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Abstract

Background: Transcription factors (TFs) act downstream of the major signalling pathways functioning as master
regulators of cell fate. Their activity is tightly regulated at the transcriptional, post-transcriptional and post-translational
level. Proteins modifying TF activity are not easily identified by experimental high-throughput methods.

Results: We developed a computational strategy, called Differential Multi-Information (DMI), to infer post-translational
modulators of a transcription factor from a compendium of gene expression profiles (GEPs). DMI is built on the
hypothesis that the modulator of a TF (i.e. kinase/phosphatases), when expressed in the cell, will cause the TF target
genes to be co-expressed. On the contrary, when the modulator is not expressed, the TF will be inactive resulting in a
loss of co-regulation across its target genes. DMI detects the occurrence of changes in target gene co-regulation for
each candidate modulator, using a measure called Multi-Information. We validated the DMI approach on a
compendium of 5,372 GEPs showing its predictive ability in correctly identifying kinases regulating the activity of 14
different transcription factors.

Conclusions: DMI can be used in combination with experimental approaches as high-throughput screening to
efficiently improve both pathway and target discovery. An on-line web-tool enabling the user to use DMI to identify
post-transcriptional modulators of a transcription factor of interest che be found at http://dmi.tigem.it.

Background
Modulation of transcriptional regulation in a cell can be
exerted at many different levels, including transcription
factor (TF) activation/deactivation by post-translation
modifications (PTMs). PTMs involve amino-acid resi-
dues in a protein that are covalently modified “on the
fly”. Through this mechanism, a cell is able to tightly
regulate protein function such as its activity, localisation
and interaction with other molecules. Capturing this
kind of regulatory interactions using only transcriptional
data, such as gene expression profiles (GEPs), is consid-
ered challenging since GEPs are further downstream of
the PTM event and only indirectly linked to it.
Post-translational modulations act as a trigger for

many signalling network and thus their alterations are
found in many pathologies. Hence, many efforts have

been made in the reconstruction of phosphorylation net-
works from experimental data [1]. These studies have
then led to the development of new computational
methods to predict the substrate specificities of protein
kinases [1–7]. Initially, computational approaches relied
on protein sequences in order to identify the consensus
motif recognized by the active site of kinase catalytic do-
main [2–4]. However, such motifs often lack sufficient
information to uniquely identify their physiological
substrates.
Recently, more sophisticated algorithms have been

proposed: Linding et al. [6] developed a analysis pipeline
(NetworKIN) to assign experimentally validated phos-
phorylation sites to specific kinases by combining con-
sensus information from sequence motifs with protein
interaction networks. NetworKIN is based on the avail-
ability of experimental biochemical data, thus limiting
the general applicability of this approach; Wang et al. [5]
proposed a reverse-engineering method based on an
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information-theoretic approach to infer new post-
translational modulators of the MYC transcription factor
from gene expression profiles. The authors exploited
changes in the transcriptional level of a kinase/phosphat-
ase across a set of GEPs to infer the post-translational
activation of MYC. Specifically, they developed a compu-
tational method (MINDy) based on the estimation of
pair-wise Conditional Mutual Information between a TF
and its target genes. MINDy detects whether changes in
the expression level of a kinase affect the co-expression
between a TF and one of its target genes. This method
requires the TF and its target gene(s) to be co-expressed
across a set of GEPs, at least when the TF is active.
Some TFs, however, are not co-expressed with their tar-
get genes, thus limiting MINDy applicability.
Here, we developed and applied a new reverse-

engineering strategy called Differential Multi-Information
(DMI or ΔI method) to infer post-translational modula-
tors of a TF of interest. Our working hypothesis is the sce-
nario depicted in Fig. 1a–b, in which a modulator (i.e.
kinase/phosphatases) when expressed activates the TF.
The TF, in turn, will induce concurrent expression
changes in its target genes, hence these genes will be co-
expressed among themselves (Fig. 1a). On the contrary,
when the modulator is not expressed (or not functional),
the TF will be inactive and thus not able to regulate its tar-
get genes; this will result in a loss of co-expression among
target genes (Fig. 1b). DMI requires in input a subset of
the TF’s target genes and returns as output a ranked list of
predicted modulators. Crucially, DMI does not take into
account the TF expression levels, nor it requires the TF to
be co-expressed with its target genes.
We applied DMI to an experimental dataset consisting

of 5,372 GEPs [8] to identify kinases regulating 14 differ-
ent transcription factors for which we were able to col-
lect bona-fide transcriptional targets.
Our results demonstrate that DMI is able to detect

post-translation modulators of TFs from GEPs, thus
making it an ideal tool for both basic research and drug
discovery.

