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ABSTRACT

It has been suggested that the mammalian genome
is composed mainly of long compositionally homo-
geneous domains. Such domains are frequently
identified using recursive segmentation algorithms
based on the Jensen–Shannon divergence.
However, a common difficulty with such methods
is deciding when to halt the recursive partitioning
and what criteria to use in deciding whether a
detected boundary between two segments is real
or not. We demonstrate that commonly used
halting criteria are intrinsically biased, and propose
IsoPlotter, a parameter-free segmentation algorithm
that overcomes such biases by using a simple
dynamic halting criterion and tests the homogeneity
of the inferred domains. IsoPlotter was compared
with an alternative segmentation algorithm, DJS,
using two sets of simulated genomic sequences.
Our results show that IsoPlotter was able to infer
both long and short compositionally homogeneous
domains with low GC content dispersion, whereas
DJS failed to identify short compositionally homoge-
neous domains and sequences with low compos-
itional dispersion. By segmenting the human
genome with IsoPlotter, we found that one-third of
the genome is composed of compositionally
nonhomogeneous domains and the remaining is a
mixture of many short compositionally homoge-
neous domains and relatively few long ones.

INTRODUCTION

Mammalian guanine–cytosine (GC) content is known to
have a complex internal compositional organization (1).

For example, the human genome is known to contain
long compositionally homogeneous domains whose GC
contents range from �33% to �60%. Evidence for the
non-uniformity and non-randomness of nucleotide com-
position was first discovered several decades ago when
bulk DNA sequences that had been randomly sheared
into long fragments were separated by their base compos-
ition using thermal melting and gradient centrifugation
(2). The fragments were grouped into a small number of
classes distinguished by their buoyant densities that cor-
relate with GC content. These findings led Bernardi and
co-workers (3–5) to propose the isochore theory for the
structure of homeotherm genomes.
The isochore theory posits that mammalian genomes

are mosaics of isochores: long (�300 kb), relatively homo-
geneous regions, each with a typical GC content (6). The
theory further posits that these regions are separated by
boundaries of sharp GC content changes (7) and that all
isochores can be divided into a handful of compositional
domain classes or families (8).
With the advent of mammalian genomics, it be-

came feasible to attempt to detect isochores using a seg-
mentation algorithm with the genomic sequence as the
sole input. Indeed, many methods were proposed to
detect isochores by partitioning genomic sequences into
compositional domains according to predefined criteria
(9–14).
In a previous study, we proposed a benchmark

for testing the abilities of segmentation algorithms to iden-
tify compositionally homogeneous regions and isochores
within genomic sequences (15). Surprisingly, the various
segmentation methods, such as sliding-window (16,17), re-
cursive segmentation (10,12,18) and least-square segmen-
tation (14,19), yielded inconsistent results. Recursive
segmentation algorithms based on the Jensen–Shannon
divergence (20), such as DJS (10,11), significantly outper-
formed all other segmentation algorithms.
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Recursive segmentation methods find cutting points
(known also as segmentation points or partition points)
that maximize the difference in base compositions between
adjacent subsequences. Because there is at least one
position in the sequence that maximizes the difference in
base composition of any two subsequences, the recursive
partitioning process can (in theory) continue until the
number of segments equals the number of nucleotides
(11). Therefore, a central part of all segmentation algo-
rithms is the criterion used to halt the segmentation when
the differences between adjacent segments become
‘insignificant’.
Criteria that are too stringent or relaxed can lead to

under- and over-segmentation, respectively (15). For
instance, the halting criterion of the DJS algorithm
works as follows: first, the threshold is set by partitioning
multiple homogeneous sequences of a certain size and
composition and obtaining the maximal Jensen–Shannon
divergence statistic (DJS). Next, a fixed threshold for the
DJS entropy statistic is set a priori by establishing a
minimum statistical significance level for the Jensen–
Shannon entropy below which segmentation cannot take
place (11). Finally, the DJS statistic is calculated over all
possible cutting points along the candidate sequence, and
the maximal DJS value is compared to the threshold value.
The candidate sequence is partitioned in the position
of the maximal DJS if it is higher than the threshold.
Segmentation continues recursively for segments for
which DJS exceeds the given threshold. Unfortunately,
any choice of an a priori threshold affects the lengths of
the inferred domains (15). For example, lowering the
threshold to improve short domain inference decreases
the ability to detect large domains. Although this
problem has been reported previously (18,21,22), no
solution has been proposed. The problem is caused by
the initial choice of sequences used to determine the
threshold and, therefore, cannot be solved by changing
their properties.
To overcome this difficulty, we introduce IsoPlotter, an

