
This is a repository copy of Supporting Semantically Enhanced Web Service Discovery for
Enterprise Application Integration.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/10870/

Book Section:

Kourtesis, Dimitrios and Paraskakis, Iraklis (2009) Supporting Semantically Enhanced
Web Service Discovery for Enterprise Application Integration. In: Mentzas, Gregoris and
Friesen, Andreas, (eds.) Semantic Enterprise Application Integration for Business
Processes: Service-Oriented Frameworks. IGI Global , Hershey, New York , pp. 105-130.
ISBN 9781605668048

https://doi.org/10.4018/978-1-60566-804-8.ch006

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Copyright information:

This chapter appears in Semantic Enterprise Application Integration for Business
Processes: Service-Oriented Frameworks, edited by Gregoris Mentzas and Andreas
Friesen. Copyright 2009, IGI Global, www.igi-global.com. Posted by permission of the
publisher.

105

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 6

Supporting Semantically
Enhanced Web Service

Discovery for Enterprise
Application Integration

Dimitrios Kourtesis
South East European Research Centre (SEERC), Research Centre of the University of Shefield and

CITY College, Greece

Iraklis Paraskakis
South East European Research Centre (SEERC), Research Centre of the University of Shefield and

CITY College, Greece

INTRODUCTION

Service-oriented computing is emerging as the

dominant paradigm for enterprise computing and

is changing the way business software applications

are architected, developed, delivered, and con-

sumed. The model of Service Oriented Architecture

(SOA) and its manifestation through Web service

technology standards promise to alleviate many of

the barriers that stand on the path to Enterprise Ap-

ABSTRACT

The availability of sophisticated Web service discovery mechanisms is an essential prerequisite for

increasing the levels of eficiency and automation in EAI. In this chapter, we present an approach for
developing service registries building on the UDDI standard and offering semantically-enhanced pub-

lication and discovery capabilities in order to overcome some of the known limitations of conventional

service registries. The approach aspires to promote eficiency in EAI in a number of ways, but primarily

by automating the task of evaluating service integrability on the basis of the input and output messages

that are deined in the Web service’s interface. The presented solution combines the use of three technol-
ogy standards to meet its objectives: OWL-DL, for modelling service characteristics and performing
ine-grained service matchmaking via DL reasoning, SAWSDL, for creating semantically annotated

descriptions of service interfaces, and UDDI, for storing and retrieving syntactic and semantic informa-

tion about services and service providers.

DOI: 10.4018/978-1-60566-804-8.ch006

106

Supporting Semantically Enhanced Web Service Discovery for Enterprise Application Integration

plication Integration (EAI) and become enablers

for business agility in the modern enterprise.

In a service-oriented landscape where contem-

porary technologies are employed, the integration

of a set of enterprise applications (such as ERP,

CRM, or WMS), is typically performed by com-

posing the reusable Web services that are exposed

by the individual applications into service orches-

trations which are encoded in the popular WS-

BPEL language -Web Services Business Process

Execution Language- (Alves, et al., 2007). A BPEL

orchestration is essentially an executable program

that specifies how a set of services exposed by

different applications should be coordinated in

order to realise a specific business process, such

as order fulfilment or stock replenishment. By

deploying the service orchestration on a BPEL

execution engine, the fulfilled business process

is externalised as a normal Web service on the

corporate network, which means that it can be

consumed by client applications or re-composed

in new Web service orchestrations.

Web Service Discovery for
Enterprise Application Integration

During the phases of construction and mainte-

nance of a service orchestration, the business

process expert needs to search and discover Web

services that are suitable for carrying out each

of the key activities/functions in the workflow

of the envisaged business process. The Web ser-

vices that will finally be selected and included

in the orchestration, among the tens or hundreds

of services that may potentially be available on

the corporate network, have to match a number

of requirements. Depending on the application

domain and the type of business process that the

orchestration seeks to realise, these requirements

may involve functional or non-functional aspects

of service operation.

In every occasion, however, an essential

requirement that needs to be satisfied is the in-

tegrability of the Web service on the basis of the

input and output messages that are defined in the

service’s interface. The ability of a Web service to

be integrated in a service orchestration depends on

whether proper data flow and thus proper commu-

nication can be established among the two. More

specifically, proper data flow can be achieved

only if the amount of data which the BPEL or-

chestration provides as input when it invokes a

service are sufficient with regard to the amount

of data that the service expects to receive, and at

the same time, the amount of data that the service

produces as output are sufficient with regard to

the amount of data that the orchestration expects

to obtain. If this condition holds, integration can

be made possible even if the schema definitions

of the business objects to be exchanged by the

two parties along input and output messages are

not identical (the heterogeneity can be overcome

by applying some data mediation/transformation

process).

Undeniably, in a fully SOA-enabled business

application ecosystem with tens or hundreds of

deployed Web services, the task of manually

searching and identifying services that satisfy the

above requirements for integrability can become

extremely resource-intensive and error prone. This

is why the existence of intelligent automated Web

service discovery mechanisms that can address

these needs is considered a core challenge for

increasing the levels of efficiency and automa-

tion in EAI.

Web Service Discovery with UDDI

The need for efficient search and discovery of

services was the original motivation behind the

development of the Universal Description, Dis-

covery and Integration (UDDI) specification as a

standardised way to catalogue and discover reus-

able Web services (Clement, Hately, von Riegen,

& Rogers, 2004). The UDDI specification was the

result of an industry-driven standardisation effort

led by the OASIS consortium, and its scope was

not limited to providing support for EAI alone,

107

Supporting Semantically Enhanced Web Service Discovery for Enterprise Application Integration

but for a much wider range of use cases. Primar-

ily due to the active promotion of the standard by

the enterprise software industry, UDDI quickly

became one of the core standards in the Web

service technology stack and an integral part of

every major SOA vendor’s technology strategy
(see IBM WebSphere UDDI Registry, Oracle

Service Registry, SAP Enterprise Services Reg-

istry, Microsoft Windows Server 2003 Enterprise

UDDI Services, etc).

The UDDI specification standardises an XML-

based data model for storing descriptive informa-

tion about Web services and their providers, and

a Web service-based application programmatic

interface for publishing this information to the

registry and performing discovery queries. Web

service advertisements are represented as records

in the registry. In order to describe the functional-

ity of some service, its respective record contains

references to external descriptions of technical

specifications or to classification schemes which

are developed and maintained by either third-party

actors (e.g. standardisation bodies), or by service

providers themselves. Numerous such references

can be used for representing different aspects of

a Web service’s functional and non-functional
properties. For the purpose of being generic, the

UDDI standard does not prescribe any specific

method, formal or informal, for creating these

specifications and classification schemes. Over-

all, services advertised in UDDI registries can be

searched by prospective service consumers based

on one of the following criteria: i) the service’s
declared conformance to some technical speci-

fication, where matching is evaluated against a

provided specification identifier, ii) the service’s
attributed categorisation within a classification

system, where matching is evaluated against a

provided category title, and iii) the service’s name,
where matching is evaluated against a provided

keyword search term.

The fundamental problem with the UDDI de-

scription and discovery mechanism outlined above

is that despite the fact that the available service

descriptions are machine-processable, they lack

the formal rigour and machine-understandable

semantics that would make them amenable to

logic-based reasoning and automated processing.

As a result, UDDI registries cannot offer the kind

of fine-grained service matchmaking functionality

that would be required for supporting automated

integrability-oriented service discovery in the

context of EAI. With today’s state of practice, a
developer in a typical EAI scenario still needs to

retrieve the service-related artefacts referenced

by a UDDI service advertisement (and most

importantly the WSDL document) and inspect

them manually, in order to decide if the advertised

service can be interoperable with other services

assembled in a service orchestration.

Semantically-Enhanced
Web Service Discovery

In order to increase the levels of automation in

EAI and overcome the problem of ambiguity that

currently hinders automated service discovery,

service characteristics need to be described in

a formal, machine-understandable manner that

is amenable to processing within semantically-

enhanced service registries. The use of Semantic

Web technologies to represent service properties

and the introduction of semantic matchmaking

functionality in service registries (primarily

UDDI) has been the focus of numerous works in

recent years, generally within the field of Semantic

Web Services (SWS) research. The vision in SWS

research (Martin, Domingue, Brodie, & Leymann,

2007; Martin, Domingue, Sheth, Battle, Sycara,

& Fensel, 2007) is to bring semantics into the

realm of Web service specifications in order to

not only enable fully automated service discovery,

but facilitate the automation of a broad array of

design-time and run-time activities in service-

oriented computing.

In this chapter we present a new approach for

developing service registries that build on the

UDDI standard and offer semantically-enhanced

108

Supporting Semantically Enhanced Web Service Discovery for Enterprise Application Integration

Web service publication and discovery capabili-

ties. The approach aspires to promote efficiency

in EAI in a number of ways, but primarily by

automating the task of evaluating service in-

tegrability on the basis of the input and output

messages that are defined in the Web service’s
interface. Overall, the semantically-enhanced

service registry combines three existing standards

from the domains of Web service technologies and

Semantic Web technologies to address its objec-

tives: OWL-DL (McGuinness & van Harmelen,

2004), for modelling service characteristics and

performing fine-grained service matchmaking via

Description Logic reasoning, SAWSDL (Farrell

& Lausen, 2007), for creating semantically anno-

tated descriptions of service interfaces, and UDDI

(Clement, Hately, von Riegen, & Rogers, 2004),

for storing and retrieving syntactic and semantic

information about services and service provid-

ers. The approach that we put forward has been

applied and validated during the development of

the FUSION Semantic Registry1, a semantically-

enhanced service registry that has been utilised

in research project FUSION2 and is released as

open source software.

