

nary analyses, which indicated that a burn-in period of

300 000 generations followed by 200 000 iterations pro-

vided stable estimates for all K values. The optimal K

values were determined using the method of Evanno

et al. (2005), as implemented in STRUCTUREHARVESTER (Earl

& vonHoldt 2012). The results of the ten runs for each

K were summarized using CLUMPP v. 1.1.2 (Jakobsson &

Rosenberg 2007) and graphically displayed using DIS-

TRUCT v. 1.1 (Rosenberg 2004). These analyses were

repeated without the polyploid individual ‘RSA3’,

which led to the same cluster assignments, showing

that differences in ploidy levels do not affect the con-

clusions. Finally, the cluster analyses were repeated on

alignments based on the reads subsampled to similar

coverage in all sampled, allowing for 25% missing data

per site (retention of 681 SNPs).

Different relationships among fractions of the nuclear

genome can result from reticulated evolution or incom-

plete lineage sorting (Green et al. 2010; Durand et al.

2011). To distinguish these two possibilities, the ABBA–
BABA method, which relies on the D statistic to test for

asymmetry in the frequencies of incongruent phyloge-

netic groupings (Green et al. 2010; Durand et al. 2011),

was used to test for secondary gene flow on a genome-

wide level in cases suggested by phylogenetic and clus-

tering analyses (see Results). The low coverage likely

leads to an overestimate of homozygous sites, but no

bias is expected towards ABBA or BABA sites, leaving

estimations of distorted gene flow unaffected. For each

test, a four-taxon phylogeny was selected, consisting of

an outgroup and three tips among which secondary

gene flow is suspected. Reads mapping to the 170 629

SNPs were recovered from the filtered alignment files

using BEDTOOLS v.2.19.1 by intersecting the alignment

files with positional information of the SNPs using

default settings. The recovered reads were evaluated

using the -doAbbababa option in the ANGSD program

version 0.911 (Korneliussen et al. 2014). A jackknifed

estimate of the D statistic and the corresponding Z-

value were obtained by the jackknif.R script supplied

with the ANGSD program.

Assembly and analyses of selected genes

Two different groups of closely related genes were

selected for detailed analyses. The genes selected were

two C4-related protein-coding genes, phosphoenolpyru-

vate carboxylase (ppc genes) and phosphoenolpyruvate

carboxykinase (pck genes), that include some copies

acquired by Alloteropsis from distantly related species

via lateral gene transfer, while other copies were verti-

cally inherited following the species tree (Christin et al.

2012). Previous conclusions regarding the distribution

of these genes among accessions of Alloteropsis were

based on PCR and Sanger sequencing, which can be

biased due to the possibility of primer binding mis-

matches. The presence/absence of the laterally acquired

ppc and pck genes and their vertically inherited homo-

logs across the accessions were therefore re-evaluated

here using the genome-skimming data, as well as new

PCR and Sanger sequencing with primer verified

against the new genomic data. Using molecular dating,

the divergence times of the laterally acquired genes

were compared to those of vertically inherited homo-

logs belonging to the same set of accessions.

Reads were first mapped on gene segments of the ppc

and pck genes from different accessions of Alloteropsis

(grass co-orthogols ppc-1P3 and pck-1P1; Christin et al.

2012, 2015). These segments have been previously

sequenced and analysed in a number of other C3 and

C4 grasses (Christin et al. 2012). The availability of this

rich reference data set allows mapping to closely related

accessions of Alloteropsis, which improves the alignment

success compared to the whole-genome approach

described above, and increases the confidence in the

assignment. The gene segments cover exons 8–10 for

ppc and exons 3–10 for pck, including introns, and

© 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
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represent approximately 46% (1492 bp) and 63%

(1487 bp), respectively, of the full-length coding

sequences. In-house Perl scripts (Appendix S3, Support-

ing information) were used to unambiguously assign

reads to genes of these data sets, following the phyloge-

netic annotation method of Christin et al. (2015). In

summary, this approach consists of: (i) building a refer-

ence data set of sequences with known identity for clo-

sely related gene lineages, (ii) using blast searches to

identify all sequences homologous to any of these refer-

ence sequences in the query data set (the filtered reads

in this case), (iii) independently aligning each homolo-

gous sequence to the reference data set and inferring a

phylogenetic tree and (iv) establishing the identity of

each of the query sequences based on the phylogenetic

group in which it is nested. Assignment of reads to the

gene lineages was verified by visual inspection of the

phylogenetic trees and the alignments. Subsequently, all

reads assigned to each of the vertically inherited or lat-

erally acquired gene lineages were retrieved, and

aligned to PCR-isolated sequences (see Results) using

GENEIOUS v. 6.8 (Kearse et al. 2012). The reads were then

assembled into gene models, comprising introns and

exons, for the studied segments. Multiple gene models

were assembled for a single individual when the exis-

tence of distinct alleles was supported by at least two

different polymorphic sites, each with at least two inde-

pendent reads. Paired-end reads were then merged into

contigs if they shared the polymorphisms. Reads that

did not overlap the polymorphic sites were merged

with all alleles, replacing additional polymorphisms

with IUPAC ambiguity codes.