improved recursive segmentation algorithm that employs
a ‘dynamic threshold’ that takes into account the compos-
ition and size of each segment. IsoPlotter calculates the
DJS statistic over all possible cutting points and compares
its maximum to a dynamic threshold. In contrast to the
standard DJS algorithm, the threshold is not determined a
priori, but separately for each segment to be partitioned.
The length and standard deviation of GC content
averaged over small windows along the segment are used
to determine the dynamic threshold. If the maximum DJS

statistic exceeds this dynamically determined threshold,
the segment is partitioned and segmentation continues
recursively.
In this study, we tried to avoid some of the semantic

confusion regarding isochores by simulating two sets of
genomic sequences containing predetermined compos-
itionally homogeneous domains, each separated from
adjacent domains by sharp changes in GC content.
These simulated domains should be considered isochores
and may be used to compare the detection capability of
DJS (10,11) and IsoPlotter. The first set consisted of
tri-domain sequences with a short central-domain

flanked by two long domains. In the second set,
multi-domain sequences were generated with varying
standard deviations of GC content for each domain. In
the last part of our study, we studied the compositional
architecture of the human genome and compared the
results obtained by using both IsoPlotter and DJS.

METHODS

The DJS and IsoPlotter segmentation algorithms

The DJS is a binary, recursive segmentation algorithm that
splits a DNA sequence by finding a point that maximizes
the difference in GC content between adjacent sub-
sequences. The resulting subsequences are then recursively
segmented until a halting condition is satisfied (11).

Briefly, a sequence of length L, GC content FGC and AT
content FAT ¼ 1� FGC, is divided into two continuous
subsequences (s=left, right) of length ls, GC content
fs,GC, and AT content fs,AT ¼ 1� fs,GC. These sub-
sequences are split at the point i that maximizes the
entropic measure DJS defined as the difference between
the overall entropy of the sequence Htot and the weighted
sum of the entropies of both subsequences Hleft and Hright:

DJSðiÞ ¼ Htot �
lleft
L

Hleft+
lright
L

Hright

� �
ð1 < i < LÞ ð1Þ

where the entropy of the right and left subsequences is

Hs ¼ � fs,GC log2 fs,GC � fs,AT log2 fs,AT ð0 � f � 1Þ

ð2Þ

and the entropy of the whole sequence is

Htot ¼ � FGC log2 FGC � FAT log2 FAT ð0 � F � 1Þ ð3Þ

The maximal DJS value is denoted by D̂JS ¼ maxDJSðiÞ
as the point of maximum difference between the left
and right subsequences. The process of segmentation is
terminated when D̂JS is smaller than a predetermined
threshold. We used a threshold of 5.8� 10�5 (Dr. Tal
Dagan, University of Düsseldorf, personal communica-
tion). Instead of comparing D̂JS to a predetermined
threshold, the IsoPlotter algorithm compares it to a
dynamic threshold computed from the length and com-
position of the candidate subsequence.

The algorithms were implemented in Matlab 7.5 and are
available at http://code.google.com/p/isoplotter/.

Simulated data analyses

To test the capabilities of IsoPlotter and DJS to detect
compositionally homogeneous domains, we performed
two analyses. First, we simulated 1000 tri-domain se-
quences, each composed of two 10-Mb-long composition-
ally homogeneous domains at the 50 and 30 ends and a
short, compositionally homogeneous, central-domain of
length 100 kb. Domain mean GC contents were chosen
from a normal distribution with a mean of 50% and a
standard deviation of 5%. Negative values of the mean
GC contents or those higher than 100% were unlikely
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given the low standard deviation. We repeated the simu-
lation with central-domains of 300 kb and 1Mb in size.

In the second analysis, we simulated 1000 multi-domain
sequences composed of 13 equally sized compositionally
homogeneous domains, each 10 kb in length. Domain
mean GC contents were chosen from a normal distribu-
tion with a mean of 50% and a standard deviation of 1%.
The domain GC content standard deviation (�GC) ranged
from 10�2 to 10�1 with the between-domain variation and
the within-domain variation increasing accordingly.

