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Abstract

Gene transcription mediated by RNA polymerase II (pol-II) is a key step in gene expression. The dynamics of pol-II moving
along the transcribed region influence the rate and timing of gene expression. In this work, we present a probabilistic model
of transcription dynamics which is fitted to pol-II occupancy time course data measured using ChIP-Seq. The model can be
used to estimate transcription speed and to infer the temporal pol-II activity profile at the gene promoter. Model
parameters are estimated using either maximum likelihood estimation or via Bayesian inference using Markov chain Monte
Carlo sampling. The Bayesian approach provides confidence intervals for parameter estimates and allows the use of priors
that capture domain knowledge, e.g. the expected range of transcription speeds, based on previous experiments. The
model describes the movement of pol-II down the gene body and can be used to identify the time of induction for
transcriptionally engaged genes. By clustering the inferred promoter activity time profiles, we are able to determine which
genes respond quickly to stimuli and group genes that share activity profiles and may therefore be co-regulated. We apply
our methodology to biological data obtained using ChIP-seq to measure pol-II occupancy genome-wide when MCF-7
human breast cancer cells are treated with estradiol (E2). The transcription speeds we obtain agree with those obtained
previously for smaller numbers of genes with the advantage that our approach can be applied genome-wide. We validate
the biological significance of the pol-II promoter activity clusters by investigating cluster-specific transcription factor
binding patterns and determining canonical pathway enrichment. We find that rapidly induced genes are enriched for both
estrogen receptor alpha (ERa) and FOXA1 binding in their proximal promoter regions.
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Introduction

Transcription mediated by RNA polymerase II (pol-II) is an

essential process in the expression of protein-coding genes in

eukaryotes. Transcription is dependent upon a number of sequential

and dynamic events, such as recruitment of pol-II to the transcrip-

tional start site, activation of pol-II through phosphorylation of its C-

terminal domain, elongation of the nascent transcript through the

transcribed region and termination [1]. Each of these steps may be

rate-limiting and can therefore affect the level of gene expression. In

this paper, we describe a simple probabilistic model of transcription

whose parameters can be inferred using time-series data such as pol-

II ChIP-Seq data [2] or nascent transcript measurement by GRO-

Seq that reports markers of transcriptional activity [3]. This model

can be used to identify transcriptionally engaged genes, estimate

their transcription rates and infer transcriptional activity adjacent to

the promoter. The transcriptional dynamics of estrogen responsive

genes in a breast cancer cell line were described by fitting this model

to pol-II ChIP-seq time course datasets.

Chromatin immunoprecipitation, in conjunction with massively

parallel sequencing (ChIP-seq) evaluates interactions between

proteins and DNA, and, for example, can be used to monitor the

presence of pol-II on DNA. Estimating the amount of pol-II

associated with a transcribed gene provides a measure of tran-

scriptional activity [2]. Sequential measurement of pol-II occupancy

on genes released from transcriptional blockade, for example, in

response to stimuli, reveal a wave of transcription moving through

the body of the responding transcript.

A number of studies have attempted to determine the rate of

transcription through modelling the dynamics of pol-II. Darzacq

et al. fit a mechanistic model of pol-II transcription to nascent

RNA data at a single locus and obtained a transcription speed of

4.3 kilobases per minute [4]. Wada et al. activated transcription of

genes greater than 100 kbp in length and estimated the

transcription speeds using a model that measures an intronic

RNA signal through taking advantage of co-transcriptional splicing.

They obtain an average transcription rate of 3.1 kbp min21 [5].

Singh and Padget (2009) reversibly inhibit transcription to
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determine the transcription rate of 9 genes, all of which were

greater than 100 kbp which had an average transcription rate of

3.79 kbp min21 [6]. The data used in these studies have good

temporal resolution (e.g. samples every 7.5 min in [5]) and reliably

allow fitting of mathematical models or the direct measurement of

transcription speed, however, only for a limited set of long genes. In

contrast, high throughput data sets such as ChIP-Seq, can be used

to uncover transcription dynamics genome-wide but typically have

much lower temporal resolution, motivating the development of

alternative modelling approaches that report genome-wide tran-

scription rates.

One way around the low temporal resolution of typical

high-throughput time course data is to employ a non-

parametric model of the biological signals of interest. In many

cases we expect these signals to vary continuously and

smoothly in time, when averaged over a cell population, and

a Gaussian process model provides a convenient non-

parametric model in such cases [7]. Gaussian processes have

recently found applications in a range of biological system

models [8–11].

Here we present a Gaussian process model of transcription

dynamics which can be fitted to genome-wide pol-II occupancy

data measured using ChIP-Seq. The model describes the

movement of pol-II through the gene body and combines a

flexible model of promoter-proximal pol-II activity with a reliable

estimate of transcription speed. By identifying genes which fit the

model well, we provide a useful method to identify actively

transcribed genes. The model does not assume a constant

transcription speed and can therefore identify variable rates of

transcription, for example due to transcriptional pausing. Model

parameters are inferred using either maximum likelihood (ML)

estimation or via Bayesian inference using Markov chain Monte

Carlo (MCMC) sampling. The Bayesian approach provides

confidence intervals for parameter estimates and can incoporate

priors that capture domain knowledge, e.g. the expected range of

transcription speeds, based on previous experiments.

We fit our model to a pol-II ChIP-Seq time course dataset

from MCF7 breast cancer cells stimulated with estradiol. The

model is used to identify the set of transcriptionally engaged

genes and estimate their mean transcription rate and

transcriptional activity near the promoter. By clustering

promoter activity profiles, potential co-regulated groups of

genes are identified, particularly those that respond rapidly to

estrogen signalling. Subsequent characterisation of transcrip-

tion factor (TF) binding sites in proximity to the promoters

of genes within clusters provides a means of classifying groups

of promoters that are responsive to the binding of

specific combinations of TFs. Additionally, publically available

ChIP-Seq datasets of TF profiles from the same system were

used to identify cluster-specific patterns in TF-binding. The

rates of transcription estimated by our model are consistent

with the literature [4,5] but with the advantage that our

method allows the computation of transcription speeds

genome-wide.