To check whether partial pseudogenes that do not

include the studied segments exist in some genomes,

the presence of laterally acquired ppc genes was also

tested using only coding sequences corresponding to

exons 1–7, which were retrieved from a transcriptome

study of A. semialata (Christin et al. 2013a). This tran-

scriptome was generated for a South African C4 poly-

ploid with two laterally acquired ppc genes, but the

vertically inherited versions of ppc and pck were not

available in this transcriptome, preventing phylogenetic

analyses. Blastn searches were used to identify reads

mapping to one of the two laterally acquired ppc genes

on at least 50 bp with at least 99% of identity. Finally,

the presence/absence of the different pck and ppc copies

was further confirmed via PCR and Sanger sequencing

using primers specific to the different gene copies

(Table S3, Supporting information; Christin et al. 2012).

PCR, purification and sequencing were conducted as

described in Lundgren et al. (2015), except for changes

of the annealing temperature and/or extension time

(Table S3, Supporting information). These PCR were

conducted only on samples for which good quality

DNA was available. Indeed, DNA isolated from herbar-

ium samples is highly degraded, precluding reliable

PCR screening.

To verify the gene models assembled from genome

skimming for ppc and pck, the PCR amplified and San-

ger sequenced fragments of the vertically inherited and

laterally acquired genes were added to the genes

assembled from short-read data. The data sets were

aligned using MUSCLE v3.8.31 (Edgar 2004) with default

parameters, and the alignments were manually refined.

Maximum-likelihood phylogenetic trees were inferred

using PhyML, under a GTR+G model, and with 100-

bootstrap pseudoreplicates. Molecular dating was per-

formed on the same alignments using BEAST as described

above for chloroplast markers, but with a coalescent

prior. The Andropogoneae/Paspaleae group (repre-

sented by Sorghum, Paspalum and one of the laterally

acquired ppc) was selected as the outgroup, and the

root of the tree was calibrated with a normal distribu-

tion with a mean of 31 Ma, and a standard deviation of

0.0001, as previously estimated for this node (Christin

et al. 2014).

Results

Read alignment and SNP calling

The number of filtered paired-end reads varied across

samples, for a genomewide coverage ranging from 0.70

to 4.52 (Table S2, Supporting information). The propor-

tion of filtered paired-end reads that aligned to the

Setaria genome varied between 4.04% and 10.23%, and

between 1.22% and 2.94% aligned to the coding regions

(Table S2, Supporting information). While the mapping

was performed across the whole genome of Setaria (ex-

cluding the organelle genomes), divergence of noncod-

ing sequences means that high mapping success is

expected to be concentrated mostly onto coding

sequences. About 9% of the Setaria genome corresponds

to exons (Bennetzen et al. 2012). Assuming that the total

length of exons is similar in the two species, the larger

genome of Alloteropsis means that this proportion

should be about 4.5%, so that approximately half of the

reads corresponding to nuclear exons were mapped.

The rest of the reads that belong to exons probably cor-

respond to gene sections that are too divergent between

the two species to successfully map.

Only uniquely aligned reads were used to call SNPs,

which inherently excludes common repetitive regions

such as transposons. However, 1111 raw SNPs had a

higher than expected coverage (>59) across at least 50%

of the samples. The positions of 91% (1007) of these

high-coverage SNPs fell outside of the SZR homolog

regions, and the rest were concentrated to only 14 SZR

© 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
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homologs. We therefore hypothesize that these high-

coverage SNPs stem from genetic regions (mostly non-

coding) that have been duplicated after the split

between Alloteropsis and Setaria and they were subse-

quently removed from the analyses.

A total of 170 629 SNPs with <50% missing data

across the 21 accessions were finally selected for down-

stream analyses. These sites are spread across all chro-

mosomes (Fig. S1, Supporting information) and 96% of

them fall within one of 9948 SZR homologs. The 2607

SNPs used for the cluster analysis (<90% missing data

across the Alloteropsis semialata samples) were equally

well spread across the genome (Fig. S1, Supporting

information) and 97% fall within one of 848 SZR homo-

logs. Most of the variation in missing data across sam-

ples (Table S2, Supporting information) is likely

explained by differences in coverage, although the pres-

ence/absence of genes within each accession might also

influence the individual mapping success.

Overall, our analyses show that our pipeline, despite

a low overall coverage and low alignment success due

to the large divergence time between Alloteropsis and

Setaria, captures variation in almost 10 000 genes spread

across the genomes of grasses.