Results
DMI: a Differential Multi-Information approach to the
identification of post-translational modula-tors
We developed an algorithm (DMI) to identify post-
translational modulators (i.e. kinases or phosphatases) of
a Transcription Factor (TF) of interest from gene expres-
sion profiles (GEPs). DMI works by detecting changes in
the co-regulation of the TF’s target genes in the presence
or absence of the modulator (Fig. 1a–b). To this end, we
computed the Rényi Multi-Information measure (I) to
estimate the target genes’ co-regulation (G1…Gd) [9]
(Material and Methods). Multi-information is a multi-
dimensional extension of pair-wise Mutual Information,

which quantifies the extent of statistical dependency
across a set of d variables. A null value of multi-
information implies that the d variables are statistically
independent, whereas positive values correspond to in-
creasing degrees of dependency, i.e. co-regulation.
In order to compute changes in the Rényi Multi-

Information I of a set of TF’s target genes G1…Gd in
the presence or absence of a modulator M across a set
of GEPs, we followed the procedure depicted in Fig. 1c:
we first sorted GEPs according to the modulator M’s ex-
pression; we then subdivided GEPs into three subsets
each containing the same number of profiles. In the first
subset (“Low”), the expression level of the modulator M
will be lower than in the second subset (“Medium”),
which in turn will be lower than in the third subset
(“High”). Finally, we computed the Difference in Multi-
Information (ΔI) between the High and Low subsets
(Fig. 1c). ΔI quantifies how much the modulator M is
able to influence the co-regulation of the TF’s target
genes. Positive values of ΔI imply that when the kinase
is present, the TF’s target genes are co-regulated and

TF

M

G1

G2 G3

TF

G1

G2 G3

a b

M

c

Low High

targets expression targets expression

ΔΙ

expression

Fig. 1 The Differential Multi-Information method. a Hypothetical
scenario in which a putative Transcription Factor (TF) is activated
by phosphorylation or de-phosphorylation through a Modulator
(M). G1, G2 and G3 are three downstream targets of the TF. In
presence of the Modulator (M) the downstream targets (G1, G2
and G3) become co-regulated through the active Transcription
Factor (TF). b In absence of the Modulator (M) the downstream
targets (G1, G2 and G3) are not co-regulated since the Transcription
Factor (TF) is not active. c For each iteration of the DMI method a
candidate modulator M is tested. First the GEPs are sorted according to
the expression level of the modulator M and the GEPs subdivided in
three (or more) subsets. The Differential Multi-Information (ΔI) of the
targets is computed always between the two subset where M expression
is either “High” or “Low” by estimating the Renyi Multi-Information and
taking its difference
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hence the kinase is able to activate the TF. On the con-
trary, negative values of ΔI indicate that the kinase is a
negative modulator of TF activity. Since M is not known
a-priori, ΔI is computed for each modulator M to be
tested. The modulators are then ranked by ΔI and by p-
value, computed using a permutation test, as detailed in
the Methods section. The full pipeline of the method is
summarised in Additional file 1: Figure S1.