The organisation of the chapter is as follows.

Section 2 introduces the background to the dis-

cussed topic, outlines a set of requirements for

Semantic Web Service discovery in the context

of EAI, and provides a detailed review of related

research works that focus on semantic enhance-

ments to UDDI registries. Section 3 presents our

approach for describing service characteristics

in order to support integrability-oriented service

discovery with the FUSION Semantic Registry.

Section 4 presents an overview of the FUSION

Semantic Registry architecture and its application

programming interfaces. Section 5 provides a

walkthrough of the core activities performed dur-

ing service publication, while section 6 provides

a walkthrough of the activities performed during

service discovery. Lastly, section 7 summarises

the key points presented in this chapter, presents

an overview of how our work compares with other

related works, and provides an outlook to future

research directions.

BACKGROUND AND
RELATED WORK

In this section we briefly introduce Semantic Web

Services (SWS) as the background to the discussed

topic and outline some fundamental requirements

for Semantic Web Service discovery in the con-

text of EAI. We also provide a detailed review

of related research works which employ SWS

technologies in order to provide enhancements

for UDDI-based service registries, and contrast

each of these works with the requirements set

for discovery in the context of EAI. Note that a

detailed discussion on how the related works that

are presented here compare to our own solution

and to the overall requirements is not provided

here, but placed in appropriate sections throughout

the chapter and finally summarised in the end of

the chapter.

Semantic Web Service
Description Frameworks

The domain of Semantic Web Services is po-

sitioned at the intersection of Semantic Web

technologies and Web service technologies and

has been a distinct research theme since 2001

(McIlraith, Son, & Zeng, 2001). The vision in SWS

research is to bring formal logic-based semantics

into Web service technology standards such that

service characteristics can be explicated in an

unambiguous, computer-interpretable manner

that facilitates the automation of a broad range

of activities, primarily discovery, composition,

execution and mediation. The core idea is that by

using formal representation schemes to describe

Web service characteristics, service-related arte-

facts can be automatically processed by specialised

tools through logic-based inference and automated

reasoning.

109

Supporting Semantically Enhanced Web Service Discovery for Enterprise Application Integration

Evidently, the degree of automation that can

be achieved depends on the expressiveness and

overall capabilities of the semantic representa-

tion formalism that is employed for this purpose.

Recent years have seen the development of nu-

merous such formalisms for representing service

characteristics, termed SWS description frame-

works. The most prominent proposals towards a

standardised SWS framework have been OWL-S

(Martin, et al., 2004), WSMO (Bruijn, et al., 2005),

and WSDL-S (Akkiraju, et al., 2005). The latter

provided the foundation for the development of

SAWSDL (Farrell & Lausen, 2007) which was

eventually ratified by the W3C in 2007 and is

currently the only standard in the area of SWS.

Requirements for Semantic
Web Service Discovery in
the Context of EAI

The application of Semantic Web Service technol-

ogies for enhancing various aspects of Enterprise

Application Integration has been investigated in

numerous works (Bussler, 2003); (Haller, Gomez,

& Bussler, 2005); (Preist, Esplugas-Cuadrado,

Battle, Grimm, & Williams, 2005); (Anicic,

Ivezic, & Jones, 2006); (Izza, Vincent, & Burlat,

2006). One of the most recent research efforts

in this direction was that of project FUSION, an

EU-funded collaborative research project under-

taken by a consortium of industrial and academic

partners that was coordinated by SAP. FUSION

focused on improving the efficiency of business

process integration within and across enterprises

by leveraging SWS technologies for achieving

interoperability among service-oriented business

applications (Alazeib, et al., 2007). The project

delivered a complete reference framework and a

methodology for semantics-based EAI, a reference

implementation of the proposed framework, and

a validation of the overall approach through three

pilot studies on intra- and inter-organisational

integration.

The introduction of semantics to Web service

discovery is an essential requirement for realising

the Semantic EAI approach that is put forward

by FUSION. In general, the development of a

semantically-enhanced service registry is an un-

dertaking that encompasses the following research

challenges.

Firstly, devising means for describing ser-•
vice advertisements and service requests in

a formal, semantically-rich and machine-

understandable form that captures their sa-

lient properties and allows for comparing

them in an automated way through logic-

based inferencing.

Secondly, developing a service registry •
that augments the typical functions of

UDDI registries by introducing a reason-

ing mechanism that can process the se-

mantic service descriptions and carry out

automated matchmaking among service

advertisements and requests.

As a general rule, it would also be desirable

to address these requirements in a way that pro-

motes the use of open standards and open source

software, such as in the languages to be used for

encoding the semantic descriptions of services and

in the technologies to be used for the development

of the registry.

Beyond the above definition of research chal-

lenges which is broad and application-independent,

the context of Enterprise Application Integration

gives rise to some more specific requirements that

must be overcome for effective service discovery,

as the FUSION project has demonstrated.

Firstly, concerning the description of service

advertisements and requests, the context of EAI

imposes some requirements with regard to the type

of service properties that need to be described,

and consequently, imposes requirements with

regard to the ontology language and the ontology

structure that is employed for capturing them.

110

Supporting Semantically Enhanced Web Service Discovery for Enterprise Application Integration

More specifically, a fundamental criterion that

must be considered in Web service discovery for

EAI, as already mentioned in the introduction,

is the integrability of a service on the basis of

the input and output messages that are defined

in its interface. During matchmaking we need to

be able to evaluate if the amount of data that the

service consumer (i.e. the BPEL orchestration)

can provide as input to a service are sufficient

with regard to the amount of data that the service

expects to receive, and vice versa for the outputs.

Therefore, the input and output data parameters of

a service that are defined in WSDL (Christensen,

Curbera, Meredith, & Weerawarana, 2001) using

XML Schema Definitions (XSD) are regarded as

salient properties of that service that need to be

semantically represented. Consequently, a critical

requirement that is placed on the ontology lan-

guage in which the schemata of input and output

parameters are to be represented, is that it should

be expressive enough to allow the preservation

of the semantics of arbitrarily complex XML

Schema Definitions.

Secondly, concerning the design and imple-

mentation of the service registry, the context of

EAI places some important requirements with

regard to the matchmaking function and the ca-

pabilities of the underlying reasoning mechanism.

To enable automated discovery, the registry must

employ logic-based inferencing for the purpose

of matchmaking among service requests and

advertisements, on the basis of the ontological

representations of their I/O data schemata. For

that reason, it is a requirement that the registry’s
inference engine can perform sound and complete

reasoning at a level of expressiveness that is

equivalent to that of the ontology in which the I/O

data schemata are represented. In addition, since

the I/O-based matchmaking function evaluates

service suitability on the basis of the service’s
interface, i.e. only from a technical point of view,

it would be desirable for the registry to provide

an auxiliary semantic matchmaking function that

assesses the suitability of a Web service for some

given process task from a business point of view.

As demonstrated in the FUSION project, but also

in other related works that are presented next, an

intuitive way in which this could be achieved is

through category-based indexing and searching,

whereby each service is assigned a category

from some taxonomy of business areas/activities

which designates the intended functionality of

that service. This auxiliary matchmaking function

can significantly improve the results of service

discovery by filtering out advertised services that

happen to have integrable interfaces because their

inputs and outputs match the specifications of the

request, but are nevertheless performing business

tasks irrelevant to the needs of the requestor (e.g.

consider the functionality of CreateOrder vs.

CancelOrder).

Note that the above discussion of requirements

for the description of service properties and the

design and implementation of the service registry

is only a brief outline. A more detailed analysis of

the motivation behind these requirements and how

they are addressed in our approach and implemen-

tation is provided later in the chapter.

Related Work on UDDI-Based
Semantic Service Registries

The use of SWS frameworks for representing

discovery-related service properties and facili-

tating semantically-enhanced matchmaking in

Web service registries has been investigated in

numerous research works. In recognition of the

fact that UDDI is a widely endorsed Web service

technology standard with extensive support by

the industry, the vast majority of these works has

focused on combining these SWS frameworks with

UDDI-based service registries, rather than pro-

prietary registry back-ends. The rationale behind

this decision is that the best way to promote the

adoption of Semantic Web technologies is by en-

hancing today’s widely-endorsed technology stan-

dards with semantics whenever appropriate and

where feasible, instead of trying to introduce new

111

Supporting Semantically Enhanced Web Service Discovery for Enterprise Application Integration

standards. In this review we confine ourselves to

works that seek to promote semantically-enhanced

service matchmaking specifically in relation to the

open standard of UDDI, and in addition, works

that are not only theoretic but come with a proof-

of-concept system implementation.

Paolucci, Kawamura, Payne, & Sycara (2002)

from Carnegie Mellon University were the first to

propose that discovery in UDDI registries can be

significantly enhanced by introducing semantic

matchmaking among service descriptions. The

paper presents a matchmaking algorithm able to

recognise various degrees of matching among a

request and an advertisement that are described

with DAML-S (the precursor of OWL-S), by ap-

plying subsumption reasoning on the ontological

representations of their inputs and outputs. The

authors also propose to integrate a matchmaking

engine that realises this approach inside the UDDI

registry and provide a mapping between DAML-S

Profiles and the UDDI data model. Subsequent

work by the same group (Srinivasan, Paolucci, &

Sycara, 2005) proposes a revised mapping between

OWL-S Profiles and the UDDI data model, and

an improved version of the matchmaking algo-

rithm from Paolucci et al (2002). Since the SWS

framework that is adopted in this work is OWL-S,

the ontology language in which input and output

parameters are to be represented is OWL. As will

be shown later in the chapter, the OWL language

includes the dialect of OWL-DL which appears

to be sufficiently expressive for representing

XSD structures, so the requirement for ontologi-

cal expressivity that we described earlier could

be satisfied. Moreover, in the implementation

of their semantic service registry the authors

employ an inference mechanism that relies on

standard Description Logic reasoners like Pellet

and Racer which are known to perform sound

and complete reasoning over knowledge-bases

encoded in OWL-DL.