We used simulated sequences comprising of compos-
itionally homogeneous domains within predefined
borders separated from adjacent domains by sharp
changes in GC content. These simulated domains should
be recognized as isochores. Domains were composed of
32 bp non-overlapping windows to reduce computation
time without compromising accuracy. The GC content
GCwindow and standard deviation �GC window of each
window i were calculated from a uniform distribution
and its full-width standard deviation as

GCwindowðiÞ ¼ GCdomain �

P
�GCwindow

n

� �
+�GCwindow ð4Þ

�GCwindowðiÞ ¼ �GC �
ffiffiffiffiffi
12
p
� Runiform ð5Þ

where GCdomain and �GC are the domain GC content and
standard deviation, respectively, n is the number of
windows in a domain and Runiform is a random variable
drawn from a uniform distribution between 0 and 1; for
example, a domain of size 160 bp with a mean GC content
of 54% and a GC content standard deviation of 5%
composed of five 32-bp windows with mean GC
contents of 49%, 58%, 45%, 60% and 58%. The segmen-
tation algorithms were applied to the resulting sequences
of GC frequencies.

In our analyses, we chose to work on short windows of
32 bp rather than on single nucleotides to save computa-
tion time without sacrificing accuracy (10,15). To exclude
a possibility of a bias due to window size, we repeated the
second analysis without using windows.

After sequences were partitioned using IsoPlotter and
DJS we tested the performance of the two algorithms
by computing correct domain inferences, defined as the
number of domains whose borders were identified within
<1000 bp or a distance of <5% of their size, whichever is
smaller (15). To evaluate the segmentation results, we used
two statistics: sensitivity and precision. Sensitivity is the
proportion of correctly inferred domains out of all
predetermined domains. Precision quantifies the probabil-
ity for positive prediction of the algorithm, i.e., the pro-
portion of correctly inferred domains out of all reported
domains. For example, if a sequence composed of 100
compositionally homogeneous domains was partitioned
by an algorithm that inferred 50 domains but only 25 of
them were correctly inferred, then the algorithm sensitivity
would be 25% and its precision would be 50%. Sensitivity
and precision quantify an algorithm’s accuracy and pre-
diction power, respectively. To test whether the differences
between the algorithms are significant, we used the
one-tailed Wilcoxon rank-sum test with �=0.01 (23)

and the false discovery rate (FDR) correction for
multiple tests (24). All reported results were obtained
with a minimum domain length of 3 kb for both
IsoPlotter and DJS, consistent with the literature (6,8,25).

Segmentation of the human genome

The human genome assembly (build 36) was obtained
from the NCBI FTP website ftp://ftp.ncbi.nlm.nih.gov/
genomes/. Each chromosome was divided into non-
overlapping windows of 32 bp in length, and their GC
content was calculated.
The genome was partitioned by using both IsoPlotter

and DJS with a minimum domain length of 3 kb. Because
the actual genome segmentation is unknown, the algo-
rithms could not be evaluated for accuracy. Only their
results can be compared.
In order to compare the output of the two algorithms,

we divided the detected domains into nine groups. The
cutoffs (lc) that define the boundaries between the
groups were chosen as 3 kb, 10 kb, 50 kb, 100 kb, 200 kb,
300 kb, 500 kb, 1Mb and 10Mb. For each group, the
‘genome coverage’ was calculated by dividing the sum of
the domain lengths by the genome length. The homogen-
eity of the domains was assessed using a homogeneity test
(see below). The domain lengths and the proportion of
compositionally homogeneous domains were compared
between the two algorithms using a one-tailed t-test with
�=0.05 (23).

Homogeneity test

Inferred domains were classified into two types, compos-
itionally homogeneous and nonhomogeneous, based on
their homogeneity relative to the chromosome
(Figure 1). We used the F-test to compare the GC
content variance of a domain with that of the sequence
on which it resides (26). The GC content for each 32-bp
non-overlapping window was calculated for the domain in
question and for the entire sequence. Because the F-test
assumes the data are normally distributed, we followed
Cohen et al. (10) and applied the arcsine-root

Figure 1. Example of a hypothetical genomic sequence composed of 10
compositionally homogeneous domains used to demonstrate two
aspects of sequence analysis: partitioning and testing for homogeneity.
Note that the partitioning yielded seven domains, out of which three
were found to be homogeneous and the rest were nonhomogeneous.
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transformation to the GC content values of the windows
within each domain (and sequence) before calculating the
variance.
A one-tailed F-test with a null hypothesis H0:

�2domain � �
2
sequence, and an alternative hypothesis, H1:

�2domain < �2sequence, were applied with n1–1 and n2–1

degrees of freedom, where n1 and n2 are the numbers

of windows in the domain and in the sequence,

respectively. If the variance over a domain turned out to

be significantly lower (P< 0.05) than that of the corres-
ponding sequence, then the domain was considered homo-

geneous compared to the sequence. We improved the

procedure proposed by Cohen et al. (10) by adjusting

for multiple comparisons using the FDR correction (24).

RESULTS

Modeling the dynamic threshold, Dt

Ideally, the segmentation halting threshold should be
calculated analytically from the distribution of the DJS

entropy statistic (11). Because the theoretical distribution
of the DJS entropy is unknown, the threshold had to be
obtained empirically. This was previously done by
simulating uniform (homogeneous) regions of a certain
length and standard deviation of the GC content (�GC),
obtaining the maximal DJS entropy statistic (D̂JS) for
every sequence, calculating the cumulative distribution
of D̂JS, and choosing a threshold value corresponding to
some type I error rate (10,11). For example, Cohen et al.
(10) obtained the threshold using 100 000 sequences of size
1Mb and �GC of 1%. This practice leads to biases in the
length and GC variability of inferred domains.
To demonstrate the relationship between D̂JS and the

sequence length, we generated a random sequence of
length 1Mb with a GC content of 50% and GC content
standard deviation �GC of 1%. We then calculated D̂JS for
the entire sequence and subsequences of lengths 100 kb
and 10 kb (Figure 2). The resulting D̂JS values show a
10-fold increase with every 10-fold decrease in sequence
length. A similar relationship exists between D̂JS and the
standard deviation �GC of the sequence. No relationship
was found between D̂JS and the sequence GC content
(data not shown).
Reducing this bias in IsoPlotter required modeling the

dependencies between a segment length and its standard
deviation �GC on the one hand, and the D̂JS statistic on the
other hand. We generated 10 000 sequences for each of 13
length parameters L ranging from 1kb to 1Mb and for
each of five GC content standard deviation parameters
�GC ranging from 1% to 10%. For each simulation
setting, we calculated D̂JS by allowing IsoPlotter to parti-
tion the sequence once and obtained the threshold (Dt)
from the top 0.01% percentile of the cumulative D̂JS dis-
tribution (Figure 3). A log-scale plot of Dt as a function of
sequence length and variability reveals a near perfect
linear relationship (Figure 4). A log-scale linear regression
on the length (L) and GC content dispersion (�GC) fits the

empirical data extremely well (r2=0.995, P< 10�16) with
the following coefficients:

lnDt ¼ � 0:97 lnL+0:7 ln �GC+4:42 ð6Þ

The threshold Dt depends on the length and GC content
dispersion for each subsequence. We therefore refer to it is
a ‘dynamic threshold’.

Comparing segmentation results for simulated sequences

To gauge domain homogeneity in the simulated sets, we
compared the variance in GC content within each domain

Figure 2. A demonstration of the relationship between DJS entropy
statistic, sequence length and variability (�GC), using 1-Mb simulated
sequence (red) with �GC of 1% and two initial subsequences of sizes:
100 kb (green) and 10 kb (blue). Segmentation is carried out by obtain-
ing the DJS statistic values for all possible bipartition for each of the
three sequences and partitioning them at the point of maximal DJS

(D̂JS). The DJS values are plotted for each position in a different
color for each sequence. The D̂JS entropy measures are marked for
each plot by a large dot. The plot illustrates the difference in DJS

values obtained for sequences with similar initial content but different
lengths. A fixed threshold of 5.8� 10�5 will not partition the shortest
sequence although it has the same initial content as the other sequences.

Figure 3. Cumulative D̂JS distributions calculated for 10 000 sequences
of �GC=1% and different lengths L. The thresholds (Dt) are obtained
from the top 0.01% percentile of each cumulative distribution and are
marked for three sequence lengths.
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to that of the sequence on which it resides (see the
‘Homogeneity test’ section). Domains in all the sequences
were constructed to be homogeneous, and the two algo-
rithms were expected to detect them.