Our methodology has a number of advantages. We do not

require data with high temporal resolution, making it feasible

to model transcriptional dynamics genome-wide using ChIP-

Seq or GRO-Seq time course data. We infer transcription rates

for all genes in an unbiased manner and by using Bayesian

parameter estimation we are able to associate our transcription

rate estimates with confidence intervals. Our model is non-

parametric and therefore does not make very strong assump-

tions about the temporal changes in transcriptional activity.

Fitting the model genome-wide allows us to identify and

filter out transcripts where pol-II does not travel down the

gene body. This provides a principled method to identify

responsive genes, in particular, early acting estrogen respon-

sive genes in the specific application considered here. Since

our model does not enforce a uniform transcription speed over

the entire gene body, we can take into account phenomena

such as pol-II pausing which would result in a non-uniform

transcription speed. We also use this model to infer the

promoter activity of transcriptionally engaged genes, to

identify co-regulated gene modules downstream of estrogen

signalling.

Methods

Visualizing pol-II ChIP-seq reads mapped to transcriptional

units at multiple time points following the addition of estradiol

to MCF7 cells reveals the motion of pol-II through the gene

body of estrogen responsive genes (see Figure 1). Computing

the average pol-II occupancy over successive gene segments

describes the motion of the transcription wave. Thereafter,

fitting a model capable of smoothly interpolating between

observed time points and by determining the time taken for

pol-II to move from one gene segment to the next determines if

pol-II is transcriptionally engaged on a given transcript and the

speed at which it is moving through this transcriptional unit.

We use a convolved Gaussian process to model the relationship

between the pol-II signal at different regions of the gene and

across time. Model parameters are determined using maximum

likelihood (ML) or Bayesian inference via Markov chain Monte

Carlo (MCMC) to determine genes of interest and moreover,

in the case of MCMC, determine confidence intervals for our

parameter estimates.

Convolved Gaussian Process Model
A Gaussian process (GP) is a distribution over the space of

functions. This distribution is completely specified by a mean

function m(t) and a covariance function k(t,t0). A function f (t)
is said to be drawn from a Gaussian process GP(m(t),k(t,t0)) if

f (t) at any finite collection of points has a multivariate

Gaussian distribution with mean vector and covariance matrix

specified by m(t) and k(t,t0), respectively. GPs provide a

powerful framework for non-parametric regression [7]. If a

Author Summary

Cells express proteins in response to changes in their
environment so as to maintain normal function. An initial
step in the expression of proteins is transcription, which is
mediated by RNA polymerase II (pol-II). To understand
changes in transcription arising due to stimuli it is useful to
model the dynamics of transcription. We present a
probabilistic model of pol-II transcription dynamics that
can be used to compute RNA transcription speed and infer
the temporal pol-II activity at the gene promoter. The
inferred promoter activity profile is used to determine
genes that are responding in a coordinated manner to
stimuli and are therefore potentially co-regulated. Model
parameters are inferred using data from high-throughput
sequencing assays, such as ChIP-Seq and GRO-Seq, and
can therefore be applied genome-wide in an unbiased
manner. We apply the method to pol-II ChIP-Seq time
course data from breast cancer cells stimulated by
estradiol in order to uncover the dynamics of early
response genes in this system.
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function is assumed to be drawn from a GP with known mean

and covariance function, we can infer the function value and

associated uncertainty at unobserved locations given noise-

corrupted observations. GPs have recently been applied in

modelling biological systems, e.g. modelling protein concen-

trations as latent variables in differential equation models of

transcriptional regulation [8,9] and modelling spatial gene

expression [11].

Here we introduce a novel application of GPs to modelling the

spatio-temporal dynamics of pol-II occupancy during transcrip-

tion. Convolved GPs allow the modelling of correlations between

multiple coupled data sources. In our case these data sources are

the pol-II occupancy over time collected at different locations

along the transcribed region of a gene. Modelling the data as a

convolved process borrows information from these different data

sources in estimating the model parameters and inferring the

Figure 1. Description of the transcription dynamics modelling framework. Pol-II ChIP-seq data for the TIPARP gene shows a transcription
wave moving down the gene. The transcription dynamics model captures this motion and allows us to estimate transcription speeds. In this case the
gene is divided into 5 segments and we estimate the speed to be approximately 2 kilobases per minute. Panel A shows the raw ChIP-seq reads at
different times between 0 and 320 min. The top part of panel B shows the inferred promoter activity profile. The next five parts of panel B show the
inferred profiles for the five gene segments corresponding to 0{20%, . . . ,80%{100% of the gene. By clustering these promoter activity profiles as
shown in panel C, we are able to group genes into clusters that are likely to be co-regulated and in particular we identify the clusters that respond
most rapidly to estrogen signalling.
doi:10.1371/journal.pcbi.1003598.g001
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underlying signal in the data. Also, we find that convolved GPs are

necessary to account for changes in the shapes of signals observed

at different regions of the gene. In linear systems theory, the output

y(t) of a linear time-invariant system whose impulse response is

h(t) is given by the convolution of the input x(t) and h(t), that is

y(t)~
Ð ?

{? h(t)x(t{t)dt. If different sets of observations are

believed to be related, they can be modeled as the outputs of

different linear systems in response to a single input. If this input is

modeled as a GP, then it will form a joint GP together with all the

outputs and data from one output stream will be useful in inferring

the rest [12–20]. In our case, incorporating the data from multiple

spatially separated regions of the genes allows us to infer an

underlying function that links all these regions. This proves useful

as a summary of the transcription dynamics of the gene and we

show that it provides useful insights into potential coregulation.

Model description. In order to capture the movement of the

transcription wave through transcriptional units, we divide each

gene into I segments and compute time series of pol-II occupancy

for each of the segments. Due to the low temporal resolution

characteristic of high-throughput datasets, the time series between

measurements must be inferred. To this end, we model the pol-II

occupancy yi(t) in each segment i[f1, . . . ,Ig as the convolution of

a latent process f (t) which is shared by all segments and a (possibly

delayed) smoothing kernel ki(t{Di) corrupted by an independent

white Gaussian noise process Ei(t) with zero mean and variance s2
i

[15,16]. That is

yi(t)~ai

ð ?