The divergence of this work with regard to

the requirements that we outlined in the previ-

ous section is very small and can be found in the

following. Firstly, the introduction of the OWL-S

matchmaker in the UDDI registry necessitates the

modification of the UDDI server’s API which is
a practice that conflicts with the standard. Sec-

ondly, the approach described in the papers lacks

an auxiliary semantic matchmaking method such

as category-based matchmaking for complement-

ing the I/O-based matchmaking (although the

implemented OWL-S/UDDI matchmaker tool

apparently supports classification-based search).

Thirdly, the implementation of the OWL-S/UDDI

matchmaker is freely available in binary form3

but the source code is not released in order to

be adapted and extended with regard to our set

requirements.

A research work by a different group at

IBM that expands the approach introduced by

Paolucci et al. (2002) is presented in Akkiraju,

Goodwin, Doshi, & Roeder (2003). The authors

present a method to improve the effectiveness

of service discovery in UDDI based on a two-

stage service discovery process which combines

syntactic category-based search via the standard

UDDI search mechanism, and semantic I-O-

based search via logic-based inferencing. They

also propose extensions to the specification of

the UDDI inquiry and publish API in order to

support automatic service composition based on

DAML-S service descriptions. The main idea is

that if no single matching service can be found

for a submitted service request, the registry could

attempt to construct a sequential composition of

Web services that fulfils the request by chaining

the output of one service to the inputs of another.

The authors report that they have implemented

and tested a registry that realises this approach

using DAML-S v0.7 for the service descriptions,

DAML+OIL for the representation of the domain

ontology in which inputs and outputs are defined,

DAMLJESSKB for performing inferencing, and

IBM’s implementation of UDDI version 2.0 for

the registry back-end.

The above described work does not match all of

the previously outlined requirements, because of

112

Supporting Semantically Enhanced Web Service Discovery for Enterprise Application Integration

the following reasons. Firstly, the category-based

matchmaking method is not a semantic one, and

as already explained this has several limitations.

Secondly, it is unclear whether the expressivity

of DAML+OIL would be sufficient for represent-

ing arbitrarily complex XSD schemata of service

inputs and outputs, and moreover, it is unclear

whether the ontology expressiveness supported by

the DAMLJessKB inference engine would suffice

for reasoning over such representations. Thirdly,

similarly to the approach of Paolucci, Kawamura,

Payne & Sycara (2002), this work proposes the

modification of the UDDI server’s API with non-
standard functions. Lastly, the reported implemen-

tation of the semantically-enhanced UDDI registry

has not been made publicly available, although

some of the ideas and functionality seem to have

been incorporated in the subsequent release of

IBM alphaworks Semantic Tools for Web Ser-

vices4, which is a set of Eclipse plug-ins (closed

source) for semantic matching and composition

of Web services that does not rely on UDDI as

the registry back-end.

Another approach for developing OWL-S-

based semantically-extended UDDI registries is

presented in Luo, Montrose, Kim, Khashnobish,

& Kang (2006). The key feature of the proposed

solution is that relationships among ontology con-

cepts which are encoded in OWL are resolved at

the time of publication and indexed in UDDI in a

way that enables purely syntactic querying at the

time of discovery using the standard UDDI API.

An OWL2UDDI transformation method is pre-

sented for analysing ontologies encoded in OWL

and representing associations among equivalent

concepts, parent concepts, and child concepts into

the UDDI data model, such that queries for some

concept would also return related concepts that

have been determined through reasoning at the

time of indexing. The modules for publishing and

query processing are placed on the client-side and

as a result no modifications to the UDDI server

implementation or interface are mandated.

This work diverges from our stated require-

ments because of the following reasons. Firstly,

as explained by the authors, the approach covers

only a portion of the vocabulary in the OWL lan-

guage, and thus has a rather limited expressivity

capacity that would not suffice for preserving the

semantics of arbitrarily complex XML Schema

Definitions. For example, it cannot cope with

property restrictions within definitions of OWL

classes. Secondly, the approach does not address

I/O-based matchmaking specifically, but rather, it

is said to support a generic matchmaking process

that compares OWL-S Profiles of service adver-

tisements and service requests as whole entities,

using one-to-one semantic property annotation

matching. As a result, it is unclear whether the

system that the authors have implemented takes

the principle of subsumption asymmetry among

inputs and outputs into consideration (i.e. that

for a match to exist, the output of the advertised

service must be a subtype of the output specified

in the service request, and the input specified

in the service request must be a subtype of the

input of the advertised service). Lastly, the paper

reports a proof-of-concept implementation of

the approach but the authors have not made it

publicly available.

An approach by the LSDIS group at the Uni-

versity of Georgia Athens based on the WSDL-S

specification is introduced in Sivashanmugam,

Verma, Sheth, & Miller (2003) and elaborated

in Li, Verma, Mulye, Rabbani, Miller, & Sheth

(2006). In the first of these two works the authors

present a theoretical approach for publishing

WSDL-S service descriptions that have been

semantically annotated with references to con-

cepts defined in an ontology. The paper presents

a WSDL-S to UDDI mapping for storing the

semantic annotations and facilitating subsequent

discovery of Web service operations based upon

them. A discovery algorithm is defined which first

selects the services using ontological concepts

representing the functionality of operations (i.e. a

113

Supporting Semantically Enhanced Web Service Discovery for Enterprise Application Integration

form of categorisation), and then uses inputs and

outputs to prune the search. The service requestor

can initiate the discovery by creating a semantic

request template that specifies the desired func-

tionality (i.e. category), inputs, and outputs, by

references to ontological concepts. In the subse-

quent work of Li et al (2006) the authors describe

the way in which Web service descriptions can be

annotated, published and discovered using Radiant

and Lumina, a pair of graphical tools integrated

with the METEOR-S Web Services Discovery

Infrastructure (Verma, Sivashanmugam, Sheth,

Patil, Oundhakar, & Miller, 2005) which supports

scalable publication and discovery in peer-to-peer

networks of distributed registries.

The approach by the LSDIS group is very

close to the requirements that we have set in the

previous section. The only exception concerns

the requirement of sufficient ontological expres-

sivity for the representation of service message

parameters and for reasoning, which is however

an essential requirement for integrability-oriented

service discovery. The theoretic approach that is

described in the papers is generic and does not

prescribe any particular ontology language for

creating semantic representations of inputs and

outputs or categories of functionality, neither

any specific reasoner for reasoning over these

representations. However, the implementation of

the approach which is available as open source

software with METEOR-S5 assumes the availabil-

ity of OWL ontologies and implements an OWL

reasoner based on the Jena API. The problem

with ontology expressivity lies in the process-

ing capabilities of Jena, because according to its

documentation6, Jena rule-based reasoners are able

to provide semantic entailments only for OWL

ontologies using the vocabulary of the OWL-Lite

dialect, and some constructs from the more expres-

sive dialect of OWL-DL. In order to mitigate the

effects from this lack of processing power Jena

implements the DIG description logic reasoner

interface for connecting to external reasoners, but

this does not suffice to overcome the issue, since

it is known that some OWL-DL constructs can-

not be expressed in the DIG “tell” language, and

some desirable queries are not possible. Overall,

it appears that the ontology expressivity supported

by the Jena-based reasoner would not suffice

for reasoning over representations of arbitrarily

complex definitions of XSD schemata of service

input and output message parameters.

A number of service discovery engine proto-

types have also been developed in the context of

the WSMX Working Group7 for supporting the

three different discovery approaches that are put

forward in WSMO, i.e. keyword-based discovery,

lightweight semantic discovery based on WSML-

Rule and WSML-DL, and heavyweight semantic

discovery based on WSML-Flight (Keller, Lara,

Polleres, Toma, Kifer, & Fensel, 2004). The

specific works however do not offer themselves

for direct comparison with the other approaches

presented above, as they do not attempt to provide

semantic enhancements to UDDI but rather stand

as independent WSMX environment components

that are not meant to be integrated with UDDI

registries.

INTEGRABILITY-ORIENTED
DESCRIPTIONS OF
SERVICE PROPERTIES

As mentioned in the previous section, seman-

tically-enhanced publication and discovery of

services in UDDI-based registries encompasses

two main objectives. Firstly, describing service

advertisements and service requests in a machine-

understandable form that captures their salient

characteristics and allows for comparing them

in an automated way. Secondly, augmenting the

typical functions supported by UDDI registries

(i.e. storing syntactic metadata about services and

their providers) with the addition of a mechanism

for semantic service indexing and matchmaking.

This section of the chapter discusses the first ob-

jective. More specifically, we first describe what

114

Supporting Semantically Enhanced Web Service Discovery for Enterprise Application Integration

are the salient service characteristics (functional

and non-functional properties) that are modelled

in order to support integrability-oriented service

discovery with the FUSION Semantic Registry,

and subsequently, we analyse how these char-

acteristics are captured in a suitable semantic

representation formalism.

Service Properties for Integrability-
Oriented Service Matchmaking

The Semantic Web Services research literature

features an abundance of different approaches for

service matchmaking. Each of them is intended

to address a specific set of requirements and

therefore focuses on a different set of service

properties, functional or non-functional ones. The

set of service characteristics that the FUSION

Semantic Registry considers during matchmaking

is a combination of functional and non-functional

properties and represents the minimum amount of

information that would be needed for determining

if some advertised service is capable of performing

some task and at the same time is syntactically

and semantically interoperable with the service

consumer, i.e. with the BPEL orchestration that

invokes the service and consumes its output.