We first tested the abilities of IsoPlotter and DJS to
detect a short compositionally homogeneous central-
domain (100 kb, 300 kb and 1Mb) within two large com-
positionally homogeneous domains (10Mb). Inferences of
central-domain borders were divided into three types: no
detection, partial detection (one border detected) and full
detection (Table 1). IsoPlotter identified at least one
domain border in all sequences and both domain
borders in more than 86% of the sequences. By contrast,
DJS missed both domain borders in 15–20% of the se-
quences, identified one domain border in 46–75% of the
sequences, and fully identified the two domain borders in
<40% of the sequences. IsoPlotter inferences were un-
affected by central-domain size, while DJS inferences and
sensitivity were highest for longer domains. Interestingly,
both algorithms had high precision (97–100%) despite of
DJS’s poor performances. IsoPlotter performances were
significantly higher than those obtained by DJS

(Wilcoxon rank-sum test, � < 0.01).
Next, we tested the abilities of IsoPlotter and DJS to

infer domains with differing GC content standard devi-
ations �GC and fixed lengths. An example of a simulated
sequence is shown in Figure 5a. The mean sensitivity for
each domain �GC is shown in Figure 5b. For these data,
IsoPlotter sensitivity was 98%, with a precision approach-
ing 100%. The DJS sensitivity was 19% and strongly de-
pendent on �GC, while the precision was near 100%.
IsoPlotter significantly outperformed DJS for every
domain variation tested (Wilcoxon rank-sum test,
�< 0.01). Results were robust to the choice of window
size that composed the compositionally homogeneous
domains.

Segmentation of the human genome

One of the main premises of isochore theory is that nearly
the entire genome of homeotherms (warm-blooded

animals) consists of compositionally homogeneous
domains that exceed 300-kb in length (4–6,27). Figure 6
presents the genome coverage as a function of domain
length. IsoPlotter ‘isochoric’ domains (�300 kb) cover
<30% of the human genome, while DJS’s ‘isochoric’
domains cover <50% of the genome.

Figure 5. (a) An illustration of the GC content spatial distribution
along a 130-kb simulated sequence that contains 13 equally sized
domains (dotted bars). Domain mean GC content is marked by
black lines. (b) The mean sensitivities (with error bars) of IsoPlotter
(green) and DJS (red) are shown for every domain (dotted bars).

Figure 4. The threshold Dt values obtained from simulated sequences
with various lengths and GC standard deviations are plotted against
each sequence length L and variability �GC on a log–log scale. The
threshold chosen by Cohen et al. (10) is marked by a large dot.

Table 1. Proportion of central-domain detection inferred by

IsoPlotter and DJS

Segmentation
algorithm

Central-domain Sensitivity
(%)

Precision
(%)

Size No
detection
(%)

Partial
detection
(%)

Full
detection
(%)

IsoPlotter 100 kb 0 13 86 93 97
300 kb 0 12 87 94 97
1Mb 0 12 87 94 97

DJS 100 kb 20 75 5 42 99
300 kb 20 60 20 50 99
1Mb 15 46 39 62 100
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Classifying domains according to their lengths shows
that overall IsoPlotter inferred a higher proportion of
short to medium-size domains than DJS (10–200 kb),
while DJS inferred more long domains (�300 kb),
including very long domains (�10Mb). Overall, domains
inferred by DJS are significantly longer than those inferred
by IsoPlotter (t-test, � < 0.05) illustrating the bias of DJS

toward long domains.
Classifying domains inferred by both algorithms

according to their homogeneity shows that for each
length-cutoff group 70% of IsoPlotter inferences were
homogeneous compared to only 53–67% of DJS.
Moreover, the ratio of homogeneous/nonhomogeneous
inferences for IsoPlotter is significantly higher than that
of DJS (t-test, � < 0.05) for all length cutoffs (Table 2)
except lc=10Mb (see Supplementary Tables S1 and S2).
These results suggest that the low proportion of compos-
itionally homogeneous domains detected by DJS is an
outcome of the segmentation quality and does not
depend on domain lengths.
In terms of coverage, 19% of the human genome is

composed of 820 compositionally homogeneous domains
longer than 300 kb (Table 2). Furthermore, these domains
constitute only 1% of the total number of compositionally
homogeneous domains (117 391). Therefore, restricting
genome compositional studies to ‘isochoric’ domains, as
is commonly done (e.g., 17,28,29), necessitates ignoring
99% of all domains that cover over 80% of the genome.