Phylogenetic trees

The plastid phylogeny identified two C4 individuals

from DRC with haplotypes that form a new C4 plastid

lineage based on divergence times (i.e. lineage G, sister

to lineage F; Figs 2 and S2, Supporting information).

Relationships based on markers sampled across the

nuclear genome confirm the monophyly of A. semialata

and its sister-group relationship to Alloteropsis angusta,

but present multiple incongruences with the chloroplast

tree within A. semialata (Figs 2 and S3, Supporting

information). In this genomewide tree, the first diver-

gence leads to a group composed of the non-C4 acces-

sions of A. semialata from South Africa without any

known C4 cycle (Clade I; Fig 2 and S3, Supporting

information), and the second divergence leads to a

group comprising the non-C4 accessions from the Zam-

bezian region that use a weak C4 cycle (Clade II; Fig 2

and S3, Supporting information; C3-C4 intermediates

sensu Lundgren et al. 2016). The isotopically intermedi-

ate accession ‘TAN3’ is then sister to all C4 accessions

(Figs 2 and S3, Supporting information). The two C4

accessions bearing the plastid lineage G form a para-

phyletic clade, while the other C4 accessions from the

Zambezian region (‘TAN4’, ‘DRC3’ and ‘DRC4’) are

grouped in a strongly supported clade (Clade III; Figs 2

and S3, Supporting information). The South African

polyploid individual ‘RSA3’ is sister to the C4 individu-

als sampled outside of the Zambezian region, and the

rest of the C4 accessions form the strongly supported

clade IV, with two subclades corresponding to Africa

plus Madagascar and Asia plus Australia (Figs 2 and

S3, Supporting information). The nuclear phylogeny

based on the resampled data set is mostly identical to

the one based on the whole data set (Figs S3 and S4,

Supporting information).

Genetic structure and secondary gene flow within
Alloteropsis semialata

Based on the whole-genome clustering analysis, four

clusters explain the data set best, and adding groups

does not improve the likelihood (Fig. 3B). However, the

method of Evanno et al. (2005) indicates that the maxi-

mum fit improvement is at two clusters, with four clus-

ters representing the second maximum fit improvement

(Fig. 3C). With four clusters, the main clades from the

genome wide phylogeny are recovered (Figs 2 and 3A).

This genetic structure matches the photosynthetic types

rather than the geographic origin, with the non-C4

clades I and II and the C4 clades III and IV each form-

ing distinct homogenous groups (Fig. 3A). The three

Zambezian individuals that formed a paraphyletic clade

in the nuclear phylogeny (‘TAN3’, ‘DRC1’ and ‘DRC2’)

are partially assigned to two Zambezian groups, the

non-C4 clade II and the C4 clade III (Figs 2 and 3A).

Finally, the polyploid individual from South Africa,

‘RSA3’, is partially assigned to the two C4 clades III and

IV (Fig. 3A). The cluster results based on the resampled

data set are less stable due to a lower number of sites,

but the assignments are similar (Figs 3 and S5, Support-

ing information).

Heterozygosity was estimated for each sample based

on the 22 821 SNPs from the resampled data set with

similar coverage across samples. While these estimates

are based only on sites variable within Alloteropsis and

should consequently not be interpreted as genomewide

heterozygosity, it is possible to compare the estimates

between samples. The individuals assigned to multiple

clusters had the highest percentage of heterozygous

SNPs (Fig. S6, Supporting information), which confirms

their genetic diversity.

Together, our intraspecific genetic analyses reveal the

existence of distinct gene pools despite overlapping dis-

tributions (Figs 3A and 4), but also suggest that genetic

exchanges have happened among groups. The incon-

gruences between the phylogenetic structures of the

chloroplast and nuclear genomes, together with the

assignment of some individuals to multiple genetic

clusters, suggest that the three Zambezian individuals

‘TAN3’, ‘DRC2’ and ‘DRC1’ have ancestors from dis-

tinct genetic groups, in this case the nuclear clades II

and III. ABBA–BABA tests were therefore conducted to

© 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
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test this hypothesis, using A. angusta (individual Ang2)

as the outgroup. The individual ‘TAN4’ was selected as

the representative of clade III because it is geographi-

cally more distant and distinct on all genetic markers

(Figs 4, S2 and S3, Supporting information). Significant

indications (P < 0.05 after correction for multiple test-

ing) of gene flow from the non-C4 clade II (‘TAN2’ and

‘TAN1’) into the populations assigned to multiple clus-

ters (‘TAN3’, ‘DRC2’ and ‘DRC1’) were found (Table 1).

In contrast, there is no evidence of a significant sec-

ondary contribution of clade II into individuals of clade

III (‘DRC3’ or ‘DRC4’; Table 1). However, in one case, a

slight excess of BABA sited was detected, which was

not significant after correction for multiple testing

(Table 1). This would suggest some genetic contribution

from one non-C4 population of clade II (‘TAN1’) into

the C4 population represented by ‘TAN4’ (Table 1).

