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Abstract

Studies of the apportionment of human genetic variation have long established that most human variation is within
population groups and that the additional variation between population groups is small but greatest when comparing
different continental populations. These studies often used Wright’s FST that apportions the standardized variance in allele
frequencies within and between population groups. Because local adaptations increase population differentiation, high-FST

may be found at closely linked loci under selection and used to identify genes undergoing directional or heterotic selection.
We re-examined these processes using HapMap data. We analyzed 3 million SNPs on 602 samples from eight worldwide
populations and a consensus subset of 1 million SNPs found in all populations. We identified four major features of the data:
First, a hierarchically FST analysis showed that only a paucity (12%) of the total genetic variation is distributed between
continental populations and even a lesser genetic variation (1%) is found between intra-continental populations. Second,
the global FST distribution closely follows an exponential distribution. Third, although the overall FST distribution is similarly
shaped (inverse J), FST distributions varies markedly by allele frequency when divided into non-overlapping groups by allele
frequency range. Because the mean allele frequency is a crude indicator of allele age, these distributions mark the time-
dependent change in genetic differentiation. Finally, the change in mean-FST of these groups is linear in allele frequency.
These results suggest that investigating the extremes of the FST distribution for each allele frequency group is more efficient
for detecting selection. Consequently, we demonstrate that such extreme SNPs are more clustered along the chromosomes
than expected from linkage disequilibrium for each allele frequency group. These genomic regions are therefore likely
candidates for natural selection.
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Introduction

Knowledge about population genetic structure is central to the

study of human origins, DNA forensics, and complex diseases. The

present-day genetic diversity observed among human populations

was shaped by biological and demographic events that marked

their signatures in the genome. Processes such as selection and

genetic drift increased the frequency of rare alleles and the genetic

diversity among populations [1]. Concurrently, opposing demo-

graphical processes, like migration and admixture, reduced the

genetic diversity by homogenizing the allele frequencies across

populations. Unfortunately, as with most reconstructions, the only

recoverable events are those that involved a reasonably large

number of individuals and occurred before local migration

exchange balanced their effect. Before these genetic signatures

can be deciphered and used to unravel the forces responsible for

the genetic diversity at each locus, several key questions should be

answered: how does geography affect the distribution of genetic

information, what is the amount of genetic diversity among human

populations, and how does genetic diversity distribute within and

between populations?

It is well established that the genetic diversity among human

populations is low [2,3], although the distribution of the genetic

diversity was only roughly estimated. Early studies argued that 85–

90% of the genetic variation is found within individuals residing in

the same populations within continents (intra-continental popula-

tions) and only an additional 10–15% is found between

populations of different continents (continental populations)

[4,5,6,7,8]. Later studies based on hundreds of thousands single-

nucleotide polymorphism (SNPs) suggested that the genetic

diversity between continental populations is even smaller and

accounts for 3 to 7% [9,10,11,12,13,14]. The 1000 Genomes

Project’s estimation of the pairwise genetic diversity between

continental populations ranged from 5 to 8.3% [3]. Most of these

studies have used the FST statistics [15,16,17] or closely related

statistics [18,19] and support Lewontin’s [6] findings that humans

vary only a little at the DNA level and that only a small percentage

of this variation separates continental populations.

However, these interpretations should be treated with caution

for several reasons: first, many studies used a small number of

polymorphic SNPs (up to 100 SNPs in the nineties and up to

40,000 in the last millennia) – reflecting a limited genetic diversity

– or are based on a small number of samples from few populations

that do not capture the genetic diversity of the global human

population. Second, even for larger datasets (half a million

markers) the usefulness for learning about history and natural

selection has been limited due to biases in the ways polymorphisms
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were chosen [20] and their inadequate representation of the

underlying true global allele frequency distribution. Third, many

studies report the pairwise FST between populations [e.g., 21], an

approach that suffers from several caveats [22], and incorrectly

estimates the genetic diversity of human populations. Fourth,

because finding rare alleles requires large sample sizes, often only

common SNPs are studied and rare alleles are absent or under-

represented, thus biasing the FST upward. Rare alleles were shown

to have a major impact on population structure and must be

considered when studying the global genetic diversity [1,3].

Wright’s F-statistics describe the level of heterozygosity in each

level of a hierarchically subdivided population [15,23]. More

specifically, F-statistics relate the departure from panmixia in the

total population and within subpopulations to the total homozy-

gosity due to the Wahlund effect between subpopulations. For a

population with a hierarchical structure of three levels –

individuals (I), subpopulations (S), and total population (T) – F-

statistics quantify the genetic differentiation at each level using

three indices: FIT, FIS, and FST (see supplementary text F-statistics

for measuring population differentiation). The most commonly reported

statistic, FST, measures the differentiation of a subpopulation

relative to the total population and is directly related to the

variance in allele frequency between subpopulations [2]. The

mean and variance of FST depend on several factors such as allele

frequencies, population subdivisions, and demographic processes

and are difficult to be predicted analytically in the absence of the

complete genomewide FST distribution [24,25,26]. As a result, the

mean FST calculated from a subset of the FST distribution is often

used to quantify the overall genetic divergence between human

populations [e.g., 21].