Validation of DMI “in silico”
We generated two datasets (D1 and D2) consisting of
100 simulated GEPs each. In one half of the GEPs, the
TF target genes were co-expressed; in the other half they
were assumed to be independent (Material and
Methods).
Dataset D1 consists of 60 genes: 10 genes were as-

sumed to be the known targets of the TF; 50 genes were
assumed to be the potential modulators M of the TF, but
only 20 of them were the effective modulators. In
addition, we assumed that 10 of the remaining 30 poten-
tial modulators were indeed unknown targets of the TF
and hence co-regulated with the TF’s target genes, thus
making it harder for the methods to distinguish them
from the effective modulators.
Dataset D2 consists of 760 genes. As for dataset D1,

only 10 genes were assumed to be the known targets of
the TF, whereas the remaining 750 genes were assumed
to be potential modulators M of the TF, with only 50 of
them being the effective modulators (Material and
Methods).
The output of DMI is a list of all the possible mod-

ulators (50 in D1 and 750 in D2) ranked according to
their differential multi-information, and associated to
a p-value.
In order to estimate the performance of DMI, we com-

puted the percentage of correct predictions at each pos-
ition in the rank (also known as Positive Predictive
Value—PPV) as PPV = TP/(TP + FP), where TP are the
true positives and FP are the false positives. We also
computed the fraction of the real modulators discovered
at each position in the rank, (also known as Sensitivity)
equal to TP/(TP + FN), where FN are the false negatives.
A perfect performance would be a constant value of
PPV equal to 1.
The results for the first dataset D1 are shown Additional

file 1: Figure S2, as a PPV-Sensitivity curve, where the
method achieves a perfect performance, i.e. PPV = 1
(Material and Methods).
The results for the dataset D2 are instead reported

Additional file 1: Figure S3A, when using either two or
three subsets when subdividing the GEPs according to
the modulator expression level. Also in this case, the
DMI method achieves the best performance ranking the
50 modulators in the top 50 positions.

In order to simulate a more “biologically realistic” sce-
nario and to make it harder for the method to distin-
guish the modulators present in the dataset, we also
generated 4 additional datasets with the same parame-
ters as in D2 but with “noisy bins”. Specifically, in these
4 datasets the number of GEPs in which the TF’s targets
are dependent, is either 30, 40, 60 or 70 out of 100
GEPs. Hence, for example, consider the dataset where
the targets are dependent in 70 out of 100 GEPs. In this
case, when the dataset is discretized in 2 bins with equal
number of samples according to the expression of the
modulator, the first bin (i.e. low expression of the modu-
lator) should contain only GEPs in which the TF target
genes are not co-expressed. However, since this bin will
contain 50 GEPs, only in 30 out 50 GEPs the targets will
not be co-expressed, thus adding “noise” to the bin.
The PPV-sensitivity curves for these 4 dataset are re-

ported in Additional file 1: Figure S3B-E respectively. In
all of the cases tested, DMI performed significantly bet-
ter than random.
Finally, we also compared Multi-Information measure

against other two method used to estimate the depend-
ency among multidimensional variables. As reported in
the section “Additional analysis” of supplementary data
Multi-Information performed better than those based on
pair-wise measures.

Validation of DMI in human gene expression profiles to
identify modulators of transcription factors
DMI requires in input a list of target genes G for a TF of
interest, a set of Gene Expression Profiles (GEPs) and a
list of potential modulators M to test (Additional file 1:
Figure S1). Therefore, in order to evaluate the perform-
ance of DMI when applied to real experimental data, we
first collected bona-fide transcriptional targets from
Chromatin ImmunoPrecipitation (ChIP) [10] and bind-
ing motifs data [11] for Transcription Factors (TFs)
whose activity is regulated by a set of well-characterized
kinases. We thus selected 14 TFs for which high quality
information was available (Additional file 1: Table S3
and Material and Methods).
We then selected a compendium of 5,372 high quality

human GEPs representing 369 different cells and tissue
types, disease states and cell lines [8] (Material and
Methods). To generate the list of potential modulators
to test, we selected all of the 481 genes associated to a
Gene Ontology (GO) molecular function term equal to
“protein kinase activity” [12]. However, 190 out of 481
kinases had to be filtered out because their expression
level was not changing sufficiently in the gene expres-
sion compendium, thus leaving a total of 291 kinases as
potential modulators (Material and Methods).
We then applied the DMI method to the compendium

