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ABSTRACT
We present 25 new eclipse times of the white dwarf binary NN Ser taken with the high-speed
camera ULTRACAM on the William Herschel Telescope and New Technology Telescope,
the RISE camera on the Liverpool Telescope and HAWK-I on the Very Large Telescope to
test the two-planet model proposed to explain variations in its eclipse times measured over
the last 25 yr. The planetary model survives the test with flying colours, correctly predicting a
progressive lag in eclipse times of 36 s that has set in since 2010 compared to the previous 8 yr
of precise times. Allowing both orbits to be eccentric, we find orbital periods of 7.9 ± 0.5 and
15.3 ± 0.3 yr, and masses of 2.3 ± 0.5 and 7.3 ± 0.3 MJ. We also find dynamically long-lived
orbits consistent with the data, associated with 2:1 and 5:2 period ratios. The data scatter by
0.07 s relative to the best-fitting model, by some margin the most precise of any of the proposed
eclipsing compact object planet hosts. Despite the high precision, degeneracy in the orbit fits
prevents a significant measurement of a period change of the binary and of N-body effects.
Finally, we point out a major flaw with a previous dynamical stability analysis of NN Ser, and
by extension, with a number of analyses of similar systems.
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1 IN T RO D U C T I O N

The discovery of hundreds of planets around stars other than the
Sun has alerted researchers to the possible influence of planets in
a wide variety of circumstances. Amongst these are the spectacu-
lar Kepler discoveries of planets transiting across both stars of the
tighter binary systems around which they orbit (Doyle et al. 2011;
Welsh et al. 2012). The transits in these systems leave no doubt
as to the existence of planets in so-called ‘P-type’ orbits (Dvorak
1986) around binaries. Even before the Kepler discoveries there
was evidence for planets around binaries from timing observations
of a variety of systems where the presence of planets is indicated
through light travel time (LTT) induced variations in the times of
eclipses. This method has led to claims of planetary and/or substel-
lar companions around hot subdwarf/M dwarf binaries (Lee et al.
2009; Qian et al. 2009a), white dwarf/M dwarf binaries (Qian et al.
2009b, 2010; Beuermann et al. 2010) and cataclysmic variables
(Beuermann et al. 2011; Potter et al. 2011; Qian et al. 2011). In all
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and 091.D-0444).
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the cases cited one of the binary components is evolved which helps
observationally because the evolved star is hot and relatively small,
leading to sharply defined, deep edges in eclipse light curves which
make for precise times.

Planets discovered through timing complement those found in
radial velocity and transit surveys as they are easier to discover
the larger (and thus longer period) their orbits are. The existence
of planets around evolved stars raises interesting questions as to
whether the planets are primordial and managed to survive the
evolution of the host binary, or whether they instead formed from
material ejected during the course of stellar evolution (Beuermann
et al. 2011; Veras & Tout 2012; Mustill et al. 2013), and may also
place unusual constraints upon the binary’s evolution (Portegies
Zwart 2013).

The Kepler discoveries prove that circumbinary planets exist, but
when it comes to those discovered through timing, the reality of the
planets is not clear-cut. The history of the field is not encouraging in
this respect. For instance, the orbits measured for the white dwarf/M
dwarf binaries NN Ser and QS Vir by Qian et al. (2009b, 2010) were
both ruled out as soon as new data were acquired (Parsons et al.
2010b), as were the two-planet orbits proposed by Lee et al. (2009)
for the sdB+dM binary HW Vir (Beuermann et al. 2012). Likewise,
some multiple planet systems claimed from timing studies (Qian
et al. 2011) have had problems with long-term dynamical stability
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(Horner et al. 2011; Potter et al. 2011; Hinse et al. 2012). These are
serious issues because there is no independent evidence yet for the
existence of the various third-bodies suggested by timing, while the
mere fact that timing variations can be fitted by planetary models is
not entirely persuasive, since with enough extra bodies the process
is akin to fitting a Fourier series, and any set of data can be matched.
At present, the main rival model for the period changes is one in
which they are caused by fluctuations in the gravitational quadrupo-
lar moments of one or both stars (Applegate 1992). In some cases
this appears to fail on energetic grounds (Brinkworth et al. 2006),
and at the moment this constitutes the only, rather indirect, inde-
pendent support for the planetary hypothesis for the eclipse timing
variations of compact binary stars, although artefacts of measure-
ment, such as wavelength-dependent eclipse timings, are a possible
issue in the case of accreting systems (Goździewski et al. 2012).