Within clade IV, the C4 individual from Madagascar

(‘MAD1’) was grouped with Asian C4 accessions on plas-

tid genomes but grouped with the African C4 accessions

based on markers from across the nuclear genome (Figs

S2 and S3, Supporting information). An ABBA–BABA

test was conducted to test the hypothesis of secondary

gene flow after the split of the African and Asian C4

accessions. The accession ‘TAN4’ was used as the out-

group, being sister to all accessions from clade IV. The

Taiwan accession (‘TPE1’) was selected as the Asian sam-

ple, while the Burkinabe accession (‘BUR1’) represented

Africa. Overall, more ABBA than BABA sites were

detected (Table 1), indicating that the Asian accession

was closer to the accession from Madagascar (‘MAD1’)

than to the accession from mainland Africa, but the D

statistic for this test was not significant after correcting

for multiple testing (Table 1). Plastid markers, which rep-

resent seed dispersal, group the Madagascan accessions

with Asian individuals. Therefore, a possible scenario

involves an initial seed dispersal from Africa to Mada-

gascar and then from Madagascar to Asia, with subse-

quent pollen flow between Africa and Madagascar.

Assembly and analyses of selected genes

The presence/absence of ppc and pck genes was estab-

lished by mapping reads directly onto reference

4

3

5
Asia/Australia

Madagascar
East and West

Africa

Zambezian
region

South Africa

BUR1
KEN1
RSA3

DRC3
DRC4

MAD1
THA1

AUS1
TPE1

RSA2
RSA1

TAN1
TAN2
TAN3

TAN4

DRC1
DRC2

IV

III

II

I

Nuclear clade Plastid cladePTLGTSample

E

C

A

F

D

B

G

C4

Non-C4 (isotopically intermediate)
Non-C4 (C3-C4 intermediate)
Non-C4 (C3)

Fig. 2 Comparison of nuclear (on the left) and plastid (on the right) topologies (without branch lengths). The putative origin of indi-

viduals with mixed genetic back ground was added using dashed lines. Branches of the nuclear tree are coloured according to clus-

tering analyses (Fig. 3). Photosynthetic types (PT) and presence of laterally acquired genes (LGT) are indicated by symbols at the

tips; purple bar = presence of pck-1P1_LGT:C, blue bar = ppc-1P1_LGT:M, orange bar = ppc-1P1_LGT:C, dark blue bar = ppc-1P1_LGT:A.

Geographic origin is indicated on the left. Secondary gene flow is numbered as in Fig. 6; (3) hybridization between non-C4 and C4 popu-

lations within the Zambezian region, (4) allopolyploidy between C4 populations in Africa (‘RSA3’), (5) pollen-mediated gene flow from

mainland Africa to Madagascar.
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sequences from Alloteropsis. The distribution of the

genes was also confirmed by PCR followed by Sanger

sequencing (Fig. S7, Supporting information).

Together, the results confirmed previous phylogenetic

analyses (Christin et al. 2012), but with a significant

increase of the sample size. Reads assigned to the pck

gene copy laterally acquired from members of the Cen-

chrus genus (pck-1P1_LGT:C) were detected in the two

A. angusta accessions and all A. semialata accessions,

except the two non-C4 accessions from South Africa

(Table 2; Figs S7 and S8, Supporting information). The

sequences assembled for the laterally acquired pck gene

were highly similar between the different accessions,

leading to a poorly resolved phylogeny (Fig. S8, Sup-

porting information). By contrast, the sequences assem-

bled for the vertically inherited pck gene were variable

among accessions, and the nuclear clades I and II were

recovered in their phylogeny, while clades III and IV

were not differentiated (Fig. S8, Supporting informa-

tion). Interestingly, one accession with mixed genetic

backgrounds (‘DRC1’) has two divergent alleles, one of

which groups with clade II and the other with clade

III/IV (Fig. S8, Supporting information). Dating

analyses indicate that the divergence of A. angusta and

A. semialata is more recent for the laterally acquired pck

than for the vertically inherited copy (Fig. S9, Support-

ing information). However, the divergence of C4 acces-

sions of A. semialata is estimated at a similar time based

on the vertically inherited and laterally acquired pck

(Fig. 5).

The vertically inherited ppc was recovered from all

samples, and the assembled gene models were variable

enough to partially resolve the phylogeny, with well-

supported clades corresponding to the different species

(Fig. S10, Supporting information). Although support

was limited within A. semialata, the non-C4 clades I and

II (including sequences from individuals assigned to

multiple clades) were sister to a clade composed of the

C4 accessions from clade IV nested within those of

clade III (Fig. S10, Supporting information). The diver-

gence of vertically inherited ppc from C4 accessions (ex-

cluding those partially assigned to clusters other than

III and IV) matches the divergence of the vertically

inherited pck for the same accessions (Fig. 5).