A widely used approach to detect regions under selective

pressure is to compare single-locus FST to the genomewide

background FST [e.g., 27,28]. The rational is pan-selectionist; if

natural selection favors one allele over others at a particular locus

in some populations, the FST at that locus would be larger than

FST at other loci in which most differences between populations

are due to random genetic drift. However, this approach is not

straightforward because extreme population differentiation by

itself cannot be assumed to be indicative of a recent population-

specific positive selection. In constructing the F-statistics model,

Wright assumed an infinite number of populations [16], but in

practice, the number of populations is often small, and F-statistics

are strongly subjected to random genetic drift [24]. Moreover,

consistently high-FST values over short distances may be due to

strong linkage disequilibrium (LD) not selection [2,29]. Similarly,

certain demographic processes can increase the genetic differen-

tiation among populations, for example, by reducing their

effective sizes [30,31,32,33]. Although genetic drift and demo-

graphic processes affect the entire genome, whereas selection acts

on particular genomic regions, distinguishing between FST values

driven by each process remains a challenging task that requires a

sufficiently large SNP catalog. Such a comprehensive SNP

catalog became recently available in the third HapMap phase

[34]. The HapMap project endeavored to map the majority of

common and rare variants throughout the genome and provide a

large and dense SNP map. HapMap thus enables us to calculate

the population differentiation more accurately using individuals

with ancestry from different parts of Africa, Europe, and Asia.

Here, we study the extent of genetic differentiation in eight

human populations ascribed to three continental populations and

their intra-continental populations (Figure 1). We estimate the

global genetic diversity in a hierarchical manner over 1 million

markers. To the best of our knowledge, this is the most extensive

effort to describe the genetic diversity distribution in humans. We

further address long standing questions of the shape of the FST

distribution, its mean, and its variance [22,24,25,35,36,37], which

are critical in population genetic studies [25]. We compare the

shape of the overall FST distribution to that obtained from SNPs

grouped by minor allele frequency (in 0.1 increments from 0 to 0.5

minor allele frequency) and derive a linear equation to describe the

relationship between FST and the mean minor allele frequency.

We also compare the clustering of high-FST SNPs along

chromosomes in each allele frequency group to the clustering

expected from linkage disequilibrium. Last, we devise a strategy to

detect genomic regions candidate for natural selection.

Results

Data Description
HapMap phase 3 (second draft) includes new populations and

additional samples to existing populations genotyped in previous

phases [34]. Over 1 million SNPs were added to the new and

existing populations (Figure S1 and Table S1). The number of

HapMap phase 3 SNPs and individuals that passed our quality

control criteria (‘‘QC++,’’ see Text S1 Assessing Data Quality) and

used for subsequent analyses is shown in Table S1. The QC++
data for 602 samples was used to construct a ‘‘continental’’ dataset

with ,3 million SNPs that were genotyped in at least one

population of each continent and a smaller ‘‘intra-continental’’

dataset with ,1 million SNPs that were genotyped in all eight

populations.

In the continental dataset, over 82% of the SNPs are common

(minor allele frequency (MAF) $0.05) and less than 5% are

considered rare (MAF ,0.01). A comparison of the MAF

distributions between the continental and the intra-continental

datasets reveals gross differences in allele frequencies (Figure 2): for

example, the continental dataset consists of three orders of

magnitude more rare SNPs than the intra-continental dataset.

The reason for these differences is the large number of rare

ENCODE SNPs genotyped only in the four original HapMap

populations and thus were excluded from the intra-continental

dataset (Figure S1 and Table S1).

Inferring the Genetic Variation in a Hierarchical
Population Structure Using

Looking at the intra-continental population dataset, worldwide

human populations can be divided into the three Old World

continental populations and further subdivided to intra-continen-

tal populations and finally individuals. The components of

variance for a population structure with three hierarchical levels

were obtained using F-statistics (Figure 3). The key F-statistics FA
SC

and FA
CT describe the variation in autosomes ascribed to intra-

continental variation nested within each continent and geograph-

ical separation between continents, respectively. The vast majority

of genetic variation in autosomes (12FA
IT = 87%) is found within

individuals. Only a paucity of the total genetic variation

(FA
IT = 13%) is distributed between continental populations

(FA
CT = 12%) and an even lesser amount (FA

SC = 1%) between

intra-continental populations. As expected from their dosage in the

population, F-statistics were slightly higher in the X chromosome

than in autosomes with most genetic variation (12FX
IT = 80%)

found within individuals, whereas the large portion of the total

genetic variation (FX
IT = 20%) is distributed between continental

populations (FX
CT = 18%). Only a small variation amount

(FX
SC = 2%) is distributed between intra-continental populations

(Figure 3). Similar results were obtained for males and females.