of 5,372 GEPs for each of the 14 TFs. We thus obtained,
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for each TF, a list of the 291 kinases ranked according to
their differential Multi-Information and with an associ-
ated p-value (Material and Methods).
In order to assess the predictive ability of DMI, we

collected the known kinases modulating the activity of
each of the 14 TFs from PhosphoPOINT [13], Networ-
KIN [6] and CEASAR [7]. We thus obtained a “Golden
Standard” for each TF consisting of experimentally veri-
fied kinases (Material and Methods). We estimated the
performance of DMI by computing the both the overall
PPV-Sensitivity and receiver operating characteristic
(ROC) curves across the 14 TFs (Fig. 2a–b) and both the
individual PPV-Sensitivity and ROC curves for each of
the TFs (Fig. 2c–d and Additional file 1: Figure S4). We
also reported the expected performance when ranking
the 291 modulators randomly (dashed line in Fig. 2). It
can be appreciated that the DMI performance is about
ten-fold better that the random performance.
These results show that top-ranking kinases according

to DMI are those that have a high probability of being
the modulators for most of the TFs tested.
We also predicted for each transcription factor the

kinase family regulating it, as well as the most likely sig-
nalling pathway controlling the TF activity. To this end,
we detected whether members of a specific family of ki-
nases or signalling proteins were statistically enriched at
the top of the ranked modulators’ list as reported in
Table 1 and Additional file 1: Table S1 (Material and
Methods).

Comparison with MINDy
We compared the performance of DMI with MINDy [5]
(Material and Methods), a state-of-the-art computational
method for the identification of post-translational modula-
tors from gene expression profiles. MINDy is based on a
pair-wise computation of Mutual Information between
the TF and each of its target genes, whereas DMI is based
on an ensemble estimation of the Multi-Information
across all of the target genes, without the need to assume
that the TF is co-expressed with its target genes.
We used MINDy to predict from the list of 291 ki-

nases, the modulators of the 14 TFs. The PPV curve
computed from MINDy predictions was compared to
the one obtained by applying the DMI method (Fig. 3).
Both methods performed better than random, but DMI
has clearly an improved performance. It has to be taken
into account, however, that DMI requires the knowledge
of the TF target-genes, whereas MINDy automatically
predicts, given the TF, its target genes, as well as, the
post-translational modifiers of the TF activity. Hence,
MINDy uses much less information than DMI, therefore
a lower performance is to be expected. Additional file 1:
Figure S5 shows the PPV curve for MINDy when forcing

MINDy to use only the collected bona-fide targets for
each one of the 14 TFs.
The results of the comparison show that the two ap-

proaches are complementary, in that if the targets of the
TF are known, DMI offers a better predictive ability than
MINDy; on the other hand if the targets are unknown,
DMI cannot be applied, whereas MINDy is generally
applicable.

Discussion and conclusions
DMI is based on the assumption that when a post-
translational modulator activates a transcription factor,
its target genes will be co-expressed, and hence co-
regulated (the opposite will happen if the modulator de-
activates the TF). We further assume that the level of ex-
pression of the modulator is a good proxy for its activity
in the cell. It is important to underline that our working
hypothesis does not rely on changes in the TF expres-
sion level, nor of its target genes but rather on changes
in their co-regulation. This is relevant, since we have
previously shown that changes in the co-regulation of
metabolic pathway enzymes are predictive of their tissue
activity even when their expression levels are low and do
not change significantly across tissues [14].
DMI relies on the estimation of the Renyi Multi-

Information of the TF’s direct target genes in a subset of
GEPs as a measure of the degree of their co-regulation.
Unlike other common techniques that measure pair-wise
co-regulation between genes, such as correlation and mu-
tual information, Multi-Information can estimate co-
regulation among all of the target genes at once. This prop-
erty makes Multi-Information more robust than pair-wise
approaches, thus reducing the number of false positives.
Our strategy, differently from the others proposed in

the literature, does not require the transcription factor
and its target genes to be co-expressed, thus making the
approach more generic, albeit requiring the TF’s target
genes to be known. We also performed additional ana-
lyses supporting our working hypothesis showing that in
presence of a post-translational modulator of a TF, the
TF itself does not necessarily change its expression level
nor it correlates with its target genes (Additional file 1:
Supplementary Data, sections 1.2 and 1.3 of “Additional
analysis” and Additional file 1: Figures S6–S8).
We first showed that DMI is able to correctly identify