The ppc gene laterally acquired from Andropogoneae

(ppc-1P3_LGT:A) was only detected in the Australian C4

accession (‘AUS1’; Table 2, Figs S7 and S10, Supporting

information). An almost complete sequence for the

studied segment was assembled, which was identical to

those isolated by PCR.

The ppc gene laterally acquired from the Setaria palmi-

folia complex (ppc-1P3_LGT:C) was detected in the C4

accessions from South Africa (‘RSA3’) and the DRC

(Table 2, Figs S7 and S10, Supporting information).

Although no reads matching exons 8–10 of ppc-

1P3_LGT:C were detected in the accession ‘TAN3’, a

total of seven reads from this individual matched exons

1–7. This suggests that the gene is truncated and proba-

bly exists as a pseudogene in this individual. The ppc-

1P3_LGT:C sequences were largely conserved, although

distinct alleles were assembled in one of the accessions

with mixed genetic background (‘DRC2’; Fig. S10, Sup-

porting information). The divergence of ppc-1P3_LGT:C

genes belonging to different C4 accessions was more

recent than for the vertically inherited ppc and pck of

the same accessions (Fig. 5).

The ppc gene acquired from Melinidinae (ppc-

1P3_LGT:M) was identified in nine C4 accessions of

A. semialata, the isotopically intermediate A. semialata,

and the two congeners Alloteropsis cimicina and

Alloteropsis paniculata (Table 2, Figs S7 and S10, Sup-

porting information). Highly divergent alleles of the

ppc-1P3_LGT:M gene were inferred for A. cimicina and

A. paniculata (Fig. S10, Supporting information). How-

ever, the sequences of ppc-1P3_LGT:M from A. semialata

were very similar to each other, and nested within the

alleles from A. cimicina/paniculata (Fig. S10, Supporting
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Fig. 3 Assignment of Alloteropsis semialata individuals to

genetic clusters. (A) Assignment of each individual to the dif-

ferent clusters (K 2–4). The photosynthetic type is indicated by

symbols next to the names, as in Fig. 2. (B) Mean likelihood

(�SD) over 10 runs for each K value (1–10), and (C) |L0 0(K)|/SD
(fit improvement) as calculated according to Evanno et al.

(2005).
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information). The split of A. semialata and A. cimicina is

more recent for ppc-1P3_LGT:M than for the vertically

inherited ppc and pck (Fig. S9, Supporting information).

In addition, the divergence of C4 accessions of A. semi-

alata based on this ppc-1P3_LGT:M gene occurred more

recently than the divergence based on the vertically

inherited ppc and pck (Fig. 5).

Discussion

Divergence of photosynthetic types in isolation
followed by secondary gene flow

Overall, our genomewide analyses reveal a strong

genetic structure, which matches photosynthetic types

better than geographic origins, although both play a

role. All C4 individuals form a monophyletic group

based on genomewide markers, which is sister to a

clade composed of non-C4 accessions from the Zam-

bezian region with a weak C4 cycle (clade II; Figs 2 and

4), and together, these two groups are sister to the non-

C4 accessions from South Africa that lack a C4 cycle

(clade I; Figs 2 and 4). The C4 clade contains two clearly

distinct subgroups, one from the Zambezian region

(clade III; Figs 2 and 4) and the other one encompassing

all C4 accessions sampled outside this region, from

Western Africa to Australia (clade IV; Figs 2 and 4).

The Zambezian region encompasses more genetic diver-

sity than the rest of the species’ range, including a total

of five plastid lineages, four of which are endemic

(clades B, C, F and G; Figs 2 and S2, Supporting infor-

mation). This finding further supports this region as the

centre of origin for Alloteropsis semialata (Lundgren et al.

2015). Based on both plastid and nuclear genomes, the

divergence of photosynthetic types likely also happened

within this region (Fig. 6). Both C4 and non-C4 popula-

tions in the Zambezian region are associated with

Miombo woodlands. Periodic cycles of contraction and

expansion of these wooded savannas during recent geo-

logical times might have isolated populations of

A. semialata in this geologically and topographically

complex region (Cohen et al. 2007; Beuning et al. 2011).