Individuals in intra-continental populations are under panmixia

Empirical FST Distributions from Large-Scale Data
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(FA
IS, FX

IS*0%) and their allele frequencies do not deviate from the

Hardy-Weinberg equilibrium. To test the affect of rare alleles on

the genetic variation, we excluded rare alleles (MAF #0.05) and

repeated the analysis. The results did not change.

Calculating the Empirical Genomewide Distribution of FST

Because the major portion of genetic variation is distributed

between continental populations (FA
CT = 12%) we used the

continental dataset to further investigate the behavior of the FST

(i.e., FA
CT) distribution. Compared to the 1 million SNPs of the

intra-continental population dataset, the continental dataset

contains additional two million SNPs, many of which are rare,

that reduce the mean FST compared to that reported herein. The

empirical FST distribution was plotted for autosomes and for the

recombining and nonrecombining (PAR) regions of the X

chromosome (Figure 4).

For autosomal SNPs, the FST distribution is right-skewed with a

mean and standard deviation of 0.08 (Figure 4a). The biological

interpretation of these values is a moderate genetic differentiation

[17]. The FST distribution is a thin-tailed distribution (0.7% of

SNPs have FST $0.4) that sharply declines. These results are

contrary to previous descriptions of a slowly declining FST

distribution with high SNP densities at the tail; for example, Akey

et al. [35] calculated an FST distribution (FST = 0.12), in which 6%

of the SNPs had FST $0.4 using 25,549 autosomal SNPs

genotyped in African-American, East Asian, and European-

American. A later study [38] analyzed 8,525 autosomal SNPs in

84 African-American, European-American, Chinese, and Japa-

nese individuals described an FST distribution (FST = 0.13) with a

thinner tail (4% of SNPs have FST $0.4). These reports relied on

relatively small samples of common SNPs from admixed

populations that do not represent the worldwide distribution of

genetic variation.

The FST distribution closely follows an exponential distribution

with l = 12.5, even though the Kolmogorov-Smirnov test rejected

that hypothesis (Figure S2). When plotted on a QQ-plot the FST

distribution of autosomes is under-dispersed as compared with the

expected exponential distribution (Figure S3a). However, when

excluding the rarest minor alleles (MAF ,0.05) the two

distributions approximately fit the line y = x (Figure S3a). Similar

results were obtained for the X-chromosomal FST distribution

(Figure S3b), indicating that the skewness in the original FST

dataset is caused by the excess of rare alleles. Despite of the large

variation in SNP density ranging from 0.7 (chromosome 19) to

1.17 (chromosome 6) SNPs every 1,000 nucleotides, the distribu-

tions of FST and MAF have a similar mean and standard deviation

for all autosomes (Table S2), suggesting that even chromosomes

Figure 1. Map of the Old World. The geographical regions of origins are shown for the eight populations used in this study. Intra-continental
populations have the same color.
doi:10.1371/journal.pone.0049837.g001
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with poor SNP density allow a good estimation of population

genetic statistics.

As expected, the FST distribution for the X-chromosomal PAR

region (FST = 0.09) (Figure 3b) is more similar to the autosomal

FST distribution (Figure 3a) than the X-chromosomal FST

distribution (Figure 3b) in shape and density for both the least

diverged SNPs (43% of the SNPs have FST ,0.05) and the highly

diverged SNPs (0.6% of SNPs have FST $0.4). The FST

distribution for the X-chromosome (Figure 3b) is also positively-

skewed (c = 1.7) and enriched in highly diverged SNPs (5% of

SNPs have FST $0.4). The distribution follows a near-exponential

distribution (l = 8.15) with a moderate decline, compared to the

autosomal FST distribution.

The mean X-chromosomal FST distribution is substantially

higher than that of autosomal SNPs, consistent with the smaller

effective population size or selection on X-linked loci [2].

Assuming a 1:1 sex ratio, there are four copies of each autosome

for every three copies of X chromosome. Therefore, X-linked loci

experience a stronger impact of genetic drift that increases their

genetic differentiation in a ratio of 3:4 compared with autosomal

loci. We used the Q statistic to calculate the FST ratio of autosomes

to X chromosomes (Eq. 2) and tested for deviations from an

expected Q of 0.75 (Eq. 3). We found a significantly lower genetic

differentiation between continental populations of Q = 0.6360.01

(bootstrap test, p,0.001), indicating that these populations exhibit

a smaller genetic differentiation in their X chromosome than

expected by chance. This low ratio could be the result of long-

range male-migration from Africa that was maintained due to

continuous expansions through the time period of when non-

African populations formed. Alternative explanations can be a

stronger selection on X-linked loci or an accelerated genetic drift

assumed to occur in non-African history after the split from

Africans.