{?
f (t{t)ki(t{Di)dtzEi(t), ð1Þ

where ai is a scale factor and Di is the delay of each segment. The

latent process f (t) is modeled as a random function drawn from a

GP with zero mean and a squared exponential covariance function

(defined in Equation (4) below). The smoothing kernel is assumed

to be Gaussian, that is

ki(t)~
1ffiffiffiffiffiffi
2p
p

‘i

exp {
t2

2‘2
i

� �
: ð2Þ

The estimated delay Di of each smoothing kernel models the

amount of time it takes the ‘transcription wave’ to reach the

corresponding gene segment. This is used to estimate the

transcription speed. Biologically the latent function can be thought

of as modeling activity at the promoter while the smoothing kernel

accounts for ‘diffusion’ of the transcription wave. This diffusion

phenomenon is observed when time series of pol-II occupancy

over different sections of a gene are plotted, with the transcription

wave seen to spread out (see Figure 2). This phenomenon may be

due to an initially synchronized cell population becoming less

synchronized over time, resulting in broadening of the pol-II

occupancy distribution over time. The parameter ‘i captures the

amount of ‘spread’ observed at the i th segment. It also serves as a

measure of the loss of synchrony between the cells of the

population when the transcription wave is observed at the i th

segment.

Using equation (1), we can compute the covariance between the

pol-II occupancy at various segments of the gene. We have

cov½yi(t),yj(t’)�~

aiaj

ð ?

{?

ð ?

{?
kf (t{t,t’{t’)ki(t{Di)kj(t’{Dj)dtdt’

zs2
i dijdtt’

ð3Þ

where

kf (t,t0)~s2
f exp {

(t{t0)2

2‘2
f

 !
: ð4Þ

Equation (3) can be evaluated in closed form using the fact that

the product of two Gaussians yields an un-normalized Gaussian

[7]. Exploiting this fact we get

cov½yi(t),yj(t
0)�

~aiaj

s2
f ‘fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘2
f z‘2

i z‘2
j

q exp {
(t0{tzDi{Dj)

2

2(‘2
f z‘2

i z‘2
j )

 !
zs2

i dijdtt0 :
ð5Þ

Similarly,

cov½f (t),yi(t
0)�~ai

s2
f ‘fffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2

f z‘2
i

q exp {
(t0{t{Di)

2

2(‘2
f z‘2

i )

 !
: ð6Þ

Parameter estimation and inference. Let yi~½yi1, . . . ,

yiN �T be a vector of observations of pol-II occupancy over the ith

gene segment and let Y~½yT
1 , . . . ,yT

I �
T

be a vector formed by

concatenating all the observations for a single gene. N is the

number of observation time points and I is the number of gene

segments so for a single gene Y is a vector of length NI . We have

p(f,YjH)~N (½f,Y�; 0,K), ð7Þ

where

K~

Kf,f Kf,y1
. . . Kf,yI

Ky1,f Ky1,y1
. . . Ky1,yI

..

. ..
.

P
..
.

KyI ,f . . . . . . KyI ,yI

2
666664

3
777775 ð8Þ

and H~fsf ,‘f ,fai,Di,‘i,sigI
i~1g are the parameters of our model

which will be fitted on a gene by gene basis. The elements of K are

computed using equations (4), (5), and (6). By marginalizing over

the latent function f, we obtain the marginal likelihood p(YjH).
Maximum likelihood estimates of the parameters H are readily

obtained by maximizing the log marginal likelihood using

gradient-based optimisation.

For a fully Bayesian approach, we take advantage of the fact

that the parameters are positive and bounded. We transform the

parameters using a logit transform and work with unconstrained

variables. We place a Gaussian prior over the parameters in the

transformed domain and draw samples from the posterior using

the Hamiltonian Monte Carlo (HMC) algorithm [21] (A more

detailed description of the priors is included in the supplementary

material).

Code to implement the method is freely available as a Python

package, PyPol-II, which can be downloaded from https://github.

com/ciiram/PyPol_II.

Estimation of average transcription speed. When fitting

the model, we fix D1~0 to ensure identifiability. The average

transcription speed is computed by assuming that the value of Di is

an indicator of how long it takes the ‘transcription wave’ to reach
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Figure 2. Inferred pol-II time profiles obtained for three of the top ten genes using ChIP-seq data. The panels on the left, (A,C,E) show
the inferred distribution of the latent funtion f (t) and the inferred profiles for the five gene segments corresponding to 0{20%, . . . ,80%{100% of
the gene for the MYH9, TIPARP and RAB10 genes respectively. We show the 95% confidence interval of the inferred profiles using dashed lines. The
panels on the right (B,D,F) are the corresponding delay histograms.
doi:10.1371/journal.pcbi.1003598.g002
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the corresponding gene segment. That is, D2 is the amount of time

it takes to transcribe 20% of the gene, D3 40% etc. To obtain

confidence intervals on the delay estimates, MCMC was

performed to get samples of the parameters.

To compute the average transcription speed we plot the position

along the gene in base pairs (bp) versus the delay in minutes and

compute a linear regression through the origin. The slope of the

regression line gives us the transcriptional speed. Each sample of

the parameters provides a set of delay estimates from which we

obtain a speed estimate.

Alternative Methods for Time Delay Inference
A key component of our method involves the estimation of

delay between time series observed at different segments of the

gene. The study of time delay between related time series has

received attention from a number of researchers for a long

time [22]. The application areas range from signal processing

to astronomy [23]. The classic approach to time delay

estimation involves computing the cross-correlation between

the related time series and determining the value of delay for

which this function is maximised. Consider two signals y1(t)
and y2(t) given by

y1(t)~f (t)zn1(t)

y2(t)~f (t{D)zn2(t) ð9Þ

where n1(t) and n2(t) are uncorrelated noise processes. The

cross-correlation function is given by

Ry1,y2
(t)~E½y1(t)y2(t{t)� where E denotes the expectation

operator. The value of t that maximises Ry1,y2
(t) yields an

estimate of the delay D. When the signals are sampled at N
equally spaced time points t0, . . . ,tN{1 with spacing T between

samples, the discrete time equivalent of Ry1,y2
(t) is readily

estimated. Let y1½n�~y1(nT), the discrete cross-correlation is

estimated as

R̂Ry1,y2
(kT)~

1

N

XN{1{k

n~0

y1½n�y2½nzk�:

The delay is estimated by finding the value of k for which

R̂Ry1,y2
(kT) is maximised. The corresponding delay estimate is kT .