The ancestral photosynthetic state is likely non-C4 and

mutations altering the leaf anatomy and upregulation of

enzymes already present in the non-C4, ancestors likely

led to the emergence of a constitutive C4 cycle in some

isolated populations (Mallmann et al. 2014; Br€autigam

& Gowik 2016). One of the lineages descending from

the initial C4 pool, corresponding to clade IV, later left

the Miombo of the Zambezian region and rapidly

(A)

(B)

Fig. 4 Geographic distribution of

Alloteropsis semialata genetic lineages. (A)

World distribution, highlighting the

Zambezian region with a rectangle and

(B) details of the Zambezian region. For

each point, the colour of the outline indi-

cates the plastid lineage (blue = clade A;

green = clade BC; yellow = clade FG;

red = clade DE), while the colour of the

background represents the nuclear

lineage (blue = clade I; green = clade II;

yellow = clade III; red = clade IV;

black = mixed genetic background;

grey = congeners). Finally, the shape of

the point indicates the photosynthetic

type, as determined by carbon isotopes

(square = non-C4; circle = C4; trian-

gle = isotopically intermediate).
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Table 1 Results of ABBA–BABA tests

Outgroup* P3* P2* P1*

# ABBA

sites

# BABA

sites D† Z P-value‡ Conclusion

Alloteropsis

angusta

TAN2 TAN3 TAN4 2630 1805 0.186 8.279 <0.0001 TAN2 closer to TAN3 than to TAN4

A. angusta TAN1 TAN3 TAN4 2630 1750 0.201 8.757 <0.0001 TAN1 closer to TAN3 than to TAN4

A. angusta TAN2 DRC2 TAN4 2037 1546 0.137 5.939 <0.0001 TAN2 closer to DRC2 than to TAN4

A. angusta TAN1 DRC2 TAN4 1960 1570 0.110 4.724 <0.0001 TAN1 closer to DRC2 than to TAN4

A. angusta TAN2 DRC1 TAN4 2240 1752 0.122 5.463 <0.0001 TAN2 closer to DRC1 than to TAN4

A. angusta TAN1 DRC1 TAN4 2194 1749 0.113 5.692 <0.0001 TAN1 closer to DRC1 than to TAN4

A. angusta TAN2 DRC4 TAN4 1177 1164 0.006 0.223 0.824 TAN2 equally close to DRC4 and

TAN4/correct phylogeny

A. angusta TAN1 DRC4 TAN4 1075 1123 �0.022 �0.866 0.386 TAN1 equally close to DRC4 and

TAN4/correct phylogeny

A. angusta TAN2 DRC3 TAN4 1372 1451 �0.028 �1.080 0.280 TAN2 equally closer to DRC3 and

TAN4/correct phylogeny

A. angusta TAN1 DRC3 TAN4 1248 1431 �0.068 �2.885 0.004§ TAN1 might be closer to TAN4 than

to DRC3

TAN4 TPE1 MAD1 BUR1 1314 1129 0.076 2.603 0.009§ TPE1 might be closer to MAD1 than

to BUR1

*(Outgroup,(P3,(P2,P1))).
†D statistic: (ABBA-BABA)/(ABBA+BABA).
‡P-value for Z score as calculated by jackknife for whether D differs significantly from zero.
§Nonsignificant after Bonferroni correction for multiple testing.

Table 2 Number of read assigned to each of the laterally acquired pck and ppc genes

Species Accession

Phylogenetic group

(plastid; nuclear) ppc-1P3_LGT:A* ppc-1P3_LGT:M† ppc-1P3_LGT:C‡ pck-1P1_LGT:C‡

Alloteropsis cimicina Cim1 – 0 149§ 0 0

Alloteropsis paniculata Pan1 – 0 37§ 0 0

Alloteropsis angusta Ang2 – 0 0 0 78

Ang1 – 0 0 0 49

Alloteropsis semialata RSA1 A; I 0 0 0 0

RSA2 A; I 0 0 0 0

TAN1 C; II 0 0 0 57

TAN2 B; II 0 0 0 73

TAN3 B; mixed 0 54§ 0¶ 216§

DRC1 G; mixed 0 57§ 56 183§

DRC2 G; mixed 0 29 50§ 95§

DRC3 E; III 0 6 25 135§

DRC4 E; III 0 10 12 88§

TAN4 F; III 0 76 0 83

RSA3 E; IV 0 55§ 63 113

KEN1 E; IV 0 36 0 85

BUR1 E; IV 0 26 0 130

MAD1 D; IV 0 46 0 101

THA1 D; IV 0 0 0 123

TPE1 D; IV 0 0 0 118

AUS1 D; IV 55 0 0 110

*Laterally acquired from Andropogoneae.
†Laterally acquired from Melinidinae.
‡Laterally acquired from Cenchrinae.
§Assembly of more than one allele.
¶Note that seven reads were retrieved for exons 1–7, which indicates that this gene is truncated in the genome of this accession.
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spread across Africa and all the way to Asia and Aus-

tralia (Figs 4 and 6). This biogeographical history there-

fore points to the initial emergence of the C4 physiology

in A. semialata within the Zambezian region, with sub-

sequent isolation of the C4 descendants (Fig. 6).

The lack of association between chloroplast and

nuclear groups (Figs 2, S2 and S3, Supporting informa-

tion) in the Zambezian region suggests ancient, but recur-

rent, secondary gene flow followed by homogenization

of the local gene pools. In addition, the presence of three

individuals with mixed nuclear backgrounds indicates

relatively recent gene flow between previously isolated

groups. The maximum expansion of the Miombo wood-

lands during interglacial periods, as presently occurs,

would likely favour seed dispersal over a larger area,

leading to secondary contacts (Vincens 1989; Cohen et al.