Wright’s theory of the evolutionary change of F-statistics

depends on the assumption of infinite number of subpopulations

[16,23]. Because in reality the number of subpopulations is small,

many studies relaxed the infinite population size assumption to

predict the evolutionary change of FST in a subdivided population

of finite size [24,36]. For example, it has been shown [22,24,39]

that under neutrality when the number of populations is small (less

than four) and the effective population size is small, allele

frequencies are strongly susceptible to genetic drift and have an

inverse J-shaped FST distribution, whereas for ten or more

populations the FST distribution resembles bell-shape. The reason

for the inverse J-shaped distribution for fewer populations is due to

the high likelihood that all populations will have similar allele

frequencies and that in the later generations the same alleles may

be fixed in all subpopulations. By contrast, a bell-shaped

distribution appears because the chance of the same allele being

fixed in many subpopulations is extremely small [24]. Here, we

analyzed two datasets, continental and intra-continental, consist-

ing of a small and large number of subpopulations (three and

eight, respectively). These datasets share the same effective

population size, estimated to be Ne = 10,000 [40], and consist of

a large number of SNPs (3 M and 1 M, respectively). These

datasets were therefore expected to exhibit an inverse J-shaped

and bell-shaped FST distributions, respectively, but instead, both

datasets exhibit a similar inverse J-shaped FST distribution

(Figures 4, S4). These results reflect the lack of genetic

differentiation, in the case of the intra-continental dataset. In

other words, although we compared a large number of populations

(eight), due to their high genetic similarity, they appear as three

populations [41], in agreement with our results from the

hierarchical analysis (Figure 3).

Obtaining FST Distribution for Allele Frequency Groups
Because nearly all the 3 million SNPs in our continental dataset are

non-coding, it is reasonable to assume neutrality. Under neutrality,

newly introduced variants require a long time to reach high

frequencies. During this time, recombination will tend to break

Figure 2. Minor allele frequency distributions for autosomal SNPs.
doi:10.1371/journal.pone.0049837.g002

Empirical FST Distributions from Large-Scale Data

PLOS ONE | www.plosone.org 4 November 2012 | Volume 7 | Issue 11 | e49837



Figure 3. An illustration of a hierarchical F-statistics analysis using eight populations. Samples are organized in a three level structure of
individuals, intra-continental populations, and continental populations. The relationships between the six fixation indices are depicted on the top left
and follow the formulation of Eq. S1. For example, 1{FIT~(1{FIC)(1{FCT). Below are the F-statistics, calculated separately for autosomes, male X-
chromosomes, and females X-chromosomes. The indices measuring the genetic variation between continental populations (FCT), between intra-
continental populations (FSC), and between individuals of intra-continental populations (FIS) are shown in bold.
doi:10.1371/journal.pone.0049837.g003

Figure 4. Distribution of locus-specific FST in three continental populations (CEU+TSI, CHB+CHD+JPT, LWK+MKK+YRI). FST values were
obtained for (a) 2,823,367 autosomal SNPs and (b) 86,533 SNPs on the non-recombining region of the X chromosome and 1,264 SNPs on the PAR
region (inset). The histograms show bin distribution as indicated on the x-axis and the cumulative distribution (line).
doi:10.1371/journal.pone.0049837.g004
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down the linkage disequilibrium (LD) between neighboring variants.

Consequently, common variants tend to be older [42,43] and

harbored within regions of limited LD [44,45]. The genomewide FST

distribution (Figure 4a) thus includes SNPs with dissimilar allele

frequencies and biological properties owing both to the stochastic

natureofgeneticdrift andto thebiological importanceof thegenomic

region involved in the process. An FST distribution plotted for SNPs

with particular minor allele frequency (Figure 5) is therefore expected

to have a unique shape and variance because it describes regions that

were likely affected by similar evolutionary forces. Indeed, dividing

the SNPs of the continental dataset into five non-overlapping allele

frequency groups according to their MAF –0–0.1 (n = 853 K), 0.1–

0.2 (n = 607 K), 0.2–0.3 (n = 516 K), 0.3–0.4 (n = 440 K), and 0.4–

0.5 (n = 407 K) – shows distinct shapes for each distribution. The

majority of the SNPs (52%) were concentrated in the low-frequency

allele groups (0–0.2), whereas only 14% of the SNPs were ascribed to

the most common allele frequency group (0.4–0.5). Each FST

distribution appears to follow an exponential distribution, even

though the Kolmogorov-Smirnov test rejected that hypothesis.

To study the relationships between FST and the MAF, we

defined 45 MAF groups, each with a consecutive range (0.05–0.06,

0.06–0.07…0.049–0.5) and divided the SNPs of the continental

dataset into these groups based on the MAF of each SNP. Low

MAF groups (MAF ,0.05) were ignored due to their skewed

distribution (Figure 4). Because the FST distribution of each MAF

group is very narrow, we used its mean values to study the

relationship with the mean MAF. We found a linear relationship

between FST and MAF (Figure 6):

FST MAFð Þ~0:086MAFz0:068 0:05vMAFƒ0:5ð Þ: ð4Þ

Measuring the Dispersal of High-FST SNPs
Because adjacent high-FST SNPs within each allele frequency

group are likely to share similar evolutionary history, we

hypothesized that they would be more clustered along chromo-

somes than other SNPs. To test that hypothesis, we picked SNPs

with extreme high-FST values from the top 0.005 percentile of

each FST distribution (Figure 5). These SNPs were termed

‘‘FST.threshold,’’ and all other SNPs ‘‘FST,threshold.’’ We compared

the coefficient of variation for adjacent FST.threshold and random

FST,threshold SNPs and found that FST.threshold SNPs are

significantly more clustered for all allele frequency groups

(bootstrap test p,0.0001) (Figure 7). Similar results were obtained

using two other measures of dispersion (quartile coefficient of

dispersion and geometric coefficient of variation) and are not

shown.