However, this approach does not work well when the time series

are unevenly sampled as is the case in several astronomical and

biological studies. A number of techniques have been developed to

handle unevenly sampled time series including the discrete

correlation function (DCF) [24], and the more recent kernel

based approaches [25,26]. The DCF is computed as follows, for all

i,j[f0, . . . ,N{1g the time differences Dij~jti{tj j are binned

into discrete bins of size Dt. The DCF at t is given by [24,25]

DCF (t)~
1

jS(t)j
X

(i,j)[S(t)

(y1½i�{�yy1)(y2½j�{�yy2)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(s2

y1
{s2

y1i
)(s2

y2
{s2

y2j
)

q , ð10Þ

where

S(t)~f(i,j)jDij[½t{Dt,tzDt�g, ð11Þ

and s2
y1

and s2
y2

are the variances of the observation streams while

s2
y1i

and s2
y2j

are observation error variances.

In the kernel based approach of [25], the underlying function

f (t) of equation (Equation 9) is modelled as the sum of a fixed

number of kernels centered at the observation times. That is

f (t)~
XN{1

i~0

aiK(ci,t) ð12Þ

where

K(ci,t)~ exp {
(t{ci)

2

s2
i

 !
: ð13Þ

The value of D that minimises the estimation error is

the delay estimate. Our implementation follows that

presented in [25] where we assumed a fixed kernel width.

This kernel width is determined by leave one out cross-

validation.

Benchmark Data
We used synthetic data and previously published experimental

data to assess our novel method’s performance. To generate the

synthetic data, the underlying function f (t) of equation (Equation

9) was given as a sum of Gaussian kernels. That is

Table 1. MNSE as a function of the number of observations with no convolution.

Number of Observations MNSE

Corr DCF Kern [25] GP-NoConv GP-Conv

6 36e-3 30e-3 4e-3 1.6e-3 2.2e-3

8 44e-3 48e-3 1.0e-3 0.16e-3 0.17e-3

10 11e-3 13e-3 1.2e-3 0.0076e-3 0.012e-3

12 19e-3 18e-3 1.2e-3 0.0018e-3 0.0014e-3

doi:10.1371/journal.pcbi.1003598.t001
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f (t)~
XN

i~1

bi exp {
(t{ci)

2

s2
i

 !
:

N was fixed at 20 and the observation interval t[½0,10�. bi, si

and ci were generated at random with bi[½0,1�, si[(0:5,1:5� and

ci[½2:5,5�. A random delay D[½1,2:5� was used to generate

the observations which were corrupted by additive

Gaussian noise with sn~0:001. To determine the effect

of number of observations on the quality of inference we

compute the Median Normalised Square Error (MNSE) of the

Table 2. MNSE as a function of the number of observations with convolution.

Number of Observations MNSE

Corr DCF Kern [25] GP-NoConv GP-Conv

6 32e-3 37e-3 17000e-3 0.16e-3 0.053e-3

8 57e-3 61e-3 16000e-3 0.098e-3 0.0057e-3

10 11e-3 15e-3 17000e-3 0.018e-3 0.0021e-3

12 22e-3 31e-3 23000e-3 0.028e-3 0.011e-3

doi:10.1371/journal.pcbi.1003598.t002

Figure 3. Pre-mRNA espression data. Pre-mRNA espression at exon-intron junctions for the SLC9A9 gene (A). Fits for the SLC9A9 gene using the
kernel method (B) and the two GP methods: GP_NoConv (C) and GP_Conv (D). In the GP case we show the 95% confidence interval using dashed
lines. In regions with no observations, the uncertainty is large.
doi:10.1371/journal.pcbi.1003598.g003
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estimated delay
ED{D̂DE2

2

EDE2
2

as a function of the number of

observations for 50 random realisations of the the signals. We

also investigated the effect of distorting the shape of the

observed signals by introducing convolution. In real signals the

restriction that the shape remains unchanged sometimes leads

to poor results. The parameters of the smoothing kernel in

equation (1) were generated at random with ai[½0,1� and

‘i[(0:625,2:5�.
To assess performance of our method on a well characterised

real-world dataset we obtained a dataset from Singh and Padgett

[6] where the delay in appearance of pre-mRNA signal at exon-

intron junctions was used to compute estimates of transcription

speed for 9 genes. To generate the data, transcription was

reversibly inhibited in vivo using 5,6-dichlorobenzimidazole 1-beta-

D-ribofuranoside (DRB) and the pre-mRNA measured after the

inhibitor was removed. As verified by the authors, the kinetics of

pol-II and pre-mRNA are similar hence we expect good

performance on this dataset to indicate applicability of our

method to pol-II ChIP-seq data.

Pol-II ChIP-Seq Data
To demonstrate an application to pol-II ChIP-Seq data, we

apply our model to investigate the transcriptional response to

Estrogen Receptor signalling. ChIP-seq was used to measure pol-II

occupancy genome-wide when MCF-7 breast cancer cells are

treated with estradiol (E2). Cells were put in estradiol free media

for three days. This is defined media devoid of phenol red (which is

estrogenic) containing 2% charcoal stripped foetal calf serum. The

charcoal absorbs estradiol but not other essential serum compo-

nents, such as growth factors. This results in basal levels of

transcription from E2 dependent genes. The cells are then

incubated with E2 containing media, which results in the

stimulation of estrogen responsive genes. The measurements were

taken at logarithmically spaced time points 0, 5, 10, 20, …, 320

minutes after E2 stimulation.