Useful scientific hypotheses have predictive power. So far the
planetary explanation of LTT variations has fared poorly on this
basis. In this paper we present new observations of the sys-
tem NN Ser which is currently the most convincing example of
an LTT-discovered planetary system around a close binary star.
Our aim is to see whether the planetary model developed by
Beuermann et al. (2010) can withstand the test of new data. NN Ser
is a white dwarf/M dwarf binary with an orbital period P = 3.1 h
which was discovered to eclipse by Haefner (1989). The combina-
tion of a hot white dwarf and low-mass M dwarf (0.111 M�; Par-
sons et al. 2010a) allows the white dwarf to dominate its optical flux
completely, giving very deep, sharply defined eclipses which yield
precise times. The very low mass of the M dwarf is an important
feature since its low luminosity greatly restricts the effectiveness
of Applegate (1992)’s period change mechanism, as pointed out
by Brinkworth et al. (2006), who first detected period changes in
NN Ser. Brinkworth et al. interpreted the period changes as a sign
of angular momentum loss, but Beuermann et al. (2010) reanalysed
an early observation of NN Ser from the Very Large Telescope
(VLT) and were able to show that the orbital period was not simply
changing in one direction but had shown episodes of lengthening as
well as shortening. They showed that the timing variations could be
well explained if there were two objects of minimum mass 6.91 and
2.28 MJ in orbit around the binary. This nicely solved the problem
that the period changes appeared to be much larger than expected
on the basis of the angular momentum mechanisms thought to drive
binary evolution (Brinkworth et al. 2006; Parsons et al. 2010a).

Of all the planets discovered through timing around binaries,
those around NN Ser are arguably the most compelling because
the data quality is so high with the best times having uncertainties
<0.1 s, because it is a well-detached binary with an extremely dim
main-sequence component, and since the two-planet model fits the
eclipse times almost perfectly (Beuermann et al. 2010). NN Ser thus
provides us with a chance to see if the planet model is capable of
predicting eclipse arrival times in detail. This was the motivation
behind this study.

Shortly after submitting this paper, another paper present-
ing eclipse times of NN Ser appeared (Beuermann, Dreizler &
Hessman 2013). We have elected not to update our paper with their
times to render a comparison with their results more independent.
We have included such a comparison in Section 3.7.

2 O B S E RVAT I O N S A N D T H E I R R E D U C T I O N

We observed 25 eclipses of NN Ser, over the period 2011 February
25 to 2013 July 26, extending the baseline of the times presented
in Beuermann et al. (2010) by 3 yr (Table 1). The majority of data

were acquired with the high-speed cameras ULTRACAM (Dhillon
et al. 2007) and RISE (Gibson et al. 2008; Steele et al. 2008). These
employ frame transfer CCDs so that dead time between images is
reduced to less than 0.05 s. ULTRACAM, a visitor instrument, was
mounted either at a Nasmyth focus of the 3.5-m New Technology
Telescope (NTT) in La Silla or the Cassegrain focus of the 4.2-
m William Herschel Telescope (WHT) in La Palma, while RISE is
permanently mounted on the robotic 2-m Liverpool Telescope (LT).
The robotic nature of the LT allows us to spread the observations,
while ULTRACAM provides the highest precision data. We used u′

and g′ filters in the blue and green channels of ULTRACAM and
r′ or i′ in the red arm, as listed in Table 1. RISE operates with a
single fixed filter spanning the V and R bands. We also observed
NN Ser with the infrared imager HAWK-I installed at the Nasmyth
focus of VLT-UT4 at Paranal (Kissler-Patig et al. 2008) in 2013
March and April. We used the fast photometry mode which allowed
us to window the detectors and achieve a negligible dead time
between frames. Observations were performed using the J-band
filter; the white dwarf contributes ∼60 per cent of the overall light
in this band meaning that the eclipse is still deep and suitable for
timing.