The extent within FST.threshold SNPs clustering along chromo-

somes is demonstrated in Figure S5. FST.threshold SNPs reside in a

very close proximities: 29–42% of the FST.threshold SNP pairs from

all allele frequency groups are located within less than 10 kilobases

(kb) from each other and 17–25% of them are within 10 kb to

100 kb from each other. Although FST.threshold SNPs from the

common allele frequency group (0.4–0.5) accounted for a small

fraction of FST.threshold SNPs (14%), the short distances between

adjacent SNP pairs suggest high clumping as well.

Figure 5. FST distributions for five MAF groups (a–e). The histograms show the FST values for five allele frequency groups divided by their MAF.
doi:10.1371/journal.pone.0049837.g005
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Correlating LD between Adjacent SNPs
The observed clusters of FST.threshold SNPs could have been

formed by either the hitchhiking effect of SNPs surrounding a

region under natural selection or genetic drift. To test which of

these forces shaped the observed clusters, we calculated the LD

between adjacent FST.threshold and FST,threshold SNPs for Africans,

Europeans, and Asians (Figures 8, S6–S7). We found that the LD

(measured as pairwise r2) between adjacent FST.threshold SNPs is

biphasic: initially high (0–10 kb) and later decays. As expected, we

found low LD (r2,0.3) when the inter-SNP distances were larger

Figure 6. Correlating MAF with FST. The mean FST plotted for all MAF groups (dots), excluding the rarest ones (MAF .0.05), allows us to express
the correlation between the two variables using a single linear equation (Eq. 4).
doi:10.1371/journal.pone.0049837.g006

Figure 7. Comparing the coefficient of variation for high- and low-FST SNPs. Frequency distribution of coefficient of variation calculated
between adjacent FST.threshold SNPs (line) and between random samples of FST,threshold SNPs (histogram) for five allele frequency groups (a–e).
doi:10.1371/journal.pone.0049837.g007
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than 100 kb. Non-African populations exhibited a slower decay

than African populations over all physical distances. The decay is

moderate for common alleles and sharper for low-frequency allele

groups.

We found that all FST.threshold SNPs exhibit significantly higher

r2 values (bootstrap test p,0.0001) than FST,threshold up to

distance of 1 Mb (Figure 8). The LD for common allele frequency

groups (Figure 8d–e) was low over short distances (1–100 kb) and

declined slow over large distances (100 kb-1 Mb) compared with

the LD for rare allele frequency groups (Figure 8a–b).

Unfortunately, the observed FST and LD patterns can be

explained in more than one way. The high-FST in the FST.threshold

SNPs indicates large genetic differentiation between populations

but their high-LD indicates correlated genetic differentiation. Such

genetic differentiation may be the product of selection but can also

occur at random by genetic drift. Therefore, the question whether

clustered FST,threshold SNPs with high-LD are due to the

hitchhiking effect following selection or genetic drift remains to

be further tested.

The decline in LD was similar between FST.threshold SNPs

(Figures 8d–e) regardless of their allele frequency group, in

agreement with [46]. Interestingly, FST,threshold SNPs belonging to

different allele frequency groups exhibit disparity in the average

decline in LD (100 kb-1 Mb). This disparity can be explained by

the clustering of FST,threshold SNPs in LD blocks of different sizes.

Eberle et al. [46] showed that low-frequency SNPs (Figures 8a–b)

are found in longer LD blocks that often overlap, whereas high-

frequency SNPs (Figures 8d–e) are found in much shorter LD

blocks that do not overlap. Because of the overlap in long LD

blocks, the low-frequency SNPs may appear closer to alleles from

other low-MAF groups, but not necessarily SNPs from their MAF

group. By contrast, high-frequency SNPs reside in the same short

blocks are more likely to be closer to SNPs of their MAF group.

In addition to selection and genetic drift, the overall LD of

FST,threshold SNPs was also affected by demographic processes.

The variability in the extent of LD between continental

populations clearly marks their population history. Africans have

the shortest LD (Figure 8), whereas Europeans and Asians have

the longest LD (Figures S6–S7). The findings of high-LD for non-

African populations are in agreement with models proposing a

founding event during the expansion from Africa [47,48] with a

bottleneck that occurred during this period [49,50]. Therefore, by

correcting for the effect of LD we can potentially distinguish

selection from other biological and demographic processes acting

on FST.threshold SNPs.