Raw reads were mapped onto the human genome reference

sequence (NCBI_build37) using the Genomatix Mining Station

(software version 3.2.1). The mapping software on the Mining

Station is an index based mapper that uses a shortest unique

subword index generated from the reference sequence to identify

possible read positions. A subsequent alignment step is then used

to get the highest-scoring match(es) according to the parameters

used. We used a minimum alignment quality threshold of 92% for

mapping and trimmed 2 basepairs from the ends of the reads to

account for deterioration in read quality at the 39 end. The

software generates separate output files for uniquely mapped reads

and reads that have multiple matches with equal score. We only

used the uniquely mapped reads. On average about 66% of all

reads could be mapped uniquely. The data are available from the

NCBI Gene Expression Omnibus under accession number

GSE44800.

Time series of pol-II occupancy over various segments of genes

were computed in reads per million (RPM) [27] using BEDtools

[28,29]. The genes were divided into 200 bp bins and the RPM

computed for each bin. The occupancy in a particular gene

segment was the mean RPM of the bins in that segment. Here, the

gene is divided into five segments each representing 20% of the

gene.

Results

Assessment on Benchmark Data
We first applied our methodology to synthetic data in order

to compare its performance to other methods. We investigated

the performance of five methods, namely cross-correlation

(Corr), DCF, the kernel approach of [25] (Kern), a GP

approach with no convolution (GP-NoConv), and the con-

volved GP approach developed in this paper (GP-Conv).

Tables 1 and 2 show the MNSE for the different delay

estimation methods as a function of the number of observa-

tions for synthetic data without convolution and with convo-

lution respectively. Note that the kernel and DCF methods

require an estimate of the noise variance and in this simulation

study we provide the algorithms with the true value, but that

would not be known in practice. We see that when no

convolution is introduced, the kernel method performs well but

is outperfomed by both GP methods. When convolution is

introduced the kernel method appears to break down and as

expected the GP-Conv outperforms the other techniques.

Figure 4. Computation of transcription speed from delay samples. Linear regression plots using the delay samples for the TIPARP gene (A)
and the histogram of speed samples (B). The 95% confidence interval is indicated in (A) by the dashed red lines with the median represented by the
solid red line. In (B) the 95% confidence interval is indicated by the red triangle markers (cf. Table 5).
doi:10.1371/journal.pcbi.1003598.g004
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We next applied the model to pre-mRNA data from Singh and

Padgett [6] where the delay in appearance of pre-mRNA signal at

exon-intron junctions was used to compute estimates of transcrip-

tion speed for 9 genes. Figure 3(A) shows the pre-mRNA signal for

the SLC9A9 gene (the same data shown in Figure 4d of [6]). The

delays read from these plots were used in [6] to determine

transcription speeds. Figure 3 (B–D) shows the fit obtained using

the kernel method, GP-NoConv and GP-Conv respectively.

Table 3 shows the delays read off the plots as well as values

obtained using the five delay estimation algorithms for different

regions of the nine genes presented in [6]. In each row the delay

estimate with the lowest normalised square error is highlighted.

Table 4 shows the MNSE for the five delay estimation algorithms

for all the genes. We see that the convolved GP method developed

in this paper outperforms the other techniques. This method has

the added advantage of inferring a latent function which links all

the observations and which can be used for downstream analysis.

Also, when analysis is genome-wide, reading delays off individual

plots is not feasible and furthermore when the sampling intervals

are irregularly spaced assigning delays manually would be error

prone. These results serve to justify the use of the convolved GP

method introduced in this paper.

Application to Estrogen Response ChIP-Seq Data
We applied our method to a ChIP-Seq time-course dataset

measuring pol-II occupancy genome-wide when MCF-7 cells are

treated with estradiol (E2). For our initial experiment, we

considered 3,064 genes which exhibit significant increase of pol-

II occupancy between 0 and 40 minutes after E2 treatment. These

genes were determined by counting the number of pol-II tags on

the annotated genes in the RefSeq hg19 assembly at 0 and 40

minutes after E2 treatment and computing the log2 ratio of these

counts. We keep those genes where this quantity is greater than

one standard deviation above the mean. For these 3,064 genes, we

filtered out genes less than 1000 bp in length and computed model

fits using the ChIP-seq time series data for the remaining 2623

genes. The estimation of the parameters fsf ,‘f ,fai,Di,‘i,sig5
i~1g

for a given gene was performed using maximum likelihood with

D1 fixed at zero, sf ~1 and the values si constrained to be equal.

Intuitively, one would expect the values of delay fDig5
i~1 to be

non-decreasing. We therefore keep only those genes where this

natural ordering is preserved for further analysis. We also discard

genes with ‘̂‘f ƒ10 and ‘̂‘f §200 since these are generally seen to be

poor fits. Small values of ‘̂‘f arise when the data is best modelled as

a noise process while large values model constant profiles which

are not interesting in our analysis. This left us with 383 genes

which we consider a conservative set of genes where there is

evidence of engaged transcription and where the model param-

eters can be confidently estimated. To rank these genes we

compared the log marginal likelihood of the model fit to that

obtained if we assume independence between the segments, which

is equivalent to setting the off-diagonal blocks in equation (8) to the

zero matrix.

Figure 2 (A–F) shows the inferred pol-II time profile and

histogram of the samples of the delay parameters for three of the

top 10 genes found to fit the model well. We note that a relatively

small number of activated genes fit the model well. This is

primarily because for shorter genes the pol-II occupancy quickly

rises over the whole gene such that the temporal resolution of the

data cannot capture the wave as it traverses the gene body. With a

closer or more evenly spaced time course we would expect a good

fit for a greater proportion of activated genes.

Figure 4 (A) shows the linear regression plots using the delay

samples for the TIPARP gene. Figure 4 (B) shows the histogram of

speed samples from which we can compute the confidence interval

for the speed estimate. The 95% confidence interval is indicated in

Figure 4 (B) by the red triangle markers (cf. Table 5). Table 5

Table 4. MNSE for the 5 delay estimation algorithms for all the genes using pre-mRNA data.

Corr DCF Kern [25] GP-NoConv GP-Conv

MNSE 0.115 1.787 1.974 0.090 0.065

doi:10.1371/journal.pcbi.1003598.t004

Table 5. Average transcription speed in kilobases per minute for the top ten genes that fit the transcription model well.