2007; Beuning et al. 2011), a process frequently reported

in Europe (reviewed in, e.g. Hewitt 2000; Schmitt 2007).

We propose that this expansion allowed genetic

exchanges between previously isolated lineages, some of

which had made the transition to a full C4 physiology

during the previous isolation. No evidence of gene flow

between C4 and non-C4 individuals was found outside of

the Zambezian region, and crosses might be prevented in

South Africa, the other region where C4 and non-C4 indi-

viduals overlap, by differences in ploidy levels (Fig. 4;

Liebenberg & Fossey 2001). However, our analyses sug-

gest that allopolyploidy contributed to the mixing of

nuclear groups III and IV in Southern Africa (Fig. 6). In

addition, while the recent divergence decreases statistical

confidence, we found suggestions for secondary gene

flow between different subgroups of the C4 clade IV in

Madagascar (Fig. 6).

Repeated isolation followed by recurrent, but rare

secondary gene flow has created a dynamic population

structure whereby adaptive mutations, such as those for

the C4 trait, can appear and sweep to fixation in isola-

tion and later come together through admixing in times

of contact. While mutations for increasing the expres-

sion of the C4-related genes and altering the leaf anat-

omy are unknown, genes for two key C4 enzymes were

laterally acquired by A. semialata (Christin et al. 2012).

These lateral gene transfers likely took place in A. semi-

alata plants that already used C4 photosynthesis, and

once acquired, these genes presumably replaced the

function of the vertically inherited gene copies that

were overexpressed but not biochemically optimized

(Christin et al. 2012). The biogeographic history inferred

here for the nuclear genome allows us to estimate the

region where these lateral gene transfers likely occurred

and track the subsequent spread of these genes among

different gene pools.

Spread of C4-adaptive mutations among gene pools

Our analyses detected the laterally acquired pck gene in

all Alloteropsis angusta and A. semialata individuals apart

from two non-C4 A. semialata South African accessions

of A. semialata from South Africa, confirming previous

PCR-based approaches (Table 2; Christin et al. 2012).

The divergence time is younger between the laterally

acquired pck genes from A. angusta and A. semialata

than between the vertically inherited genes of the same

species (Figs 5 and S9, Supporting information). This

Fig. 5 Divergence times of C4 accessions of Alloteropsis semialata

based on vertically inherited and laterally acquired genes. For

five ppc and pck genes, the posterior distribution of times to the

last common ancestor of the C4 A. semialata is shown, in mil-

lion years (Ma).
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suggests that the laterally acquired pck was passed

between A. angusta and A. semialata through secondary

gene flow.

The accessions from Taiwan and Thailand do not

possess any laterally acquired ppc genes, yet carbon iso-

topes unambiguously indicate that they carry out C4

photosynthesis (Table 2; Lundgren et al. 2015). It is

therefore likely that they overexpress their vertically

inherited ppc and other genes required to generate a

working C4 cycle in the absence of repeated rounds of

fixation of adaptive amino acids, as observed in older

C4 lineages (Christin et al. 2007; Besnard et al. 2009;

Huang et al. in press).

Out of the three different ppc genes acquired via lat-

eral gene transfers from distant C4 relatives (Table 2;

Christin et al. 2012), only ppc-1P3_LGT:A is restricted to

one of the accessions sampled here (‘AUS1’). This gene

was only found in Australia, and it is thus likely that it

was recently acquired in this region (Fig. 6). The other

two laterally acquired ppc genes are absent from some

individuals, but spread across multiple populations of

A. semialata that belong to different genomic clusters

(Table 2). This pattern could result from the presence of

the gene in the common ancestor and subsequent losses

in some populations. However, this scenario is not sup-

ported by the lack of phylogenetic structure on the lat-

erally acquired genes (Fig. S10, Supporting information)

and the comparison of divergence times, which indicate

that the divergence of variants of both ppc-1P3_LGT:M

and ppc-1P3_LGT:C found in C4 accessions is more

recent than the divergence of vertically inherited genes

in the same accessions (Fig. 5).