Discussion

Even in the pre-Darwinian era it was clear that human

populations vary and that this variation played a critical role in the

individual’s development and its phenotypic attributes. The

variation between individuals defined the space in which

Figure 8. LD for five allele frequency groups as a function of physical distance in Africans. LD (r2) in African populations is plotted as a
function of physical distance on a log-scale for five allele frequency groups (a–e). To simplify the presentation, the mean and standard error of the
mean r2 for the FST .threshold SNPs (blue) and FST,threshold (red) are presented for different between-SNP distances (50 bp, 100 bp, 1 kb, 5 kb, 10 kb,
50 kb, 100 kb, 500 kb, and 1000 kb). FST.threshold SNPs are marked as green dots.
doi:10.1371/journal.pone.0049837.g008
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population groups were identified and to which individuals were

classified. The post-Darwinian perception was that variation

between individuals is the outcome of evolutionary processes that

act differently on different individuals, but the extent of the genetic

differentiation remained under debate [2,6,35,51].

The comprehensive high-quality HapMap (phase 3, second

draft) SNP catalog genotyped over eight worldwide populations is

the best approximation to the global genetic diversity available.

We therefore used the HapMap catalog to quantify the amount of

genetic diversity between and within eight human populations

more accurately than previously done [e.g., 4,6,8]. The genetic

variation in the population structure was measured using

hierarchical F-statistics. We showed that individuals of intra-

continental populations are under panmixia (Figure 3) and that

their allele frequencies do not deviate from the Hardy-Weinberg

equilibrium. We further showed that only 12% of the total genetic

variation is distributed between continental populations with a

minor amount of 1% between intra-continental populations. To

illustrate these results, consider an African nomadic tribe that

populates a new continent. The new population would preserve

87% of the worldwide human genetic variation. We note that the

estimations of genetic variation distributed between continental

and intra-continental populations are likely biased upward

because, as shown in Figure 4 and elsewhere [3], they do not

account for the extensive amount of rare variants. However, it is

possible that the small number of populations studied here under-

represented the global genetic variation and thus biased the

genetic variation downward. Future studies carried on additional

populations are necessary to test whether our conclusions hold for

worldwide populations.

Our findings suggest that the high migratory rates within

continents and the relative ineffectiveness of geographical and

socio-economical barriers maintained our shared genetic history

and prevented the genetic isolation of the studied populations

[5,52]. The most meaningful barriers to gene flow are the

geographical barriers between continents, due to the partial

isolation of human populations during a long time throughout

their history. The affect of such barriers on the LD is reflected in

our findings (Figures 8, S6, and S7).

Many attempts were made to estimate the distribution

parameters of FST [24,25]; however, due to the absence of a

comprehensive SNP catalog, the distribution type remained

elusive. We first showed that the FST distribution is approximately

exponentially distributed (Figure S2) and, consequently, that the

distribution shape and variance depend on its mean. Second, we

demonstrated that FST distributions vary for different minor allele

frequency groups (Figure 5), though they are similar in shape to

the genome-wide FST distribution (Figure 4). Third, we found that

the change in the mean FST is linearly related to the MAF.

The first results are not surprising. According to Eq. S2, FST

depends on the effective population size (Ne) and generation time

(t), not on the minor allele frequency range. Thus FST is expected

to exhibit a similarly-shaped distribution for different minor allele

frequency groups. The variation in FST distributions for different

MAF groups is explained by the neutral theory. Under neutrality,

most of the evolutionary changes are the result of genetic drift

acting on neutral alleles, thus the time until a mutation event can

be modeled as a Poisson process. This process if memoryless; that

is, if an allele did not mutate in time period t0, it has the same

probability to mutate in time period t1 as it had in time period t0.

As expected, this probability is higher for common alleles and

lower for rare alleles. We have shown that the measure of genetic

differentiation, FST, is a random variable that approximately

follows an exponential distribution with a mean l (Figure 4). When

FST is calculated for n allele frequency groups (f) it behaves as a

random exponential variable with a mean and standard deviation

lf. Because common alleles are more likely to mutate in any time

period than are rare allele, they will exhibit higher lf than rare

allele in a linear relationship (Figure 6).

Although both genetic drift and selection increase the popula-

tion differentiation as measured by FST, genetic drift randomly

alters the allele frequencies among different populations, whereas

selection has a very local effect resulting in increased FST in a

certain loci due to the hitchhiking effect. Therefore, SNPs with

similar minor allele frequencies and high-FST may be targeted

when searching for SNPs under natural selection. Identifying the

shape of the FST distribution is thus critical to finding SNPs under

selection. Because SNPs with similar MAF may share a common

origin and demographic history, comparing the FST of SNPs

within their MAF group is more informative than comparing them

with SNPs from random allele groups.

In the process of LD, variants in physical proximity along a

chromosome tend to be more correlated in the population than

would be expected at random formation of haplotypes.

The clumping of such variants, unrelated with selection, may

also yield high-FST SNPs. Therefore, employing high-FST values to

infer population-specific positive selection requires accommodat-

ing for the LD effect. Because the age of variants is related to the

extent of LD around them [45], it is necessary to group SNPs

accordingly to interpret the LD patterns. Under neutral evolution,

new variants require a long time to reach high frequencies in the

population. Consequently, due to the effect of recombination, the

LD around variants will decay substantially over time. Therefore,

alleles from the common allele group (0.4–0.5) will typically be

older and their LD would be short-ranged, whereas rare alleles

that may be either very young or very old will exhibit long- or

short-range LD, respectively (Figures 8, S6, and S7).