Functional Properties of Web
Services: Inputs and Outputs

As already mentioned in the introduction, in

integrability-oriented service matchmaking we

need to detect if interoperability at the level of data

can be guaranteed among an advertised service

and its prospective consumer, such that proper

data flow and communication can be established

among the two. In the context of FUSION, but

also in most of the approaches for Semantic En-

terprise Application Integration, the service con-

sumer is an executable Web service orchestration

encoded in WS-BPEL. The WS-BPEL-encoded

orchestration is essentially a controller program

that is itself exposed as a Web service and whose

purpose is to specify how a set of Web services

exposed by different enterprise applications

should interoperate to realise a specific business

process. What we therefore seek to determine in

our integrability-oriented service matchmaking is

if some advertised service can be safely integrated

in this executable orchestration.

The instance data to be used at run-time by

the executable BPEL orchestration for invoking

the advertised service may have originated from a

previous step in the process (i.e. from some other

Web service participating in the orchestration),

may have resulted from numeric calculations or

string manipulations within the BPEL code, or may

have been provided to the controller service from

the external environment (i.e. from the system that

triggered the execution of the BPEL orchestra-

tion). Similarly, the instance data that the BPEL

controller service will receive as output from the

invoked service may later on be fed into some

other Web service taking part in the orchestration,

may be used for performing internal calculations

that affect control flow, or may be returned by the

controller service to the environment. Data-level

compatibility among the inputs and outputs of Web

services participating in an orchestration and the

orchestrator service itself is therefore an essential

requirement for guaranteeing communication and

composability (Kourtesis & Paraskakis, 2008a;

Kourtesis & Paraskakis, 2008b).

In plain terms, in order to assert this notion of

data-level compatibility we need to ensure that

the data that the controller BPEL service is able

to provide upon invocation are sufficient with

regard to the input data that the advertised service

expects to receive, and conversely, the output data

that the advertised service produces are sufficient

with regard to the data that the controller service

expects to receive. We use the term sufficient to

denote that the data schemata of the two parties

may not necessarily be identical for integration

to be possible. Rather, it would suffice to assert

that the service consumer can provide at least the

amount of data that the advertised service expects

115

Supporting Semantically Enhanced Web Service Discovery for Enterprise Application Integration

to receive, and at the same time, the advertised

service can generate at least the amount of data

that the consumer (i.e. the controller service)

expects to obtain. If this can be asserted, then it

is safe to assume that a transformation from the

more informative data schema to the least infor-

mative one can be obtained in a straightforward

manner (manually or semi-automatically) and

therefore data flow in the business process can

be made possible.

This relates directly to the notions of covari-

ance and contravariance applied in the context of

function subtyping and safe substitution, which

have been studied in detail within type-theory and

object-oriented programming research (Simons,

2002). If we attempt to draw parallels with service-

orientation, we could say that in order to substitute

a service request with a service advertisement the

first must be shown to subsume the latter (i.e. the

request must be more generic than the advertise-

ment). In other words, the advertisement must

be proven to be a subtype, or special case, of the

request. For this subsumption ordering to hold,

the subsumption relation among the input types

of the request and the input types of the advertise-

ment must be contravariant (i.e. the advertisement

input types must subsume the request input types),

while the subsumption among their output types

must be covariant (i.e. the request output types

must subsume the advertisement output types).

In practical terms, if a data parameter subsumes

another, it means that the one which is subsumed

is more specific and thus more informative than

the one which subsumes it.

Evaluating this type of compatibility is par-

ticularly meaningful in cases where two enterprise

applications share a data model specification as a

basis for exchanging interoperable business ob-

jects or electronic documents, but are not obliged

to instantiate or make use of all schema attributes

for every entity defined in that model. As a re-

sult, the case may arise where the developers of

different applications have chosen to instantiate

the schema attributes of a base entity in different

ways, thus arriving to only partially overlapping

and effectively incompatible definitions of data

parameters that nevertheless carry the same name.

This is also a typical situation when working

under the assumption of a shared base ontology

that can be specialised and customised for niche

application domains through subclassing and ap-

plying restrictions on class definitions, as in the

case of FUSION (Bouras, Gouvas, & Mentzas,

2008). Different developers may choose to ex-

tend a base ontology concept in different ways,

thus creating potential interoperability problems.

Figure 1 illustrates an example case in which the

base concept of FUSIONAddress (depicted in

the middle column) has been specialised in two

different ways, for modelling the data spaces of

two different enterprise applications.

Although System1_Address and System2_Ad-

dress are subclasses of the same concept (FU-

SIONAddress), interoperability can be guaranteed

only when information flows from System2 to

System1, and not the other way around. This

is because the schema of System2_Address is

more informative than the schema of the latter.

To illustrate this, let us assume that we wished a

BPEL orchestration controller to consume some

service exposed by System2, which required to be

provided with address information as input (e.g. in

order to calculate the cost of shipping some item).

If the controller service had obtained this address

information in a previous step from System1 we

would have an impedance mismatch problem,

because System2 expects to receive data for the

hasDistrict and hasFloor attributes that are not part

of System1_Address, thus rendering integration

impossible. On the contrary, if we wished to feed

address-related data retrieved from System2 into

System1 then a transformation function (within

the BPEL code or externally via XSLT) could be

provided to take care of the mapping.

The overall integration-oriented principle of

asserting that the consumer is able to provide at

least the amount of input data expected by the

advertised service, and vice-versa for outputs, can

116

Supporting Semantically Enhanced Web Service Discovery for Enterprise Application Integration

also be applied to evaluating compatibility at the

service message level. The request and response

messages of service operations have their own

schema definitions and may be made up of mul-

tiple data parameters. For instance, let us assume

that some advertised service expects to receive an

address, a purchase order, and a product descrip-

tion as part of the request message for invoking

one of its operations, but the prospective service

consumer (i.e. the BPEL controller service) can-

not obtain the product description data from any

other participating service or from the external

environment. Inevitably, it would be impossible

to integrate the specific advertised service into

the orchestration.

In order to evaluate the compatibility among

inputs and outputs in an automated way and per-

form integrability-oriented service matchmaking

we need to describe the data schema for input and

output parameters in an ontological manner. Since

the schemata of Web service inputs and outputs

are defined using XSD, the ontological formal-

ism to be used for encoding definitions of inputs

and outputs should be sufficiently expressive to

facilitate modelling of arbitrarily complex XSD

schemata as those found in WSDL inputs and

outputs, while retaining decidability to enable

automated processing.

Based on recent research works on transforma-

tions from XML/XSD to OWL (Bohring & Auer,

2005) (Garcia & Gil, 2007) it appears that the

minimum level of expressiveness that would be

required for representing XSD constructs in OWL

while preserving the intended semantics would

be that of the OWL-DL dialect. OWL-DL is one

of the three dialects of the W3C standard Web

Ontology Language (OWL) and is termed “DL”

due to its direct correspondence with Description

Logics. The other two dialects are OWL-Lite,

which is less expressive than OWL-DL due to its

restricted vocabulary8, and OWL-Full, which is

more expressive than OWL-DL because it does

not restrict the OWL vocabulary, but consequently

cannot be used as the basis for inferencing that

is sound and complete. In contrast to the other

dialects, OWL-DL can be applied in cases where

the need for expressiveness is accompanied by the

need for computational completeness (guarantee-

ing that all valid entailments will be computed)

and decidability (guaranteeing that all computa-

Figure 1. Mismatch at the level of data schema among System1 and System2 due to different ontology
class restrictions (adapted from Kourtesis & Paraskakis, 2008b)

117

Supporting Semantically Enhanced Web Service Discovery for Enterprise Application Integration

tions will finish in finite time) for the purposes

of automated reasoning (McGuinness & van

Harmelen, 2004).

More specifically, the need for OWL-DL arises

because the OWL-Lite vocabulary does not suffice

for expressing the semantics of some important

XSD constructors which are frequently used within

WSDL documents for defining the structures of

input and output messages. For example:

The semantics of the xsd:choice composi-•
tor (which is equivalent to an XOR) can

only be expressed in OWL through boolean

combinations of the owl:intersectionOf,

owl:unionOf and owl:complementOf con-

structors. However, the expressivity of

OWL-Lite does not sufice because the use
of owl:unionOf and owl:complementOf

are not allowed. These constructors are al-

lowed only in OWL-DL and OWL-Full.

The semantics of the xsd:enumeration •
constraint (which is placed within an

xsd:restriction to limit the content of an

XML element to a set of acceptable val-

ues) can be expressed in OWL using the

owl:oneOf constructor. Similarly to the

case above, the expressivity of OWL-Lite

is not suficient because owl:oneOf is not
allowed in this dialect, in contrast to OWL-

DL and OWL-Full.

The semantics of the xsd:minOccurs •
and xsd:maxOccurs indicators (which

specify the number of times an XML el-

ement can be found in a document) can

be expressed with the owl:minCardinality

and owl:maxCardinality constructors.

In contrast to OWL-DL and OWL-Full,

the vocabulary of OWL-Lite restricts

the use of the owl:maxCardinality and

owl:minCardinality constructors to cardi-

nality values of 0 or 1, and therefore does

not allow expressing arbitrary numbers for

the occurrence of XSD elements.