Gene Length (bp) 2.5% 50% 97.5%

TPM1 22196 1.6 2.4 4.1

WDR1 42611 1.0 1.6 3.5

TIPARP 32353 1.4 1.9 2.4

RHEB 53913 1.2 1.5 1.7

MYH9 106741 2.6 3.4 5.5

ACTN1 105244 0.6 2.8 4.2

PDLIM7 14208 1.7 3.5 6.4

ATP2A2 69866 3.6 6.8 10.2

RAB10 103595 1.4 2.6 4.4

AKAP1 36158 5.0 12.4 21.4

We use a Bayesian MCMC method for parameter estimation which provides the posterior distribution of the average transcription speed. We show the 2.5%, 50% and
97.5% percentiles of the posterior distribution.
doi:10.1371/journal.pcbi.1003598.t005
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shows the average transcription speeds for the top 10 genes

computed using the samples of the delay parameters. Figure 5

shows a box plot of the average transcription speeds computed

using the samples of the delay parameters for these genes.

The advantage of fitting each of the delay parameters

independently instead of enforcing a linear relationship is that it

allows us to take into account phenomena such as pol-II pausing

and provides a means to filter genes where the values of estimated

delay are not naturally ordered. Visual inspection of the inferred

time series of the top ranked genes is consistent with a

‘transcription wave’ traversing the gene. The transcription wave

is especially evident in the longer genes MYH9 and RAB10. This

motivates a closer look at long genes. Table 6 shows the average

transcription speeds computed using the samples of the delay

parameters for the 23 long genes found to fit the pol-II dynamics

model well. Grouping these genes according to the magnitude of

the median transcription speed allows us to compare our results to

those presented previously. From Table 6 we see that 12 (52%) of

these genes have average transcription speeds between 2 and 4 kb

per minute, a range that includes speeds previously reported in the

literature [5,6].

Clustering of promoter activity profiles. The inferred

latent functions for each gene model the pol-II activity adjacent to

the promoter. Clustering these profiles and examining the average

profiles of each cluster allows us to visualise the general trends and

also classify genes according to the immediacy and nature of the

response. This provides an alternative to clustering based on

mRNA abundance data (from microarray or RNA-Seq experi-

Table 6. Average transcription speed in kilobases per minute for long genes between 100 and 300 kilobases long.

Gene Length (bp) 2.5% 50% 97.5%

ACTN1 105244 0.6 2.8 4.2

ADCY1 148590 2.8 9.7 43.6

ARHGEF10L 158041 2.8 5.4 8.5

EPB41L1 120374 0.2 0.4 2.0

EPS15L1 110355 16.1 30.0 43.1

FARP1 102125 1.7 2.9 7.9

FLNB 163856 0.2 1.5 3.7

ITPK1 179005 0.3 2.9 6.8

JAK1 133282 0.6 2.2 4.2

JAK2 142939 0.6 2.4 5.3

KIAA0232 101441 0.9 2.3 4.0

KIF21A 150163 1.0 2.1 3.8

LARP1 104702 0.7 2.0 3.8

MYH9 106741 2.6 3.4 5.5

NCOR2 243050 6.5 10.9 20.5

NRIP1 103571 2.9 4.7 6.4

PKIB 116142 0.6 1.0 2.4

RAB10 103595 1.4 2.6 4.4

RAB31 154326 0.7 1.6 3.0

RASA3 150902 0.6 1.4 6.0

SHB 153316 0.5 3.1 5.0

WWC1 180244 1.9 3.6 5.6

ZNF644 106174 0.1 0.2 1.5

doi:10.1371/journal.pcbi.1003598.t006

Figure 5. Box plot of speed estimates for the top ten genes
found to fit the transcription model well. The box indicates the
50% confidence interval between the first and third quartiles. The red
line indicates the median speed. The length of the whiskers is 1.5 times
the interquartile range.
doi:10.1371/journal.pcbi.1003598.g005
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ments) which is regulated both by mRNA production and

degradation processes. The production of mRNA may be delayed

relative to the actual activation of transcription at the promoter

causing genes which are actually triggered at the same time to

show different rates of mRNA production. Differences in

degradation rate can also influence mRNA abundance profiles.

It may therefore be difficult to distinguish early and delayed

transcriptional regulation from mRNA abundance data.

To classify the profiles we sample the mean of the latent

function (f (t) in equation 1) and use PUMA-CLUST [30] to

cluster the genes. PUMA-CLUST has the advantage of taking into

account the uncertainty of the latent function when clustering the

profiles. This uncertainty is computed from the posterior

covariance of f (t).

The 383 genes found to fit the model well were grouped into 12

clusters (Figure 6) with the optimal number of clusters determined

by the Bayesian Information Criterion. To determine the speed of

the response in each cluster, we compute the peak time of the

mean profile for each cluster (see Table 7). We used the

Genomatix Pathway System (GePS) to look for enriched canonical

pathways (p-value v0:01) in each cluster (supplementary material,

Table S4 in Text S1) and performed a Gene Ontology (GO)

analysis of the clusters using the DAVID tool [31,32] (supple-

mentary material, Tables S5-S7 in Text S1) showing that clusters

are enriched for a number of different GO categories. The GO

analysis identified early peaking clusters such as 2, 4 and 10 as

enriched for nucleotide binding proteins consistent with many

early genes being involved in downstream transcriptional regula-

tion. The clustering of the pair of genes JAK1 and JAK2 in cluster

10, which has a prominent early peak, suggests that the response of

both genes to E2 is rapid and coordinated. Since these genes are

known to act together in several biological pathways such as the

Figure 6. Clusters of promoter activity profiles. The mean profile in each cluster is shown by the bold line.
doi:10.1371/journal.pcbi.1003598.g006

Table 7. Peak time of the mean profile for each of the 12
clusters.