We note that although this general pattern holds for long

intervals, distance by itself does not have a crucial influence on

short-range LD. Reduction in LD over short distances due to

recombination is low compared with the effects of genetic drift and

migration. Moreover, demographic processes, such as founding

effect, may produce high-LD over intermediate-range, although

these processes are expected to have a smaller effect on African

populations (Figure 8). For long-range distances, the recombina-

tion frequency would increase and weaken any association caused

by biological processes other then strong selection. Therefore,

unlike alleles under genetic drift, alleles under natural selection will

exhibit high-LD over large distances, relative to their frequency.

The genomic regions harboring those SNPs would be likely

candidates for natural selection.

Detecting signatures of natural selection and deciphering their

causes can shed light on the evolution of the human genome and

have practical implication for the search of loci involved in

complex disorders. A further study is necessary to identify the

clusters of SNPs with high-FST and associate them with genes

related to diseases.

Materials and Methods

HapMap 3 Genotype Data
The genotype data of individuals from eight relatively homogeneous

populations were downloaded from the International HapMap Project

web site (phase 3, second draft) at http://hapmap.ncbi.nlm.nih.gov/

downloads/genotypes/2009-02_phaseII+III/forward/non-redundant/

[34]. The eight populations comprised of Utah residents of Northern

and Western European ancestry from the CEPH collection (CEU); Han

Chinese from Beijing, China (CHB); Chinese from metropolitan
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Denver, Colorado (CHD); Japanese from Tokyo, Japan (JPT); Luhya in

Webuye, Kenya (LWK); Maasai in Kinyawa, Kenya (MKK); Yoruba in

Ibadan, Nigeria (YRI); and Italians from Tuscany, Italy (TSI). Three

population samples (CEU, MKK, and YRI) are parent-offspring trio

populations, and the rest are unrelated individuals. We used only QC+
data from the ‘‘non-redundant filtered’’ dataset. Because we used

HapMap 3 draft data, we applied additional data quality filters (see Text

S1 Assessing Data Quality). SNPs and samples that passed our filtering

criteria were termed ‘‘QC++’’ (Table S1).

Because many SNPs were not genotyped in all eight popula-

tions, we created two datasets: ‘‘continental’’ with ,3 million

SNPs that were genotyped in at least one population of each

continent and ‘‘intra-continental’’ a common subset of ,1 million

SNPs that were genotyped in all eight populations. Y-linked and

mitochondrial SNPs were not included in the study due to their

small number. Analyses were carried out on the continental

dataset, unless stated otherwise.

Analysis of Hierarchical Population Structure
To study the distribution of genetic diversity between distinct

populations, we considered a hierarchical population structure of

three levels: individuals (I), intra-continental populations (S), and

continental populations (C) (Figure 3). Using the intra-continental

dataset, the hierarchical structure was obtained by aggregating 602

individuals (first level), classified to eight intra-continental popu-

lations (second level) within three continental populations (third

level). Depicting this hierarchical framework with F-statistics

required six indices: FIS that measures the correlation between

alleles of individuals relative to the intra-continental population,

FSC that measures the correlation between alleles of intra-

continental population relative to the continental population,

and FCT that measures the correlation between alleles of

continental population relative to the total population. The

remaining indices – FIC, FIT, and FST – were similarly defined

(see also Text S1 F-statistics for measuring population differentiation).

Hierarchical F-statistics were calculated for all autosomal SNPs

and separately for males and females X-chromosomal SNPs from

the non-recombining regions. The significance of the variation

between regions within continents was tested by bootstrap analysis

of randomizing individuals between regions of the same continent

and repeating the process 10,000 times. Hierarchical F-statistics

were calculated with the HierFstat package version 0.04–4 [53]

that we optimized for large dataset analysis.

Calculating FST

We followed Wright’s [15] method to calculate FST. For each

SNP, we calculated the frequencies of both alleles in each

population. We then identified the allele with the smallest global

frequency (P) when calculated as a weighted average over all

populations so that (0ƒPƒ0:5). Similarly, the variance of the

minor allele frequency s2
P was obtained and FST was calculated as:

FST~
s2

P

P(1{P)
: ð1Þ

Although the dynamics of FST were extensively studied, no

single model to describe the FST distribution has been proposed

[25,37]. We hypothesized that the FST distribution follows an

exponential distribution. To test that hypothesis we used the

Kolmogorov-Smirnov test (a = 0.01) for a distribution with

unknown mean [54].

Comparing estimates of FST for autosomes and X chromosome

provides further insights into the demographic history of

populations. If the difference Q between FST values of autosomes

and X chromosome [50,55] can be derived as:

Q~ ln (1{FA
ST)= ln (1{FX

ST), ð2Þ

Q is approximately:

NX
e =NA

e ~0:75: ð3Þ

Deviation from this expectation may indicate different demo-

graphic histories for autosomes and X-linked SNPs. The

significance of Q was estimated by a bootstrap analysis preformed

with 10,000 selecting random datasets of FA
ST and FX

ST of size

10,000 and using their mean FST values to calculate Q.