Once an OWL-DL-encoded representation

is available for the service inputs and outputs,

compatibility among advertisements and requests

can be evaluated through standard subsumption

reasoning with a Description Logics reasoner. The

FUSION Semantic Registry utilises Pellet for this

purpose, as will be discussed later in the architec-

ture section. Our matchmaking algorithm, returns

a positive match among a service advertisement

and a service request if the input concept associ-

ated with the advertisement subsumes the input

concept of the request (i.e. the first is equivalent or

less informative than the second, as happens with

System1_Address which subsumes System2_Ad-

dress in Figure 1), and the output concept associ-

ated with the request subsumes the output concept

of the advertisement (the latter is equivalent or

more informative than the first).

Non-Functional Properties of
Web Services: Categorisation

Non-functional properties also play an important

role in service discovery, and are increasingly

attracting the interest of the Semantic Web Ser-

vices research community as an important area

of study. Non-functional properties may relate

to quality of service (QoS), policy compliance,

adherence to technical standards or protocols, or

categorisation within a classification system. The

only type of non-functional property that is taken

into account for matchmaking by the FUSION Se-

mantic Registry is the latter, i.e. the categorisation

of a service advertisement with regard to some

semantically represented classification system, in

order to designate the functionality of that service

and assist in simple tasks like browsing through

advertisements and performing coarse-grained

filtering during matchmaking.

Classification systems facilitating this form of

categorisation have been used in the industry for a

long time. Some of the most known classification

systems are the United Nations Standard Products

and Services Code (UNSPSC), the North Ameri-

118

Supporting Semantically Enhanced Web Service Discovery for Enterprise Application Integration

can Industry Classification System (NAICS), the

MIT Process Handbook (MPH), and the enhanced

Telecom Operations Map (eTOM). A number of

classification systems have been also built on

top of information interchange models such as

the Open Travel Alliance (OTA), and the Open

Financial Exchange (OFX).

As an example, consider the taxonomy illus-

trated in Figure 2, which is an excerpt from the

taxonomy of business functions that is part of the

FUSION Ontology. Let us assume that a service

request is classified under Supply Chain Manage-

ment, and that some advertisement is classified

under Freight Costing. As seen from the diagram,

Freight Costing is a subcategory of Transporta-

tion that is itself classified under Supply Chain

Management. A semantic representation of this

taxonomy and a suitable matchmaking mechanism

allows detecting that the service advertisement

matches the request, since the category of Supply

Chain Management services is more generic than

the Freight Costing services category.

Intuitively, the end goal in categorisation-

level matching within the FUSION Semantic

Registry is to determine if the semantic categori-

sation class attributed to some service request is

equivalent, more specific, or more generic than

the one specified in some service advertisement.

In OWL-DL terms, in order to have a positive

match, the categorisation class associated with a

request must subsume the categorisation class of

an advertisement (i.e. the first must be equivalent

or more generic than the second).

Semantic Representation of Service
Characteristics in FUSION

By using a semantic representation formalism

to express the above presented characteristics

of Web services, providers and requestors cre-

ate definitions of service capabilities that are

automatically processable through reasoning

and logic-based inference. In turn, this facilitates

fine-grained service matchmaking for supporting

integrability-oriented service discovery, and ef-

fectively, for increasing the levels of automation

in EAI. As already said in the background section,

the extent to which this can be achieved depends

on the semantic representation formalism that is

adopted for this purpose.

Although the FUSION reference framework

is abstract and does not prescribe the use of

any specific Semantic Web Service description

framework, the tools that comprise the reference

implementation of the FUSION System, including

the FUSION Semantic Registry, utilise SAWSDL.

In contrast to developing Web service descriptions

at a high conceptual level and then linking these

specifications to concrete Web service interfaces

that are described in WSDL (as proposed in OWL-

S and WSMO), the approach that SAWSDL puts

forward is bottom-up: the WSDL documents are to

be enriched with annotations that capture machine

processable semantics by pointing to concepts

defined in externally maintained semantic models.

This approach has numerous advantages, but the

most important one is that SAWSDL can be agnos-

tic to the knowledge representation formalism one

Figure 2. Excerpt from the taxonomy of business functions that is part of the FUSION ontology

119

Supporting Semantically Enhanced Web Service Discovery for Enterprise Application Integration

adopts for modelling service characteristics.

The semantic model that serves as the basis for

creating, storing, and reasoning upon representa-

tions of service characteristics in the FUSION

project is the FUSION Ontology (Bouras, Gouvas,

& Mentzas, 2007), which has been encoded in

OWL-DL. Its multi-faceted structure reflects dif-

ferent types of concepts necessary for modelling

a service: the data structures a service exchanges

through input and output messages (data seman-

tics), the functionality categorisation of a service

with regard to a taxonomy of business functions

(classification semantics), and the behaviour it

may expose within a complex and stateful process

execution (behavioural semantics). As we already

mentioned the latter is not employed in the context

of service discovery within FUSION.

In order to represent the functional and non-

functional service properties that are of interest for

matchmaking in the FUSION Semantic Registry,

one needs to create a so-called Functional Profile,

and define its key attributes in terms of references

to the abovementioned FUSION Ontology. As

presented in Kourtesis and Paraskakis (2008b)

and also illustrated in Figure 3, a Functional

Profile is expressed as a named OWL class that

is attributed a set of three different OWL object

properties:

• hasCategory: associates a

FunctionalProile with exactly one
TaxonomyEntity concept from the service

classiication taxonomy that is part of the
FUSION Ontology, to represent the ser-

vice’s categorisation.
• hasInput: associates a FunctionalProile

with an InputDataSet concept, in order to

represent the set of data parameters that a

service expects to receive and consume.

The cardinality of this property is zero in

the case of an out-only Message Exchange

Pattern (MEP), or one, in the case of an in-

out MEP.

• hasOutput: associates a FunctionalProile
with an OutputDataSet concept, in order to

represent the set of data parameters that a

service will produce if invoked. The cardi-

nality of this property is zero in the case of

an in-only MEP, or one, in the case of an

in-out MEP.

Finally, each InputDataSet and OutputDataSet

concept is associated with one or more DataFac-

etEntity concept(s) through a hasDataParameter

object property, in order to represent the individual

data parameters which are exchanged as part of

the whole set of inputs or outputs (e.g. address,

purchase order, product description, etc).

Depending on the perspective from which the

Functional Profile is viewed, the provider’s or the
requestor’s, we can make a distinction among
Advertisement Functional Profiles (AFPs) and

Request Functional Profiles (RFPs). The first are

created automatically by the FUSION Semantic

Figure 3. Fragment of FUSION ontology used for modeling service requests and advertisements

120

Supporting Semantically Enhanced Web Service Discovery for Enterprise Application Integration

registry at the time of service publication, while

the latter are created by the service requestor at

the time of discovery (or even at an earlier stage

to be used as service request templates).

To allow for the automated construction of

Advertisement Functional Profiles (AFPs) in the

FUSION Semantic Registry, service providers

need to augment the WSDL interfaces of their

provided services with semantic annotations, as

per the SAWSDL specification. According to the

SAWSDL annotation conventions that apply in

FUSION, the semantics of a Web service’s input
and output data should be captured by adding

modelReference annotations to the appropriate

<xs:element> entities under <wsdl:types>, while

functionality categorisation semantics should

be captured via modelReference annotations on

<wsdl:portType> entities.

ARCHITECTURE OF THE FUSION
SEMANTIC REGISTRY

In the previous section we described the salient

service characteristics (functional and non-func-

tional properties) that should be modelled to sup-

port integrability-oriented service discovery, and

analysed how these characteristics are captured

in a suitable semantic representation formalism.

This section of the chapter discusses the technical

aspects of our approach for augmenting UDDI-

based service registries with semantic matchmak-

ing extensions. We provide an overview of the

architecture that we employed in the development

of the FUSION Semantic Registry and an outline

of the programmatic interfaces that it exposes.

A distinctive characteristic of the FUSION Se-

mantic Registry architecture is that it can augment

the search facilities of a UDDI registry without

mandating any modifications to the standardised

UDDI registry API as required by the approach

of Akkiraju et al (2003) and without requiring

to tamper with the implementation of the UDDI

registry at source code or configuration level in

order to integrate the matchmaking mechanism as

required by the approach of Akkiraju et al (2003),

Paolluci et al (2002), and Srinivasan et al (2005).

This is considered an important advantage com-

pared to other approaches, as it allows adopters

of this solution to use their existing or preferred

UDDI server implementation (e.g. IBM Web-

Sphere UDDI Registry, Oracle Service Registry,

SAP Enterprise Services Registry, etc) without

performing any changes, thus encouraging uptake

of such technology by end users.

As illustrated in Figure 4, we propose an

architecture where the UDDI server stands in-

dependently to the semantically-enabled service

registry modules and works as a back-end. The

FUSION Semantic Registry exposes two specia-

lised Web service APIs to the client for publica-

tion and discovery functions, and is responsible

for performing the associated SAWSDL parsing,

OWL ontology processing, and DL reasoning

operations. Approaches based on this principle

of accommodating semantic processing func-

tions without imposing any changes to the UDDI

server implementation or interface have been also

proposed in other works (Pokraev, Koolwaaij, &

Wibbels, 2003; Colgrave, Akkiraju, & Goodwin,

2004; Luo, Montrose, Kim, Khashnobish, &

Kang, 2006).

The UDDI module that is depicted in Figure

4 can be any UDDI server implementation that

complies with the UDDI v2 or v3 specification,

although the FUSION Semantic Registry has been

developed and tested using Apache jUDDI9. The

OWL KB module is a typical OWL ontology with

RDF/XML serialisation that the Semantic Registry

uses for storing the Advertisement Functional

Profiles it generates at the time of service pub-

lication, as will be explained in the next section

of the chapter. In the centre of the figure is the

actual FUSION Semantic Registry, a J2EE Web

Application that complies with the Java Servlet

2.4 specification and can be deployed on any

compatible container implementation, such as

Apache Tomcat.