Compositional domain ideograms of the human genome

Using IsoPlotter inferences, three compositional do-
main ideograms of the human genome were drawn
(Figures 7a–c). The ideograms illustrate our major
findings, and allow us to compare compositional
patterns among chromosomes. The first ideogram shows
that compositionally homogeneous domains cover
between 62% (chromosome 4) and 78% (chromosome
11) of the chromosomes (Figure 7a). Dividing compos-
itionally homogeneous domains to long (�300 kb) and

short domains reveals that ‘isochoric domains’ are
heterogeneously distributed along chromosomes covering
between 5% (chromosome 19) and 29% (chromosomes 5)
of the chromosomes (Figure 7b). By contrast, short com-
positionally homogeneous domains cover between 38%
(chromosome 4) and 72% (chromosome 22) of the
chromosomes. ‘Isochoric domains’ can further be classi-
fied into low GC domains ranging from 20% to 40%
(574 domains) and high GC domains ranging from 40%
to 60% (245 domains) with a single rich GC domain
(61%) in chromosome 16 (Figure 7c). Thus, 70% of all
‘isochoric domains’ are AT rich. We find no evidence for
the five-family division proposed by Bernardi et al. (4).

DISCUSSION

The study of genome composition has been hampered for
decades by conflicting results and uncertain methodology.
Schmidt and Frishman (30) proposed to address this
problem by using a consensus method based on the
results of several algorithms (such as 12,17,19). This
approach is problematic because combining correct infer-
ences with incorrect ones only serves to dilute the truth.
Instead, we proposed a benchmark to test the performance
of different segmentation algorithms (15). We showed that
recursive segmentation algorithms based on the Jensen–
Shannon divergence (20) performed significantly better
than all other segmentation algorithms.

However, even recursive segmentation algorithms can
perform poorly because of their use of fixed thresholds
as halting criteria. Here, we show that the DJS entropy
measure is correlated with sequence length and the
standard deviation of its GC content (�GC), and that

Table 2. Comparison of IsoPlotter and DJS segment results for the

human genome as a function of length cutoff (lc)

Length
cutoff (lc)

Domains
longer
than lc

Compositionally
homogeneous
domains longer

than lc

Number
(%)

Genome
coverage
(%)

Number
(%)

Genome
coverage
(%)

IsoPlotter 3 kb 117 391 (100) 100 82 186 (70) 70
10 kb 45 466 (39) 86 31 867 (27) 60
50 kb 9861 (8) 60 6880 (6) 42
100 kb 4691 (4) 48 3265 (3) 33
200 kb 2081 (2) 35 1431 (1) 24
300 kb 1199 (1) 27 820 (1) 19
500 kb 561 (1) 19 386 (<1) 13
1Mb 163 (<1) 9 113 (<1) 7
10Mb 0 (0) 0 0 (0) 0

DJS 3 kb 87 794 (100) 100 58 554 (67) 64
10 kb 33 470 (38) 89 22 365 (26) 57
50 kb 6986 (8) 70 4600 (5) 44
100 kb 3337 (4) 61 2180 (3) 38
200 kb 1598 (2) 53 1019 (1) 33
300 kb 1042 (1) 48 667 (1) 30
500 kb 650 (1) 43 412 (1) 26
1Mb 327 (<1) 35 208 (<1) 21
10Mb 15 (<1) 9 8 (<1) 5

Figure 6. Cumulative spatial coverage for human genome using all
domains inferred by IsoPlotter (blue) and DJS (red). Seventy percent
of IsoPlotter inferences were homogeneous compared to 67% for DJS.
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Figure 7. Ideograms of compositional domains inferred by IsoPlotter and mapped to chromosomes. Using data mining approach, the ideograms
uncover the compositional patterns of long homogeneous domains (‘isochoric’) in three layers (from top to bottom): (a) compositionally homoge-
neous domains and nonhomogeneous domains; (b) long compositionally homogeneous domains (�300 kb), short compositionally homogeneous
domains (<300 kb) and compositionally nonhomogeneous domains; and (c) long compositionally homogeneous domains (�300 kb) color coded
by their mean GC content and all other domains (short compositionally homogeneous and nonhomogeneous domains).
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this dependence introduces biases in the segmentation.
Consequently, recursive segmentation algorithms employ-
ing a fixed threshold, such as DJS, cannot be expected to
perform well on sequences containing isochores of differ-
ent lengths and compositions. To overcome this problem,
we modeled these relationships to create a
dynamic-threshold algorithm.
The log-linear relation between the threshold value, Dt,