The laterally acquired ppc-1P3_LGT:M gene was iden-

tified in the C4 congeners Alloteropsis cimicina and

Alloteropsis paniculata, as well as all C4 accessions of

A. semialata from Africa and Madagascar (whether from

clade III or IV; Table 2). However, this gene was absent

from the Asian/Australian C4 accessions from clade IV

and the African non-C4 (clades I and II; Table 2). The

divergence time between ppc-1P3_LGT:M genes belong-

ing to A. cimicina and A. semialata is younger than the

divergence times for the vertically inherited genes from

the same species (Fig. S9, Supporting information). In

addition, the higher allelic diversity in A. cimicina com-

pared to A. semialata suggests that the ppc-1P3_LGT:M

gene was first acquired by A. cimicina and then trans-

ferred to A. semialata, potentially via hybridization. This

gene has subsequently likely spread across distinct

genetic groups of A. semialata in Africa and Madagascar

via secondary pollen flow (Fig. 6). The fixation of the

ppc-1P3_LGT:M gene within different populations

would have been favoured by its improvement of the

C4 cycle, a function for which it was already optimized

after millions of years spent in another C4 lineage. Once

this adaptive gene copy was acquired in a population,

the vertically inherited ppc copy probably underwent

pseudogenization as a result of relaxed selection.

Indeed, the vertically inherited ppc genes bear frame-

shift mutations causing loss of function in two acces-

sions with the laterally acquired ppc-1P3_LGT:M

(‘TAN4’ and ‘Cim1’), supporting the hypothesis that

their function was taken over by the newly acquired

gene, making them obsolete.

The last of the laterally acquired ppc genes, ppc-

1P3_LGT:C, was found in the South African C4 poly-

ploid (‘RSA3’) as well as in four C4 and one isotopically

intermediate individuals from the Zambezian region,

two from clade III and three with genetic contributions

from clades II and III (Table 2). This gene was laterally

acquired from a species of the Setaria palmifolia complex

(Christin et al. 2012), which co-occurs with A. semialata

in Zambezian Africa, where they grow metres apart,

but not in South Africa (Clayton 1979). The transfer

therefore likely occurred in the Zambezian region and

later spread among the C4 populations in this region

Fig. 6 Inferred history of divergence, secondary exchanges and

spread of laterally acquired ppc genes in A. semialata. A sum-

mary phylogeny is shown for the C4 and non-C4 accessions of

A. semialata, excluding the non-C4 individuals from South

Africa. The C4 phenotype is represented with red outlines. (1)

The divergence of photosynthetic types is inferred in the Zam-

bezian region (dashed red line indicates C4 emergence). (2) A

C4 lineage migrated outside of the Zambezian region. (3)

Hybridization occurred between non-C4 and C4 populations

within the Zambezian region. (4) The C4 polyploids of South

Africa (RSA) resulted from segmental allopolyploidy. (5) Pol-

len-mediated gene flow occurred from mainland Africa to

Madagascar. The lateral acquisition of three ppc genes is

indicated with dashed lines, and their subsequent spread is

indicated with solid lines. Geographic regions are indicated at

the bottom.
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through secondary gene flow (Fig. 6). Once acquired

the ppc-1P3_LGT:C gene presumably took over the C4

function, which might have been fulfilled by the previ-

ously acquired ppc-1P3_LGT:M. Indeed, ppc-1P3_LGT:M

is still expressed in the transcriptome of the South Afri-

can C4 accession, but possesses internal stop codons

that prevent proper translation (Christin et al. 2012).

The newly acquired ppc-1P3_LGT:C likely spread to the

C4 populations from South Africa, through the putative

segmental allopolyploidy event, providing a mechanism

to propagate adaptive loci across genetic pools (Fig. 6).

However, the Melinidinae ppc-1P3_LGT:M discussed

above was spread among diploid individuals from

clades III and IV, showing that adaptive loci can be

transmitted despite limited gene flow, without the need

for polyploidization.

The laterally acquired genes, which can easily be

tracked using genome scans, show that the distinct

genetic pools in A. semialata constitute reservoirs of

genes for the adaptation of other populations within the

same species complex. The history of these markers

proves that genes for a complex trait can evolve inde-

pendently in isolated populations and later be com-

bined via natural selection following gene flow. When

high-quality genome data accumulate for multiple

accessions of A. semialata, such a scenario can be tested

for vertically inherited genes, potentially explaining

how novel adaptations can evolve in fragmented spe-

cies complexes.

Conclusions

In this study, we analysed genomic data from multiple

accessions of the grass Alloteropsis semialata using low-

coverage whole-genome sequencing. Using a biogeo-

graphic framework for different parts of the genome,

we demonstrate that multiple genetic pools exist, which

are generally associated with different photosynthetic

types. These pools originated more than 2 million years

ago in the Zambezian region and were kept relatively

isolated, but with recurrent secondary gene flow,

including between non-C4 and C4 individuals. These

genetic exchanges contributed to the spread of adaptive

loci, as illustrated by key C4 genes acquired laterally in

the Zambezian region and then rapidly passed to other

African C4 accessions. This process likely gradually

optimized the initial C4 pathway of some A. semialata

populations through the assembly of different compo-

nents. These genetic elements evolved in different parts

of the species range, where limited gene flow might

have facilitated local adaptation, but their subsequent

combination likely improved the efficiency of the photo-

synthetic pathway of some accessions.
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