All data were flat-fielded and extracted using aperture photome-
try within the ULTRACAM reduction pipeline (Dhillon et al. 2007).
We fitted the resulting light curves using the light-curve model de-
veloped in our previous analysis of NN Ser (Parsons et al. 2010a).
Holding all parameters fixed except the eclipse time led to the mea-
surements listed in Table 1, with the uncertainties derived from the
covariance matrix returned from the Levenberg–Marquardt mini-
mization used. In each case we scaled the uncertainties on the data
to ensure a χ2 per degree of freedom equal to one. We estimate un-
certainties on our data by propagation of photon and readout noise
through the data reduction. In good conditions these give realistic
estimates of the true scatter in the data, and the scaling therefore
makes little difference. In poor conditions the scatter can be larger
than the error propagation suggests in which case the scaling returns
larger, more realistic uncertainties. It is changes in the observing
conditions, as well as the instruments, that largely account for the
variation in the uncertainties listed in Table 1, with the addition of
pickup noise that affected ULTRACAM in 2012 January owing to
a faulty data cable. In the case of the ULTRACAM data, we com-
bined the times from the three independent arms of ULTRACAM,
weighting inversely with variance to arrive at the times listed. The
first two times listed in Table 1 represent updates of times listed
in Beuermann et al. (2010) which were based upon the g′-arm of
ULTRACAM only; the remainder of the times we used are as listed
in Beuermann et al. (2010). Adding our data to those of Beuermann
et al. (2010) gives a total of 76 times. One eclipse listed in Table 1,
that of cycle 66905, was very badly affected by cloud on both ingress
and egress (>90 and ∼50 per cent loss of light). During egress, the
cloud was thinning, leading to a rising trend in throughput which
weights the flux towards the second half of each exposure, and can
be expected to delay the measured time. Consistent with this, the
time for this eclipse is significantly delayed with respect to the best
fit, and including it in the fits adds 14.5 to χ2. We therefore decided
to exclude it from the analysis of the paper, but list it in Table 1 for
completeness.

For timing, precision is largely a matter of telescope aperture and
noise control; accuracy is down to the data acquisition system and
the corrections needed to place the times on to a uniform scale.
Significant timing errors have been found in the data of Dai et al.
(2010) for UZ For, and in the data of Qian et al. (2011) for HU Aqr
(Potter et al. 2011; Goździewski et al. 2012), and these are just ones
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Table 1. New eclipse times of NN Ser.

Cycle BMJD(TDB) Error (1σ ) Sampling Tel/Inst Comments
(d) (s) (s) Transparency, seeing, etc.

61219 55307.4003018 0.084 3.0 NTT/UCAM Update of time listed in Beuermann et al. (2010)
61579 55354.2291437 0.064 2.6 NTT/UCAM Update of time listed in Beuermann et al. (2010)
63601 55617.2511773 0.341 6.0 LT/RISE Clear, seeing 1.8 arcsec
63816 55645.2184078 0.500 6.0 LT/RISE Clear, 2 arcsec
64032 55673.3157097 0.132 3.0 NTT/UCAM Clear, 1.5 arcsec, bright Moon; u′, g′, r′
64054 55676.1774753 0.402 6.0 LT/RISE Clear, 2 arcsec
64322 55711.0389457 0.397 6.0 LT/RISE Clear, 2 arcsec
64330 55712.0795926 0.057 2.3 NTT/UCAM Clear, 1.5 arcsec; u′, g′, r′
64575 55743.9492287 0.369 6.0 LT/RISE Clear, 2 arcsec
64836 55777.9001514 0.347 5.0 LT/RISE Clear, 2 arcsec
65992 55928.2728113 1.134 5.0 LT/RISE Variable, 3 arcsec
66069 55938.2889870 0.256 3.4 WHT/UCAM Cloudy, 1 arcsec, bright Moon, twilight; u′, g′, r′
66092 55941.2808293 0.062 2.0 WHT/UCAM Clear, 1.5 arcsec; u′, g′, r′
66545 56000.2071543 0.425 5.0 LT/RISE Clear, ∼1.8 arcsec
66868 56042.2230409 0.035 2.0 WHT/UCAM Clear, 2 arcsec; u′, g′, i′
66905 56047.0360108 0.080 2.0 WHT/UCAM Clouds on ingress and egress, 2 arcsec. Caution! See text
67581 56134.9702132 0.421 5.0 LT/RISE Clear, 2 arcsec
67903 56176.8560256 0.034 2.0 WHT/UCAM Clear, 1 arcsec, twilight; u′, g′, r′
67934 56180.8885102 0.044 2.1 WHT/UCAM Clear, 2 arcsec; u′, g′, r′
69067 56328.2693666 0.536 5.0 LT/RISE Clear, 2.5 arcsec
69291 56357.4073373 0.657 7.0 VLT/HAWK-I Clear, 1 arcsec, twilight
69298 56358.3178846 0.245 7.0 VLT/HAWK-I Clear, 0.5 arcsec
69336 56363.2609298 0.506 5.0 LT/RISE Cloudy, 1.8 arcsec
69597 56397.2118717 0.491 7.0 VLT/HAWK-I Clear, 1 arcsec
69598 56397.3419520 0.392 7.0 VLT/HAWK-I Clear, 0.8 arcsec
70287 56486.9672059 0.037 2.4 WHT/UCAM Clear, 0.9 arcmin; u′, g′, i′
70387 56499.9752252 0.041 2.1 WHT/UCAM Clear, 1.1 arcsec; u′, g′, r′