post-translational modulators of 14 transcription factors
including P53, MYC and members of STAT and SMAD
families from a compendium of 5,372 GEPs [8].
One of the limitations of our approach is the assumption

that the expression level of the modulator (e.g. a kinase or
phosphatase) is a good proxy of its enzymatic activity,
which may not always be the case. Moreover, we require
that expression level of the modulator across the compen-
dium of GEPs changes at least one-fold, otherwise no
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Fig. 2 PPV-Sensitivity and ROC curves for 14 transcription factors. In parentheses the number of know kinases interacting with each TF present in
the “Golden Standard”. A pre-filtering step based on the Fold Change (FC) of the modulator was applied to remove kinases with a FC≤ 1 (Material
and Methods). Positive Predicted Value (PPV) or precision is computed as a fraction of TP/ (TP + FP). Sensitivity (or true positive rate, TPR) is
computed as a fraction of TP/ (TP + FP). True Negative Rate (TNR) is coputed as 1 – Specificity with Specificity equal to TP/ (TP + FP). a The
cumulative PPV-Sensitivity curve of DMI across the 14 transcription factor obtained by averaging the individual PPV-sensitivity curves of each TFs
(Material and Methods); b The cumulative receiver operating characteristic (ROC) curve of DMI across the 14 transcription factor (Material and
Methods); c PPV-sensitivity curve for each one of the 14 transcription factor in which we compared the performance of DMI with and without
applying a significance threshold for the p-value (P < 0.05) after Benjamini-Hochberg correction; d ROC curve for each one of the 14 transcription factor
in which we compared the performance of DMI applying a significance threshold for the p-value (P < 0.05) after Benjamini-Hochberg correction
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significant prediction can be made. A further limitation is
that DMI needs in input a subset of the TF’s target-genes.
Despite these limitations, DMI can be effectively used

for the identification of post-translational regulatory in-
teractions affecting the activity of a transcription factor
in an efficient and cost-effective manner, thus filling the
gap between transcriptional networks, identified by clas-
sic reverse-engineering approaches, and signalling net-
works identified by ad-hoc experimental approaches.

Methods
Estimation of the Rényi Multi-Information
The Rényi Multi-Information (RMI) can be used to esti-
mate the statistical dependency among d real-valued
random variables X = (X1, X2,…, Xd) with joint probabil-
ity density function f :ℝd→ ℝ and marginal densities fi :
ℝ→ℝ, 1 ≤ i ≤ d [9, 15]. For α ≠ 1, RMI is defined for any
real parameter α, assuming the underlying integrals
exist, as:

Iα Xð Þ ¼ Iα fð Þ ¼ 1
α−1

Z
ℝd

f α x1…xd
� �

Qd
i¼1f i x

ið Þ
� �α−1d x1…xd

� �

When α = 1, Ia (X) is defined in the limit I1 = loga→ 1Iα.
Indeed, the classical multi-information across d variables
is just a special case of RMI with α = 1. In what follows,
we set α = 0.99.
As reported in [15] the RMI among the d real-valued

random variables X = X1, X2,…, Xd from a sample of
i.i.d. random variables X1 : n =X1,X2,…,Xn, we adapted
an algorithm based on the generalized nearest-neighbor
graph with the copula transformation. First of all, the al-
gorithm estimates the entropy Hα(f ) for α ∈ (0, 1) as
follows:

Ĥ X1:nð Þ ¼ 1
1−α

log
Lp X1:nð Þ
γn1−p=d

…where p ¼ d 1−αð Þ

where Lp(⋅) equals to the sum of the p-th power of Eu-
clidian distance of the nodes in the nearest-neighbor
graph NNS(⋅) for some finite non-empty S ⊂ℕ+; γ is a
numeric constant dependent on d, p and S that can be

Table 1 Kinase subfamilies predicted by DMI to modulate the 14 TFs used for validation