Cluster Peak Time (min)

1 48

2 32

3 61

4 32

5 100

6 58

7 80

8 122

9 242

10 22

11 297

12 80

Clusters 1, 2, 4 and 10 have relatively early peaks.
doi:10.1371/journal.pcbi.1003598.t007
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IL-6 signaling pathway and the IFN gamma signaling pathway,

their appearance in the same cluster suggests that the clustering is

likely to reveal other biologically significant relationships. A closer

look at the inferred pol-II promoter profiles of some examples in

cluster 10, the earliest peaking cluster, and the corresponding

inferred pol-II profiles over the last 20% of the genes reveals the

Figure 7. Influence of gene length on transcription time. Inferred promoter profiles and pol-II activity over the final 20% of the gene for three
genes in cluster 10. The panels on the right (A,C,E) show the inferred promoter profiles while the panels on the left (B,D,F) show the corresponding
pol-II activity over the final 20% of the gene.
doi:10.1371/journal.pcbi.1003598.g007
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Figure 8. Raw ChIP-seq data. ChIP-seq reads for three genes in cluster 10: CLN8 (A), BRI3BP (B) and JAK2 (C).
doi:10.1371/journal.pcbi.1003598.g008
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possible influence of gene length on mRNA production and how

clustering the inferred promoter profiles can account for this

influence and uncover potential co-regulation. Figure 7 shows the

inferred promoter profiles and the inferred pol-II profiles over the

last 20% for three genes CLN8, BRI3BP and JAK2 in cluster 10.

Figure 8 shows the corresponding raw ChIP-seq reads. The

lengths of the genes to the nearest kilobase are 23, 32 and 143 kb

respectively. We see that despite the last segment profiles peaking

at different times, the promoter profiles peak at approximately the

same time. The difference in peak time over the final segment of

the gene is most likely due to the length of the genes and accounts

for the amount of time the pol-II takes to move down the gene.

Such differences would mask potential co-regulation if we

attempted to cluster genes based on their mRNA profiles.

In Hah et al. [3] GRO-seq was used to measure pol-II

occupancy genome-wide when MCF-7 cells are treated with

estradiol (E2) at four time points (0, 10, 40 and 160 min after E2

treatment). In addition, steady state levels of mRNA for 54 genes

were measured using RT-qPCR at five time points (0, 10, 40, 160

and 320 min after E2 treatment). These data show a delay of

between 1-3hr between peaks in the pol-II occupancy at the 59 end

of a gene and peaks in the mRNA steady state [3, Figure S4].

These data include the mRNA measurement for 20 genes whose

corresponding GRO-seq data peak is at 40 minutes after E2

treatment. Six of these genes namely CASP7, FHL2, GREB1,

ITPK1, NRIP1, WWC1 are found to fit our pol-II model well with

ChIP-seq data. Table 8 shows the peak time of the inferred

promoter profile Tp, the peak time of the inferred pol-II profile

over the last 20% of the gene Tlast, the GRO-seq peak time as well

as the mRNA peak time. For the GRO-seq and mRNA peak times

we show the peak times from Hah et al. [3, Figure S4] which are

limited to the finite set of sampling times. We see that all mRNA

peaks occur after Tlast. The large value of Tlast for WWC1 which is

a long gene *180 kb in length corresponds to a late peak in

mRNA at 320 minutes. This shows that the parameters obtained

by our model are biologically plausible. Based solely on the GRO-

seq data these genes were grouped together in [3] since they show

a peak at 40 min. However our modeling reveals a greater

diversity in the nature of responses. In fact the six genes appear in

three different early response promoter profile clusters (see

Table 8).

In the supplementary material, we compare the clustering

obtained from the inferred promoter profiles to that obtained if the

time series of the raw ChIP-seq reads are clustered and show that

our model has the potential to uncover relationships which may be

missed if we only consider the raw ChIP-seq reads.

Transcription factor binding. We investigated the TF

peaks in a 40 kbp region around the gene transcription start site

for all genes in each cluster using ChIP-seq data for a number of

TFs measured under similar experimental conditions (i.e. MCF-7

breast cancer cells treated with E2) in the cistrome database

(http://cistrome.org). In earlier work on the estrogen interactome,

Fullwood et al. [33] suggest that most long range interactions

between TF binding sites and gene enhancers are limited to a

range of about 20 kb. We therefore investigate the region from 2

20 kb to 20 kb relative to the TSS (results for other regions around

Table 8. The peak time of the inferred promoter profile Tp,
the peak time of the inferred pol-II profile over the last 20% of
the gene Tlast, the GRO-seq peak time as well as the mRNA
peak time (from [3, Figure S4]).

Gene Cluster Tp Tlast GRO-seq Peak mRNA Peak

CASP7 1 36 47 40 160

FHL2 1 42 55 40 160

GREB1 2 30 46 40 320

ITPK1 2 36 64 40 160

NRIP1 10 22 40 40 160

WWC1 10 23 81 40 320

doi:10.1371/journal.pcbi.1003598.t008

Table 9. Analysis of transcription factor binding in 40 kbp regions of genes in gene clusters obtained from inferred promoter
activity profiles.

Cluster TFs

ERa FOXA1 c-FOS c-JUN MYC SRC-3 TRIM24

1 (37) 27 (**) 14 16 (*) 6 4 25 (*) 27

2 (47) 31 (*) 19 (*) 16 7 7 36 (***) 38

3 (18) 11 5 7 5 6 (**) 11 12

4 (29) 20 (*) 11 9 7 2 18 23

5 (27) 15 4 6 8 (*) 9 (***) 16 19

6 (40) 27 (*) 8 12 7 4 25 31

7 (24) 10 6 5 6 3 13 19

8 (47) 32 (*) 10 14 14 (**) 8 31 (*) 40 (*)

9 (26) 18 7 11 (*) 11 (***) 3 12 22

10 (38) 30 (***) 14 15 (*) 2 1 29 (**) 32 (*)

11 (13) 5 2 7 (*) 4 2 7 13 (*)

12 (37) 19 8 12 11 (**) 4 23 29

The number in parentheses in the first column is the cluster size. For each TF, we show the number of genes with peaks. Statistically significant proportions (p-value
v0:05) are indicated in bold (larger than expected). For p-values less than 0:01, the associated p-values are indicated in parentheses according to the following scale
(***: pv0:0001,**: pv0:001,*: pv0:01).
doi:10.1371/journal.pcbi.1003598.t009
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the TSS ranging from 1 to 100 kb are shown in the supplementary

material (Tables S11–S14 in Text S1)). Table 9 shows the number

of genes with TF binding peaks for each cluster for 7 TFs namely

ERa [2], FoxA1 [34], c-Fos [35], c-Jun [35], c-MYC [36], SRC-3

[37], TRIM24 [38]. We found that the TFs RAD21 [39], CTCF

[39] and STAG1 [39] are ubiquitously bound and not useful in

uncovering cluster-specific TF binding. We investigate the

statistical significance of the proportions of genes in each cluster

with TF peaks in a 40 kb neighborhood of the TSS by comparing

the observed proportions to those we would expect in clusters of

the same size drawn at random from the set of all genes. In Table 9

statistically significant (p-value v0:05) proportions are indicated in

bold (larger than expected). For p-values less than 0:01, the

associated p-values are indicated in parentheses according to the

following scale (***: pv0:0001,**: pv0:001,*: pv0:01).