121

Supporting Semantically Enhanced Web Service Discovery for Enterprise Application Integration

The Publication Manager module of the FU-

SION Semantic Registry provides a Web service

API to the user for adding, removing, or updating

Web service advertisements, as well as adding,

removing, or updating descriptions of service

providers. A list of the Web service operations

exposed by the Publication Manager and the pa-

rameters of the respective request and response

messages is provided in Table 1.

The Discovery Manager module provides a

Web service API for retrieving a specific service

advertisement or service provider record via its

key, discovering a set of services or service provid-

ers through keyword-based for terms contained in

their names, and most importantly, discovering a

set of services based on a Request Functional Pro-

file. A list of the Web service operations exposed

by the Discovery Manager and the parameters of

the respective request and response messages is

provided in Table 2.

The dependencies that the Publication Manager

and Discovery Manager modules have on the

third-party components depicted in the centre of

Figure 4 are examined in the following sections,

along with the overviews of the semantic service

publication and discovery processes.

SERVICE PUBLICATION
PROCEDURE

As detailed above, the Publication Manager

Module provides a Web service API to the user

for adding, removing, or updating descriptions

of Web services, as well as adding, removing, or

updating descriptions of service providers. This

section of the chapter focuses on the most impor-

tant of these functions, the process of publishing

a semantically-enhanced service description

(addService).

Apart from the authentication token, the

publication query that initiates the publication

process includes the following parameters: (i) the

service provider ID (every service advertisement

is associated to exactly one service provider that

is identified by a UUID key), (ii) a URL point-

ing to the SAWSDL document that describes the

service, (iii) an optional service name, and (iv)

an optional free text description. The process that

follows based on this input comprises a number

of phases that are presented in the following

subsections.

Figure 4. Semantic registry architecture (adapted from Kourtesis & Paraskakis, 2008a)

122

Supporting Semantically Enhanced Web Service Discovery for Enterprise Application Integration

Phase 1: Parsing of the Service
SAWSDL Document

The first step that the Publication Manager

performs is to retrieve the SAWSDL document

from the specified URL and parse it to extract the

semantic annotations it contains. As discussed in

section 2, WSDL interfaces are augmented with

potentially multiple modelReference annotations

on <xs:element> entities, in order to capture the

Table 1. Publication manager Web service API

Publication Manager Web Service

Operation
Request Message Parameters Response Message Parameters

initiatePublicationSession username, password authenticationToken

terminatePublicationSession authenticationToken terminationSuccess

addService authenticationToken, serviceName,

serviceFreeTextDescription, serviceProviderU-

UID, sawsdlURL

serviceUUID

addServiceWithoutSAWSDL authenticationToken, serviceName, serviceFreeT-

extDescription, serviceProviderUUID, sawsd-

lURL, hasCategoryAnnotationURI, hasInputAn-

notationURIList, hasOutputAnnotationURIList

serviceUUID

removeService authenticationToken, serviceUUID serviceRemovalSuccess

modifyService authenticationToken, serviceUUID, serviceName,

serviceFreeTextDescription, serviceProviderU-

UID

serviceModificationSuccess

addServiceProvider authenticationToken, serviceProviderName, servi-

ceProviderFreeTextDescription

serviceProviderUUID

removeServiceProvider authenticationToken, serviceProviderUUID serviceProviderRemovalSuccess

modifyServiceProvider authenticationToken, serviceProviderUUID,

serviceProviderName, serviceProviderFreeText-

Description

serviceProviderModificationSuccess

Table 2. Discovery manager Web service API

Discovery Manager Web service

operation
Request message parameters Response message parameters

getAllServiceProviderUUIDs - List of all service provider keys (UUIDs)

doKeywordSearchForServiceProviders keyword List of all service provider keys (UUIDs)

getServiceProviderDetails serviceProviderUUID serviceProviderName, serviceProvider-

FreeTextDescription, listOfProvidedServi-

ceUUIDs

getAllServiceUUIDs - List of all service keys (UUIDs)

doKeywordSearchForServices Keyword List of all service keys (UUIDs)

doSemanticSearchForServices requestFunctionalProfileURI, servicePro-

viderUUID

List of all service keys (UUIDs)

getServiceDetails serviceUUID serviceName serviceFreeTextDescription,

locationOfSAWSDLDocument, servi-

ceProviderUUID, categoryAnnotationURI,

listOfInputAnnotationURIs, listOfOutputAn-

notationURIs, listOfMatchingRFPURIs

123

Supporting Semantically Enhanced Web Service Discovery for Enterprise Application Integration

data semantics of the service (consumed inputs or

produced outputs), and a single modelReference

annotation on <wsdl:portType> entities to capture

its functionality categorisation semantics. At the

time of this writing the current implementation of

the Semantic Registry SAWSDL parser relies on

the WSDL4J10 and SAWSDL4J11 libraries to cre-

ate an in-memory representation of the SAWSDL

document and extract the URIs of the ontological

concepts being referenced by the modelReference

annotations.

Phase 2: Construction of
a UDDI Advertisement

The next step in the publication process is to

map the information that was provided as part

of the publication query (i.e. the service name,

free text description, and service provider’s
UUID) and the information that was extracted

by parsing the SAWSDL document (i.e. input,

output, and category annotation URIs), into a

UDDI service advertisement. Communication

between the FUSION Semantic Registry and the

UDDI server for this purpose is facilitated by

UDDI4J12. As illustrated in Figure 5, this mapping

requires creating a uddi:businessService entity

and instantiating the values of its uddi:name,

uddi:description, and uddi:businessKey attributes,

as well as a uddi:categoryBag that includes one

uddi:keyedReference entity for every extracted

annotation URI.

In order to support the representation of

syntactic properties and binary relations among

WSDL entities in UDDI, Colgrave & Januszewski

(2004) introduced a number of Canonical tMod-

els that should be registered in a UDDI server

installation before publication and discovery of

WSDL documents (i.e. during the UDDI server’s
deployment). The FUSION Semantic Registry

extends this idea and makes use of pre-registered

canonical tModels (see Table 3) for representing

the different types of semantic annotations that

can be placed on SAWSDL documents (input,

output, or category annotations). Depending on

the type of semantic information being modelled,

each uddi:keyedReference entity should point

to the appropriate canonical tModel (Input An-

notation tModel, Output Annotation tModel, or

Category Annotation tModel). As depicted in

Figure 5. SAWSDL to UDDI mapping (adapted from Kourtesis & Paraskakis, 2008a)

124

Supporting Semantically Enhanced Web Service Discovery for Enterprise Application Integration

Figure 5, an additional canonical tModel is used

for indexing service advertisements with respect

to the Request Functional Profiles that they can

readily satisfy (Semantic Indexing tModel), but

the uddi:keyedReference entities that point to this

tModel are created at a later stage in the publica-

tion process.

Phase 3: Generation of
Advertisement Functional
Profile and Matchmaking

The next step in the publication process is to create

an Advertisement Functional Profile (AFP) based

on the extracted semantic annotations and add it

to the registry’s internal OWL Knowledge Base
(KB) with the help of the OWL API library13. The

construction of the AFP follows the modelling

conventions analysed in section 3. Once the AFP

has been constructed, the Pellet DL reasoner14 is

used for performing an “eager” semantic classifi-

cation of the new AFP against all known Request

Functional Profiles (RFPs). The purpose of this

classification procedure is to identify RFPs rep-

resenting service requests that the newly added

service advertisement can readily satisfy.

We refer to this classification procedure as

“eager” since it takes place at publication-time. In

contrast, a “lazy” classification procedure would

not have taken place before the actual need for

matchmaking arises during discovery-time. This

approach is placing an inevitable overhead on

the time required to complete the publication of a

service advertisement, but it substantially reduces

the time required to perform matchmaking at

discovery-time, so it is considered particularly

beneficial.

In order to claim that the new service advertise-

ment (AFP) can satisfy a pre-registered service

request (RFP), three conditions must be checked

independently and be asserted:

1. the InputDataSet concept associated with the

RFP must be subsumed by the InputDataSet

of the AFP,

2. the OutputDataSet of the RFP must subsume

the OutputDataSet of the AFP,

3. the TaxonomyEntity concept associated with

the RFP must subsume the TaxonomyEntity

of the AFP.

Phase 4: Indexing of
Semantic Matching Results
in the UDDI Registry

The last step in the publication process is to

map the semantic matchmaking information that

resulted from the publication-time matchmak-

ing algorithm described above into the UDDI

service advertisement. This requires retrieving

the advertised uddi:businessService entity and

its associated uddi:categoryBag from the UDDI

server, and creating one uddi:keyedReference for

every RFP that the service matches with. What

this essentially achieves is indexing the service

advertisement with respect to all service requests

it can readily satisfy. As depicted in Figure 5,

uddi:keyedReference entities should be made to

point to the canonical tModel used for this purpose

(the Semantic Indexing tModel), and the URI of

Table 3. Sample pre-registered canonical tModels for facilitating indexing in the registry

tModel Key Name

uuid:7CB6D040-0F32-11DD-9040-B5988DE060A3 Category_Annotation_tModel

uuid:7CB94140-0F32-11DD-8140-8AB199A03241 Input_Annotation_tModel

uuid:7CBB8B30-0F32-11DD-8B30-A33C65E2A5DF Output_Annotation_tModel

uuid:7CBB8B30-0F32-11DD-8B30-D549BB31EB3E Semantic_Indexing_tModel

125

Supporting Semantically Enhanced Web Service Discovery for Enterprise Application Integration

each RFP should be specified as the Key Value of

the uddi:keyedReference. When this step is com-

pleted, a new semantic service advertisement has

been created, registered with the UDDI registry,

and is available for discovery.