TFs Subfamily Predictions

CDX2 PIM, MAPK [db], DMPK, CDC2/CDKX [db], SYK/ZAP-70, Lammer, VRK

E2F MAPK [db], CSF-1/PDGF receptor, CaMK

ELK1 CSF-1/PDGF receptor (0.001), MAPK [db]

ETS1 CaMK [db], HIPK, MAPK [db]

GATA1 CaMK, HIPK, MAPKK [24], GCN2, MAPK [db]

GATA2 CaMK, MAPK [db], DMPK, SRC [25]

MYC CaMK [26], CSF-1/PDGF receptor [27], MAPK [db], HIPK, GCN2, SRC [28]

SMAD3 DMPK [db], CSF-1/PDGF receptor [27], MAPK [db], PIM, Lammer, CaMK [db]

SMAD4 CaMK [db], DMPK, MAPK [db], PIM, HIPK [29], GCN2, SRC [db]

STAT1 CaMK [db], BUB1, STE20

STAT3 CSF-1/PDGF receptor [db], DMPK, SYK/ZAP-70

STAT6 EGF receptor [30], Fibroblast growth factor receptor [31], I-kappa-B kinase, CSF-1/PDGF receptor [32], MAPKKK [33], JAK [db], AXL/UFO

TCF4 CaMK [34], DMPK, MAPK [db], PIM, HIPK

TP53 CSF-1/PDGF receptor [35], Lammer [db], MAPK [db], DMPK [db]

In bold, subfamilies correctly identified by DMI as confirmed either by literature or by a phospho-interactome database [db] (Material and Methods). Kinase
subfamilies are sorted according to the p-value of their enrichment score and results have been cut with a p-value threshold of 0.01
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Fig. 3 Comparison between MINDy and DMI for the
identification of the post-translational modulators of 14 TFs. PPV
(Positive Predicted Values) vs. Ranked Modulators plot for MINDy
and DMI methods. DMI performance when selecting only the
modulators with a fold-change greater than one (FC > 1) (black
line), or when keeping only the predicted kinases with a p-value
P < 0.05 (blu line). The expected performance of a random algo-
rithm is 0.06 (red dashed line). Since the absolute value of ΔI is
not strictly comparable among different TFs, because it also de-
pends on the number of targets, we computed for each tested
kinase a normalized ΔI value as: ΔI = (IHIGH − ILOW)/(IHIGH + ILOW)
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estimated empirically from a large sample (n≫ 1) [15].
Finally, the Rényi Multi-Information Iα of the d variables
X = X1, X2,…, Xd from a sample of i.i.d random variables
X1 : n = (X1… Xn) can be computed as [15],:

Î α X1:nð Þ ¼ −Ĥ α Ẑ1; ; Ẑ2;…; ; Ẑn
� �

Where Ĥα is defined as before and the sample

Ẑ1; ; Ẑ2;…; ; Ẑn
� � ¼ F̂ X1ð Þ; F̂ X2ð Þ;…; F̂ Xnð Þ� �

. F̂ ⋅ð Þ is
called empirical copula transformation [16], where the j-
th coordinate of Ẑi equals:

Ẑ j
i ¼

1
n
rank Xj

i; Xj
1;X

j
2;…;Xj

n

� �� �

where rank (x, A) is the number of elements of A less
than or equal to x.
The computational complexity T(n) for the estimation

of Rényi Multi-Information strongly depends of the
complexity of the K nearest-neighbors algorithm, which
is linear in the number of points and the number of fea-
tures for each point, and the complexity of copula trans-
formation, which is quadratic in the number of points.
Specifically, the computational complexity for the esti-
mation of Rényi Multi-Information is:

T nð Þ ¼ O n2d þ nd
� �

where n is the number of i.i.d. samples used for its esti-
mation (in this setting it represents the number of gene
expression profiles) and d is the number of features of
each i.i.d sample (i.e. number of target genes).