Interestingly, clusters 1, 2, 4, and 10, which show an early peak

in the mean promoter profile, are all enriched for ERa and

FOXA1. These clusters, with the exception of cluster 4, were also

found to be enriched for the ERa motif near the promoter. The

enrichment of both ERa and FOXA1 in these clusters is in line

with conclusions drawn in Hurtado et al. [40] where it was

suggested FOXA1 mediates ERa binding. We also investigated the

overlap of the binding sites for ERa and FOXA1 both in the 151

genes belonging to these clusters and genome-wide using the peaks

obtained from [2] (ERa) and [34] (FOXA1) and reported in the

cistrome database. We investigated the 40 kb region 220 kbp to

20 kbp relative to the TSS. Table 10 shows the number of ERa
and FOXA1 peaks and the overlap (Two peaks are said to overlap

if they have at least one base pair in common). We see that when

we consider the rapid response genes in clusters 1, 2, 4, and 10

the percentage of overlap increases to 16% (35/220) whereas the

overlap is 9% (956/11056) when we consider all genes. The

significance associated with this elevated overlap is p = 0.004 given

the null hypothesis of a random gene list of the same size (results

for other regions around the TSS ranging from 1 to 100 kb are

shown in the supplementary material (Tables S15 -S18 in Text

S1)). Taken together, the results in Tables 9 and 10 identify genes

that respond to E2, with clusters 1, 2, 4 and 10 most likely to

contain the earliest estrogen responsive genes.

Discussion

In this work we have presented a methodology for modelling

transcription dynamics and employed it to determine the

transcriptional response of breast cancer cells to estradiol. To

capture the movement of pol-II down the gene body, we model the

observed pol-II occupancy time profiles over different gene

segments as the delayed response of linear systems to the same

input. The input is assumed to be drawn from a Gaussian process

which models the pol-II activity adjacent to the gene promoter.

Given observations from high-throughput data such as pol-II

ChIP-Seq data, we are able to infer this input function and

estimate the pol-II activity at the promoter. This allows us to

differentiate transcriptionally engaged pol-II from pol-II paused at

the promoter and yields good estimates of transcriptional activity.

In addition to estimating the transcriptional activity at the

promoter, inferring the pol-II occupancy time profiles over

different gene segments allows us to compute the transcription

speed. We expect the delay parameters of different gene segments

to be non-decreasing and this provides a natural way to determine

genes that are being actively transcribed in response to E2.

Clustering the inferred promoter activity profiles allows us to

investigate the nature of the response and group genes that are

likely to be co-regulated. We found that the four clusters

significantly enriched for both ERa and FOXA1 binding within

40 kb according to public ChIP-Seq data were those that showed

the earliest peak in pol-II activity at the promoter. ERa and

FOXA1 ChIP peaks in the neighbourhood of these genes were

also more likely to be overlapping than the average for ChIP-

identified binding events of these TFs genome-wide. This

observation provides some support for the previously proposed

role of FOXA1 as a mediator of early transcriptional response in

estrogen signalling. These results also show that our method can

help regulatory network inference. The inferred promoter activity

profiles pinpoint the times of transcriptional activation very

accurately without confounding transcriptional delays. As genes

with similar inferred promoter activity profiles are likely to have

similar TF binding profiles, they are likely to be co-regulated as

well. The promoter profiles should therefore lead to more accurate

predictions of regulator-target relationships using time-course-

based methods (e.g. [9]) than using expression time course data.

As well as modelling transcriptional speed and transcriptional

activity profiles, the proposed modelling approach may have other

useful applications. For example, recent research has uncovered a

link between transcription dynamics and alternative splicing [41].

It is believed that aberrant splicing can cause disease and a

number of studies have tried to understand the mechanisms of

alternative splicing [42]. The proposed model can potentially be

used to identify transcriptional pausing events, and such results

could be usefully combined with inference of splice variation from

RNA-Seq datasets from the same system. Also, with the increasing

availability of high-throughput sequencing data exploring multiple

layered views of the transcription process and its regulation, the

convolved modelling approach developed here has the potential to

be usefully applied to more complex coupled spatio-temporal

datasets.

Supporting Information

File S1 Gene lists and clustering results. The files in this

archive include the list of 2623 genes found to exhibit differential

pol-II occupancy between 0 and 40 min after E2 treatment and

also greater than 1000 bp in length. A BED file with the

coordinates of the genes according to the hg19 annotation and a

Table 10. Overlap of ERa and FOXA1 binding in a 40 kb region around the TSS.

Genes # of ERa peaks # of FOXA1 peaks ERa and FOXA1 overlap

Clusters 1, 2, 4, and 10 (151) 220 (112) 86 (44) 35 (0.004)

All genes (* 20,000) 11056 4626 956

The numbers in parentheses in the first column are the number of genes. In each TF peak column, we show the expected number of peaks in a set of random random
genes of the same size in parentheses. In the overlap column the associated p-value is shown in parentheses.
doi:10.1371/journal.pcbi.1003598.t010
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list of 383 genes found to fit the pol-II model well and their cluster

indices.

(ZIP)

Text S1 Supporting text. This file contains additional details

of the mathematical model and results of biological validation via

gene ontology analysis and transcription factor binding.

(PDF)
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