SERVICE DISCOVERY PROCEDURE

As presented previously, the Discovery Manager

module provides a Web service API for retriev-

ing service advertisements or service provider

records via their unique keys, discovering sets

of services or service provider records through

keyword-based search, and most importantly,

discovering sets of services based on a Request

Functional Profile that represents the require-

ments of the service consumer. This latter type of

semantic matchmaking functionality is the focus

of this section.

The discovery query that initiates the semantic

matchmaking process comprises two elements: (i)

a URI pointing to some Request Functional Profile

(RFP), and (ii) an optional UUID designating

the preferred service provider, i.e. the company,

business unit, or specific business application

that should expose the service. The RFP that the

URI points to may be defined within an ontology

that is shared by service providers and service

requestors alike (i.e. be a reusable RFP defined

in the FUSION Ontology), or within some third-

party ontology that imports and extends the shared

ontology (i.e. be a custom-built and non-shared

RFP). Depending on which of the two cases holds,

the algorithm would follow a different discovery

path. Resolving the location of the ontology in

which the RFP is identified is therefore the first

step in the discovery process.

If the RFP is defined in the shared FUSION On-

tology the Discovery Manager will look for service

advertisements indexed in UDDI with a reference

to that RFP. This means looking for services with

AFPs that have matched the requested RFP during

the “eager” publication-time classification. To re-

trieve such advertisements the Discovery Manager

places a simple syntactic matchmaking query to

the UDDI server, looking for uddi:businessService

entities having a uddi:categoryBag that contains a

uddi:keyedReference which points to the Semantic

Indexing tModel, and moreover, has a Key Value

that is equal to the URI of the RFP.

Since the matchmaking and indexing process

is repeated every time a new RFP is created and

added to the shared ontology, the UDDI server’s
semantic matching index is bound to always be

accurate and up to date. This means that if some

service advertisement matches some RFP which

is defined in the shared ontology, the registry is

guaranteed to have this association indexed in the

UDDI server, and be able to instantly retrieve the

advertised service.

Due to the shared ontology assumption that is

made in the context of FUSION, this is the most

typical type of discovery querying envisaged for

the FUSION Semantic Registry, and is also the

simplest and fastest type of matchmaking possible.

Since the time-consuming process of subsumption

reasoning and hierarchy classification has been

already performed at publication-time, the com-

putational complexity of discovery-time match-

making for RFPs defined in a shared ontology is

essentially as low as that of a conventional UDDI

server. In other words, the use of semantics does

not impose any noteworthy overhead compared

to syntactic matchmaking.

If the RFP is defined in a non-shared ontology

the Discovery Manager would need to load that

ontology into memory and perform a complete

semantic matchmaking process among the speci-

fied RFP and all AFPs stored in the OWL-KB.

The conditions that need to be checked in order

to assert that a service advertisement can satisfy

the request are the same as the ones defined for

publication-time matchmaking.

The result of the discovery process, regardless

of the ontology in which the RFP is defined, is a

list of UUID keys corresponding to advertisements

of services that comply with the matchmaking

126

Supporting Semantically Enhanced Web Service Discovery for Enterprise Application Integration

criteria modelled in the RFP. If a service provider

UUID has been also specified in the discovery

query, the UDDI server will restrict the result set

to only those services offered by the specified

provider.

CONCLUSIONS AND OUTLOOK

The availability of sophisticated Web service

discovery mechanisms is an essential prerequi-

site for increasing the levels of efficiency and

automation in Enterprise Application Integration.

In a contemporary service-oriented business

application ecosystem, the integration of a set

of different applications is typically realised by

creating executable specifications of how the Web

services that these applications expose should be

orchestrated in order to fulfil a particular business

process. The outcome of the integration procedure

is a set of executable business processes, each

of which invokes a number of Web services in

the order dictated by the underlying business

logic, assigning the output of one service into the

inputs of others, and where necessary, applying

transformations from the data representation of

one service provider to that of another. Therefore,

an essential criterion for selecting services that

are suitable for composition, among the tens or

hundreds of Web services potentially available,

is the integrability of a service on the basis of

the input and output messages that are defined

in its interface. The description and discovery

mechanism of contemporary UDDI-compliant

service registries is not sufficiently sophisticated

and fine-grained to address the above criterion

for service selection, and thus cannot support

automated service discovery in the context of

EAI. The fundamental problem is that the service

descriptions available in UDDI lack the machine-

understandable semantics that would make them

amenable to automated processing.

In this chapter we presented an approach for

developing service registries which build on UDDI

and offer semantically-enhanced Web service pub-

lication and discovery capabilities by employing

Semantic Web Service technologies. Our approach

aspires to promote efficiency in EAI in a number

of ways, but primarily by automating the task of

evaluating Web service integrability on the basis

of the input and output messages that are defined

in a service’s interface. The approach that we put
forward has been applied and validated during the

development of the FUSION Semantic Registry,

a semantically-enhanced service registry that has

been utilised in research project FUSION and is

released as open source software. Our solution

places emphasis on the use of open standards and

has been realised by combining three prominent

standards from the area of Web Services and the

Semantic Web: OWL-DL, for modelling salient

service characteristics and performing fine-

grained service matchmaking via Description

Logic reasoning, SAWSDL, for creating semanti-

cally annotated descriptions of service interfaces,

and UDDI, for storing and retrieving syntactic

and semantic information about services and

service providers. To the best of our knowledge

the work presented in this chapter represents the

first attempt to combine these three standards into

a comprehensive and openly available solution.

Our approach has been specifically tailored to

support Semantic Web Service discovery in the

context of EAI according to the requirements that

we outlined in Section 2 and explained in detail

in Section 3. The following table provides a com-

parison among our work and other related works

that we have reviewed in this chapter, on the basis

of some features that are central to our work and

stem from the above mentioned requirements. As

already stated, we confine ourselves to evaluating

works that seek to promote semantically-enhanced

service matchmaking specifically in relation to the

open standard of UDDI, and in addition, works

that are not only theoretic but come with a proof-

of-concept system implementation.

As can be seen from the table, all of the related

works address the problem of matchmaking based

127

Supporting Semantically Enhanced Web Service Discovery for Enterprise Application Integration

on service inputs and outputs, and most of them

also cater for categorisation-based matchmaking.

Nevertheless, it appears that only our work and

the work described in Paolucci et al (2002) and

Srinivasan et al (2005) meet the requirement for

ontology language expressiveness that would be

sufficient for representing arbitrarily complex

XSD schemata of service inputs and outputs, in

conjunction with the ability to perform sound and

complete reasoning at the same level of expres-

siveness. Moreover, in our attempt to promote the

use of open standards our work is one of the few

that have been designed for loose-coupling with

the UDDI registry, and thus do not necessitate

any modifications to the UDDI server’s API or
to its internal logic. As already mentioned this is

considered an advantage compared to other ap-

proaches, as it allows adopters to use their existing

UDDI server implementation without performing

any changes, thus encouraging uptake of SWS

technology by end users. Lastly, the semantically-

enhanced service registry that was developed by

the LSDIS group (Sivashanmugam et al, 2003; Li

et al, 2006) and the FUSION Semantic Registry are

currently the only implemented systems that are

made publicly available as open source software,

and our registry is at the time of this writing the

only available service registry that supports the

newly ratified SAWSDL specification, which is

the only standard in the SWS area.

Using the presented approach and registry

implementation as the foundation for our future

work, we plan to expand into Web service dis-

covery based on behavioural service descriptions,

considering service preconditions and effects, and

discovery based on non-functional properties of

services, considering aspects such as compliance

to policies and business rules and adherence to

Service Level Agreements. The scope of the regis-

try can be expanded by the addition of repository

functions for handling semantic metadata, and

its functionality can be augmented to include

the validation of services through registry-based

functional testing (Kourtesis, Ramollari, Dranidis,

& Paraskakis, 2008). These extensions would

be steps towards investigating the application

of semantic technologies in a wider context of

Service Lifecycle Management and towards the

development of a theoretical and technological

approach for supporting SOA Governance through

the realisation of semantically-enhanced registry

and repository solutions.

REFERENCES

Akkiraju, R., Farrell, J., Miller, J., Nagarajan, M.,

Schmidt, M., Sheth, A., et al. (2005). WSDL-S: Web

service semantics. W3C member submission.

Table 4. Comparison with related works

FUSION

Semantic

Registry

(Sivashanmugam

et al, 2003)

(Li et al, 2006)

Akkiraju

et al, 2003

(Paolluci et

al, 2002)

(Srinivasan

et al, 2005)

(Luo et al,

2006)

Matchmaking based on inputs and outputs? + + + + +/-

Ontological expressiveness for I/O at OWL-DL level? + - - + -

Sound and complete reasoning at OWL-DL level? + - - + -

Matchmaking based on service categorisation? + + + + +/-

Loose coupling with UDDI registry? + + - - +

Support for SAWSDL standard? + - - - -

Semantic regstry rleased as open source software? + + - - -

128

Supporting Semantically Enhanced Web Service Discovery for Enterprise Application Integration

Akkiraju, R., Goodwin, R., Doshi, P., & Roeder,

S. (2003). A method for semantically enhanc-

ing the service discovery capabilities of UDDI.

Workshop on Information Integration on the Web,

Acapulco, Mexico.

Alazeib, A., Balogh, A., Bauer, M., Bouras, A.,

Friesen, A., Gouvas, P., et al. (2007). Towards

semantically-assisted design of collaborative

business processes in EAI scenarios. 5th IEEE In-

ternational Conference on Industrial Informatics

(INDIN 2007) (pp. 779-784). Vienna, Austria.