Convergence of Rényi Multi-Information estimator (Îα)
We tested the convergence of the estimation algorithm
to the true value of the Rényi Multi-Information numer-
ically by generating simulated dataset of 4000 i.i.d. sam-
ples each, sampled from a multivariate Gaussian
distribution of dimension d = 3, 10 or 20 with zero mean
and an identity covariance matrix, corresponding either
to independent variables (i.e. the true value is I = 0), or
to a randomly chosen symmetric covariance matrix, cor-
responding to dependent variables (i.e. with an I > 0).
The estimation of Îα = 0.99 among d = 3 variables and its
error are shown in Additional file 1: Figure S9 in the
case of dependent variables (i.e. I > 0), and in Additional
file 1: Figure S10 in the case of independent variables
(i.e. I = 0). Additional file 1: Figure S11 reports the esti-
mation of Îα = 0.99 among 10 and 20 variables in both
cases of dependent and independent variables.
We then repeated the same analysis as above, but this

time generating simulated dataset of 4000 i.i.d. values
sampled from a multivariate Beta distribution (rather
than a Gaussian as before) of dimension 10 and 20 with
alpha and beta parameter randomly selected from the
standard uniform distribution in the open interval [0,1].

Additional file 1: Figure S12 shows the estimation of Îα = 0.99

among 10 and 20 variables in the case of dependent and in-
dependent variables. The Gaussian Copula transformation
was used to build these distributions. For more details and
the closed-form expression of the true divergence with Beta
distribution please refer to [17] (lemma 14).

Differential Multi-Information method (DMI)
The DMI method is based on quantifying the change in
co-regulation among a set of downstream targets G1…
Gd of a TF in the presence or absence of a modulator M,
by estimating the difference in Renyi Multi-Information
between two subsets of GEPs. These subsets are ob-
tained by first sorting GEPs according to the expression
of the modulator M being tested and then dividing the
ranked list of GEPs into two (or more) subsets. A pre-
filtering step is applied to remove those modulator genes
(M) whose expression does not change significantly be-
tween the “high” subset (i.e. where M is highly
expressed) and the “low” subset (i.e. M is expressed at
low levels). Specifically, we excluded from the analysis
those modulators whose average expression in the “high”
subset divided but their average expression in the “low”
subset (i.e. the fold change) is less than one.

Computation of the Significance of ΔI using permutation
tests
We used a permutation test in order to estimate the em-
pirical distribution of ΔI and, from that, the associated
p-value. Specifically, given a set of d target genes (i.e.
variables), we computed the significance of a modulator
M by randomly selecting d genes in L = 10,000 number
of trials, and each time computing the ΔI value thus
obtaining its empirical distribution. The p-value was fi-
nally estimated as the percentage of random trials with a
value of ΔI greater than the measured one.

Construction of the “in silico” dataset D1 and D2
In order to construct the in silico datasets D1 (and simi-
larly for D2) we simulated two sets of gene expression
profiles. One set (co-regulated set) was obtained by sam-
pling from a multivariate Gaussian distribution with zero
mean and a covariance matrix whose elements were
equal to ρσij

2, where ρ = 0.6 and σij
2 randomly chosen in

the interval ]0, 0.5[. The second set (independent set)
was obtained by changing the covariance matrix to a di-
agonal matrix with σii

2 randomly chosen in the interval
]0, 0.5[. The expression profiles of the potential modula-
tors (i.e. modulators that do not regulate the TF) were
generated using a Gaussian distribution with zero mean
and variance σ2 in the interval ]0, 0.5[. Finally, in order
to simulate the expression profiles of the effective modu-
lators we followed this strategy: in the co-regulated sub-
set, we sampled from a Gaussian distribution N (1,0.1)
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(i.e. with average expression equal to 1), on the contrary
in the independent subset, we used a normal distribution
N (1,0.1) (i.e. with average expression equal to 0).