and sequence length, L [Equation (6)] is not surprising.
Let us consider an idealized model of genomic sequence
as a series of Bernoulli trials with P the probability of a G
or a C nucleotide. The mean GC content of a sequence of
length N is, therefore, a random variable that approxi-
mately follows a normal distribution with mean P and
standard deviation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pð1� PÞ=N

p
. The standard deviation

of the mean GC content decreases with sequence length.
Since the entropy Htot is defined as a function of the

mean GC content, Htot is itself a random variable. In the
case of a Bernoulli sequence, Htot is approximately
normally distributed as it is a function of mean GC
content, and the standard deviation of the mean GC
content is relatively small. Furthermore, the DJS statistic
is a function of Htot. Hence, DJS is also a random variable
with variance that decreases with sequence length.
Although real genomic sequences cannot be expected to
be modeled by perfect Bernoulli trials, the decrease of the
standard deviation of the mean GC content with the
increase of sequence size is expected due to the central
limit theorem (31), if the correlations between nucleotide
content along the sequence are not too strong.
The main idea proposed here is expected to hold despite

the mild long-range correlations described in genomic se-
quences (11,32–35), which may increase the standard de-
viation. These correlations reduce domain homogeneity
and produce a higher proportion of false positive infer-
ences (type I errors) because of the fluctuations in nucleo-
tide composition. Moreover, since recursive segmentation
algorithms compare the composition of subsegments
residing on adjacent subsequence to each other, the result-
ing domains are not necessarily homogeneous compared
to the whole sequence. For these reasons, it is essential to
assess the homogeneity of the inferred domains using a
homogeneity test.
The high sensitivity and precision obtained using the

dynamic threshold were demonstrated in two analyses in
which IsoPlotter successfully detected compositionally
homogeneous domains of various lengths and GC
content standard deviations �GC. IsoPlotter’s high sensi-
tivity and precision are a direct result of its dynamic
threshold. Such results are not achievable with other seg-
mentation algorithms. Moreover, these results suggest
that segmentation approaches that filter or concatenate
‘short’ segments to eliminate GC content fluctuations
(e.g., 12,28) may be misleading.
A homogeneity test was applied to the domains inferred

in the human genome. A classification of these domains
revealed, surprisingly, that the majority of the genome
(70%) consisted of compositionally homogeneous
domains, but only 19% of them can be considered
isochores in the traditional sense (8). We note that
IsoPlotter was not artificially tuned to detect domains of

a particular length (e.g., 28) and, unlike DJS, it is not
biased toward short domains (Table 1).

Cohen et al. (10) used the DJS algorithm to partition the
human genome and then classified the inferred domains
according to their lengths using a length cutoff, lc. A com-
parison of our results with those obtained by Cohen et al.
(10) reveals two major differences. First, Cohen et al. (10)
reported that the proportion of domains found to be ‘pu-
tatively homogeneous’ out of all inferred domains was
dependent on the domain length cutoff, lc. That is, the
longer domain was more likely considered the ‘putatively
homogeneous’ domain. In contrast, our results show that
the proportion of compositionally homogeneous domains
out of all inferred domains slightly decreased with the
increase in length cutoff, lc. Second, they reported a
possible bias in their homogeneity test, which qualified
almost all long domains (>50 kb) as ‘putatively homoge-
neous’. However, we did not observe this bias using our
homogeneity test. The difference in our results can be ex-
plained by our improved homogeneity test that corrects
for multiple comparisons.

Segmenting the human genome with IsoPlotter revealed
a new genomic compositional architecture consisting of a
mixture of compositionally nonhomogeneous domains
with numerous short compositionally homogeneous
domains and relatively few long ones (Figures 7a–c). A
preliminary analysis of eight species indicates that this
salient description holds for other mammalian genomes
(Elhaik E. and Graur D., unpublished data). To under-
stand how such structures emerged in an evolutionary per-
spective, a comparative analysis using different genomes is
currently underway. Using IsoPlotter, we now have the
ability to use the same analytical tool on genomes that
were heretofore considered too heterogeneous to be par-
titioned, such as the yeast genome (36).
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