Alves, A., Arkin, A., Askary, S., Barreto, C.,

Bloch, B., Curbera, F., et al. (2007). Web services

business process execution language version 2.0.
OASIS Standard.

Anicic, N., Ivezic, N., & Jones, A. (2006). An

architecture for semantic enterprise application

integration standards. In D. Konstantas, J. P.

Bourrières, M. Léonard & N. Boudjlida (Eds.),

Interoperability of enterprise software and appli-

cations (pp. 25-34). London: Springer-Verlag.

Beyer, D., Chakrabarti, A., & Henzinger, T. (2005).

Web service interfaces. 14th International Word

Wide Web Conference (WWW 2005) (pp. 148-

159), Chiba, Japan.

Bohring, H., & Auer, S. (2005). Mapping XML to

OWL ontologies. 13th Leipziger Informatik-Tage

Conference (LIT 2005) (pp. 147-156).

Bouras, A., Gouvas, P., & Mentzas, G. (2007).

ENIO: An enterprise application integration ontol-

ogy. 18th International Conference on Database

and Expert Systems Applications (pp. 419-423),

Regensburg, Germany.

Bouras, T., Gouvas, P., & Mentzas, G. (2008).

Dynamic data mediation in enterprise applica-

tion integration. In O. Cunnigham & M. Cun-

nigham (Eds.), Collaboration and the knowledge

economy: Issues, applications, and case studies,
e-challenges e-2008 conference (pp. 917-924),

Stockholm, Sweden.

Bruijn, J., Bussler, C., Domingue, J., Fensel, D.,

Hepp, M., Keller, U., et al. (2005). Web service

modeling ontology (WSMO). W3C member

submission.

Bussler, C. (2003). The role of Semantic Web

technology in enterprise application integration. A

Quarterly Bulletin of the Computer Society of the

IEEE Technical Committee on Data Engineering,

26(4), 62–68.

Christensen, E., Curbera, F., Meredith, G., &

Weerawarana, S. (2001). Web services description

language (WSDL) version 1.1. W3C note.

Clement, L., Hately, A., von Riegen, C., & Rogers,

T. (2004). Universal description, discovery, and

integration version 3.0.2. OASIS Standard.

Colgrave, J., Akkiraju, R., & Goodwin, R. (2004).

External matching in UDDI. 2004 IEEE Interna-

tional Conference on Web Services (ICWS’04)
(pp. 226 - 233), San Diego, CA.

Colgrave, J., & Januszewski, K. (2004). Using

WSDL in a UDDI registry version 2.0.2. OASIS
UDDI specification TC technical note.

Farrell, J., & Lausen, H. (2007). Semantic an-

notations for WSDL and XML schema. W3C
recommendation.

Garcia, R., & Gil, R. (2007). Facilitating business

interoperability from the Semantic Web. In W.

Abramowicz (Ed.), BIS 2007. (LNCS 4439, pp.

220-232). Berlin/Heidelberg: Springer.

Haller, A., Gomez, J., & Bussler, C. (2005). Expos-

ing Semantic Web service principles in SOA to

solve EAI scenarios. 14th International World Wide

Web Conference (WWW 2005), Chiba, Japan.

Izza, S., Vincent, L., & Burlat, P. (2006). A frame-

work for Semantic enterprise integration. In D.

Konstantas, J. P. Bourrières, M. Léonard, & N.

Boudjlida (Eds.), Interoperability of enterprise

software and applications (pp. 75-86). London:

Springer-Verlag.

129

Supporting Semantically Enhanced Web Service Discovery for Enterprise Application Integration

Keller, U., Lara, R., Polleres, A., Toma, I., Kifer,

M., & Fensel, D. (2004). WSMO D5.1-WSMO Web

service discovery (v0.1). WSML working draft.

Kourtesis, D., & Paraskakis, I. (2008). Combining

SAWSDL, OWL-DL, and UDDI for semantically

enhanced Web service discovery. In S. Bechhofer,

M. Hauswirth, J. Hoffmann & M. Koubarakis

(Eds.), ESWC 2008. (LNCS 5021, pp. 614-628).

Berlin/Heidelberg: Springer.

Kourtesis, D., & Paraskakis, I. (2008). Web service

discovery in the FUSION semantic registry. In

W. Abramowicz & D. Fensel (Eds.), BIS 2008.
(LNBIP 7, pp. 285-296). Berlin/Heidelberg:

Springer.

Kourtesis, D., Ramollari, E., Dranidis, D., &

Paraskakis, I. (2008). Discovery and selection

of certified Web services through registry-based

testing and verification. In L. Camarinha-Matos

& W. Pickard (Eds.), Pervasive collaborative

networks, IFIP 283/2008 (pp. 473-482). Boston:

Springer.

Lécue, F., Salibi, S., Bron, P., & Moreau, A. (2008).

Semantic and syntactic data flow in Web service

composition. 2008 IEEE International Confer-
ence on Web Services (ICWS ‘08) (pp. 211-218),

Beijing, China.

Li, K., Verma, K., Mulye, R., Rabbani, R., Miller,

J., & Sheth, A. (2006). Designing Semantic Web

processes: The WSDL-S approach. In J. Cardoso &

A. Sheth (Eds.), Semantic Web services, processes,

and applications (pp. 161-193). Springer.

Luo, J., Montrose, B., Kim, A., Khashnobish,

A., & Kang, M. (2006). Adding OWL-S sup-

port to the existing UDDI infrastructure. 2006
IEEE International Conference on Web Services

(ICWS’06), Chicago, IL.

Martin, D., Burstein, M., Hobbs, J., Lassila,

O., McDermott, D., McIlraith, S., et al. (2004).

OWL-S: Semantic markup for Web services. W3C
member submission.

Martin, D., Domingue, J., Brodie, M., & Leymann,

F. (2007). Semantic Web services, part 1. IEEE

Intelligent Systems, 22(5), 12–17. doi:10.1109/

MIS.2007.4338488

Martin, D., Domingue, J., Sheth, A., Battle, S.,

Sycara, K., & Fensel, D. (2007). Semantic Web

services, part 2. IEEE Intelligent Systems, 22(6),

8–15. doi:10.1109/MIS.2007.118

McGuinness, D., & van Harmelen, F. (2004).

OWL Web ontology language overview. W3C
recommendation.

McIlraith, S., Son, T., & Zeng, H. (2001). Semantic

Web services. IEEE Intelligent Systems, 16(2),

46–53. doi:10.1109/5254.920599

Paolucci, M., Kawamura, T., Payne, R. T., & Sy-

cara, K. (2002). Semantic matching of Web service

capabilities. In I. Horrocks & J. Hendler (Eds.),

The Semantic Web-ISWC 2002. (LNCS 2342, pp.

333-347). Berlin/Heidelberg: Springer-Verlag.

Pokraev, S., Koolwaaij, J., & Wibbels, W. (2003).

Extending UDDI with context aware features

based on semantic service descriptions. 2003 Inter-
national Conference on Web Services (ICWS’03)
(pp. 184-190), Las Vegas, NV.

Preist, C., Esplugas-Cuadrado, J., Battle, S. A.,

Grimm, S., & Williams, S. K. (2005). Automated

business-to-business integration of a logistics sup-

ply chain using Semantic Web services technology.

In Y. Sure, W. Nejdl, C. Goble, G. Antoniou, P.

Haase, S. Staab, et al. (Eds.), The Semantic Web–

ISWC 2005 (pp. 987-1001). Berlin/Heidelberg:

Springer.

Simons, A. J. (2002, November-December). The

theory of classification, part 4: Object types and

subtyping. In R. Wiener (Ed.), Journal of Object

Technology, 27-35.

130

Supporting Semantically Enhanced Web Service Discovery for Enterprise Application Integration

Sivashanmugam, K., Verma, K., Sheth, A., &

Miller, J. (2003). Adding semantics to Web ser-

vices standards. 2003 International Conference
on Web Services (ICWS’03) (pp. 395-401), Las

Vegas, NV.

Srinivasan, N., Paolucci, M., & Sycara, K. (2005).

An efficient algorithm for OWL-S based semantic

search in UDDI. In J. Cardoso & A. Sheth (Eds.),

Semantic Web services and Web process composi-

tion. (LNCS 3387, pp. 96-110). Berlin/Heidelberg:

Springer-Verlag.

Verma, K., Sivashanmugam, K., Sheth, A., Patil,

A., Oundhakar, S., & Miller, J. (2005). METEOR-

S WSDI: A scalable P2P infrastructure of registries

for semantic publication and discovery of Web

services. Journal of Information Technology

Management, 6(1), 17–39. doi:10.1007/s10799-

004-7773-4

ENDNOTES

1 http://www.seerc.org/fusion/semanticregis-

try/
2 http://www.fusion-strep.eu/.
3 http://www.daml.ri.cmu.edu/matchmaker/

inst-mm.htm
4 http://www.alphaworks.ibm.com/tech/ws-

sem
5 http://lsdis.cs.uga.edu/projects/meteor-s/

downloads/Lumina/
6 http://jena.sourceforge.net/how-to/dig-

reasoner.html
7 http://www.wsmx.org/
8 http://www.w3.org/TR/2004/REC-owl-

features-20040210/#s2
9 http://ws.apache.org/juddi/
10 http://sourceforge.net/projects/wsdl4j
11 http://knoesis.wright.edu/opensource/saws-

dl4j/
12 http://uddi4j.sourceforge.net/
13 http://owlapi.sourceforge.net/
14 http://pellet.owldl.com/

	IGI copyright notice.pdf
	chapter_mentzas book.pdf