Gene expression profile compendium and kinase
selection
We applied DMI to a compendium of 5,372 high quality
human GEPs representing 369 different cell and tissue
types, disease states and cell lines, described in [8]. GEPs
were measured using the Affymetrix HG-U133A plat-
form. We normalized this dataset using the Robust
Multi-array Average (RMA) normalization as imple-
mented in the R package Bioconductor [18] and using
the custom CDF files present on BrainArray [19], thus
obtaining a gene-wise normalised dataset.
The list of 481 kinases to test as possible modulators

for a given transcription factor was obtained by collect-
ing all the genes with an associated Gene Ontology
(GO) molecular function term equal to “protein kinase
activity”. Only 291 out 481 kinases were used in further
analyses, because only 291 out of 481 kinases had a fold
change greater than one in the GEP compendium.

Gene Set Enrichment Analysis for the prediction of
kinases’ family and signalling pathways
Gene Set Enrichment Analysis (GSEA) [20] was applied
to the ranked list produced by DMI to identify kinase
subfamilies and signalling pathways regulating the TF ac-
tivity. We downloaded the information regarding the
kinase subfamilies from a recent published study collect-
ing a total of 40 distinct subfamily [21] (Additional file
1: Table S2). In order to apply the GSEA, we used only
subfamilies with more than one member. We also col-
lected 22 signalling pathways from MSigDb (the curated
dataset CP:KEGG) [11] (Additional file 1: Table S3).

Comparison with MINDy
MINDy is computationally intensive and requires a large
amount of memory due to large number of samples in
our GEP compendium [5]. Thus, before running MINDy
we had to reduce the number of samples. To this end,
we built two dataset containing the 10 % and the 50 %
randomly selected samples from the compendium of
5,372 GEPs. We run MINDy using the default parame-
ters. In the first step MINDy computes Mutual Informa-
tion (MI) between a modulator and transcription factor
(TF) to test the statistical independence between them.
Once statistical independence between modulator and
TF pair is established, MINDy ranks all samples from
low to high expression of that modulator and selects
35 % of samples from each tail (low and high expression
samples). In each tail, MINDy computes the mutual-
information (MI) between the TF and all of its candidate
target genes (MIlow and MIhigh) and it assesses the

statistical significance of both MI values. If at least one
of the two MIs is significant then MINDy calculates
ΔMI, defined as ΔMI =MIhigh−MIlow.
We assessed the statistical significance of ΔMI using a

null model that is generated by randomising the data [5].
A TF-target pair is considered to be modulated by that
modulator if the (corrected) p-value of ΔMI is < =0.05.
Finally MINDy summarizes the result for each modulator
pair by counting the number of target genes by that pair.
Further details can be found in the original publication
describing MINDy [5].

Estimation of the cumulative PPV-Sensitivity and ROC
curves
For the estimation of the composite PPV-Sensitivity (or
Precision-Recall) curve across the 14 transcription fac-
tors the tecnique of the 11-point interpolated average
precision [22] was used. Basically, for each transcription
factor the interpolated PPV is measured at the 11 sensi-
tivity levels of 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
and 1.0. By definition the interpolated PPV pinterp at a
certain sensitivity level r is defined as the highest PPV
found for any sensitivity level r ' ≥ r: pinterp(r) =maxr ' ≥ r(r ')
[22]. To notice, that with this definition, the interpolated
PPV at a sensitivity of 0 is always defined as 1. Finally, the
composite PPV-Sensitivity curve among the 14 TFs was
estimated as the arithmetic mean across the 11 sen-
sitivity levels of the interpolated PPV of each tran-
scription factor.
For the estimation of the composite Receiver Oper-

ator Characteristic (ROC) curve the tecnique of the
vertical averaging [23] was instead used. The vertical
averaging consits in taking vertical samples of the
ROC curves for fixed true negative rates (TNR) and
averages the corresponding values of sensitivity. Spe-
cifically, 11 TNR levels of 0.0, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9 and 1.0 were used for the estimation
of the composite ROC curve among the 14 TFs. Ob-
viously one of more of the 11 TNR levels may be ab-
sent in some of the ROC cuvers we are vertical
averaging, in these cases the corrispondig value of
sensitivity to average has been simply estimated by
interpolation using its next and prcedent value in the
considered ROC curve.

Additional file

Additional file 1: Supplementary Data. Supplementary analysis and
supplementary figures and tables. (DOCX 2030 kb)
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