Estimation of Data Dispersal
To study the effect of minor allele frequency (MAF) on the

shape of the FST distribution, SNPs were divided into five allele

frequency groups according to their MAF (0–0.1, 0.1–0.2, 0.2–0.3,

0.3–0.4, and 0.4–0.5). The FST distribution was then calculated for

each allele frequency group. The Kolmogorov-Smirnov test

(a = 0.01) for a distribution with unknown mean [54] was used

to test whether each FST distribution follows an exponential

distribution.

To study the difference between SNPs with high- and low-FST

values, the top 0.005 percentile of each FST distribution was set as

a threshold. SNPs with FST values above the threshold were

considered FST.threshold SNPs and all other SNPs were considered

FST,threshold.

We tested whether FST.threshold SNPs are more clustered than

FST,threshold SNPs by comparing the distances between adjacent

SNPs of each allele frequency group. Because there are fewer

FST.threshold SNPs, we used a random subset of FST,threshold SNPs

of equal size. Distances were calculated separately for each allele

frequency group and the dispersal of the distance distributions was

assessed using three measures: coefficient of variation [56,57],

quartile coefficient of dispersion [58], and geometric coefficient of

variation [59]. Measures were calculated for each chromosome,

weighted by the proportion of SNPs on that chromosome, and

summed over all chromosomes. To estimate the significance of the

results, we used a bootstrap approach and repeated the calculation

10,000 times with random subsets of FST,threshold SNPs.

Similarly, we compared the linkage disequilibrium (LD)

between adjacent FST.threshold SNPs and FST,threshold SNPs using

the squared correlation coefficient (r2). The LD was calculated

separately for each continental population and allele frequency

group. We used a bootstrap approach to estimate the significance

of the results with 10,000 random subsets of FST,threshold SNPs.

Supporting Information

Figure S1 Distribution of genetic variation per HapMap
population and phase. SNPs were classified in ten minor allele

groups based on their frequency in each population and further

subdivided by HapMap phases: 1 (blue), 2 (green), and 3 (red). The

number of SNPs genotyped in each phase (n1..3) and the total

number of SNPs (ntot) are marked.

(TIF)
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Figure S2 Fitting the expected cumulative distribution
function of an exponential distribution to the FST

distribution. The two distributions largely overlap.

(TIF)

Figure S3 FST values of SNPs from the continental
dataset versus their expected exponential values. FST

values were calculated for all SNPs (red), excluding rare ones

(MAF ,0.05) (blue) for autosomal (a) and X-chromosomal (b)

SNPs.

(TIF)

Figure S4 Distribution of locus-specific FST in eight
populations (CEU, CHB, CHD, JPT, LWK, MKK, YRI,
and TSI). FST values were obtained for a. 1,100,484 autosomal

SNPs, and b. 32,650 SNPs on the non-recombining region of the

X chromosome. The histograms show bin distribution as indicated

on the x-axis and the cumulative distribution (line).

(TIF)

Figure S5 A histogram of the distances between adja-
cent FST.threshold SNPs for five allele frequency groups.
(TIF)

Figure S6 LD for five allele frequency groups as a
function of physical distance in Europeans. LD (r2) in

European populations is plotted as a function of physical distance

on a log-scale for five allele frequency groups (a–e). To simplify the

presentation, the mean and standard error of the mean r2 for the

FST .threshold SNPs (blue) and FST,threshold (red) are presented for

different between-SNP distances (50 bp, 100 bp, 1 kb, 5 kb,

10 kb, 50 kb, 100 kb, 500 kb, and 1000 kb). FST.threshold SNPs

are marked as green dots.

(TIF)

Figure S7 LD for five allele frequency groups as a
function of physical distance in Asians. LD (r2) in Asian

populations is plotted as a function of physical distance on a log-

scale for five allele frequency groups (a–e). To simplify the

presentation, the mean and standard error of the mean r2 for the

FST .threshold SNPs (blue) and FST,threshold (red) are presented for

different between-SNP distances (50 bp, 100 bp, 1 kb, 5 kb,

10 kb, 50 kb, 100 kb, 500 kb, and 1000 kb). FST.threshold SNPs

are marked as green dots.

(TIF)

Table S1 Summary of HapMap phase 3 (second draft)
data used in our analyses. The number of SNPs that passed

or failed QC++ (top) and the number of unrelated samples that

passed or failed QC++ (bottom).

(DOC)

Table S2 Summary of SNP statistics per chromosome.
Number of SNPs segregating in all samples within the continental

dataset, SNPs density, mean and standard deviation of MAF, and

mean and standard deviation of FST for each chromosome.

(DOC)

Text S1 Assessing data quality, F-statistics for measur-
ing population differentiation, and Supporting Informa-
tion References.

(DOC)
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