that have been spotted from independent work, thus attention must
always be paid to the absolute timing accuracy of instruments in
such work. For ULTRACAM we have measured the absolute timing
to be good to <0.001 s; RISE is measured to be good to better than
0.1 s (Pollacco, private communication). While this upper limit po-
tentially allows systematic errors which are larger than the smallest
uncertainties from ULTRACAM timing of NN Ser, it is below the
uncertainties of times based upon RISE itself. In HAWK-I’s fast
photometry mode data is collected in blocks of exposures. There
is an overhead between blocks of 1–2 s as the data are written to
disc. Only the first exposure of each block is time stamped (to an
accuracy of ∼10 ms) therefore we used a small block size of 30 ex-
posures in order to reduce the timing uncertainties on the subsequent
exposures within a block. Since the dead time between exposures
within a block is negligible, we estimate that the timing accuracy of
HAWK-I is better than 0.1 s, smaller than the uncertainties on the
eclipse times measured with HAWK-I.

The times were placed on a Barycentric Dynamical Time (TDB)
time-scale corrected for light travel effects to the barycentre of the
Solar system to eliminate the effect of the motion of Earth (see
Eastman, Siverd & Gaudi 2010, for more details of time systems).
We carried out these corrections with a code based upon SLALIB,
which we have found to be accurate at a level of 50 μs when com-
pared to the pulsar timing package TEMPO2 (Hobbs, Edwards &
Manchester 2006), an insignificant error compared to the statistical
uncertainties of our observations. We quote the times in the form
of modified Julian dates, where MJD = JD − 240 0000.5, because
this is how we store times for increased precision. Placed upon
a TDB time-scale this becomes MJD(TDB), and it takes its final
form BMJD(TDB) when corrected to the barycentre of the Solar
system.

3 A NA LY SI S AND RESULTS

We begin our presentation of the results with two sections outlining
the analysis methods we used. The second of these concerns the
numerical aspects of fitting models to data, while we start with a
discussion of the physical models adopted.

3.1 Description of the orbits

We assume the binary acts as a clock which moves relative to the
observer under the influence of unseen bodies, hereafter ‘planets’,
in bound orbits around the binary. Labelling the binary with index
0 and the planets with indices 1, 2, . . . N, we need to describe the
orbits of N + 1 bodies. The most direct method is to specify the
Cartesian coordinates and velocities of the N + 1 bodies at a given
time, 6(N + 1) parameters in all. By working in the barycentric
(centre-of-mass) frame, this can be reduced to 6N without loss of
generality. We use the 6N parameters to specify the barycentric
positions Ri and velocities V i , i = 1, . . . N, of the N planets at a
specific time, with the binary’s position and velocity determined
through the reflex condition

m0 R0 = −
N∑

i=1

mi Ri , (1)

where m0 and mi are the masses of the objects, with a similar
condition on the velocity. This is how we initialize our N-body
integrations, which we will describe later.

For two-body orbits it is more usual to characterize orbits in terms
of six Keplerian orbital elements (a, e, i, �, ω, T0, to be defined
later) together with Kepler’s third law which gives the orbital angu-
lar frequency in terms of the masses of the bodies and semimajor
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axis of the orbit. For two-body orbits, Keplerian elements are time
independent, unlike the Cartesian vectors. In trying to extend them
to the case of more than one planet (N > 1), we face two problems.
First, when there are more than two bodies, Keplerian orbits are
only an approximation to the true, hereafter Newtonian, orbits and
we need to determine whether the degree of approximation is sig-
nificant. Secondly, there is more than one way to parametrize the
orbits in terms of Keplerian motion, and each differs in terms of
how well it approximates the Newtonian paths.

We consider three alternative orbit parametrizations. The first
two have already appeared in the literature, while the third, which
has not been presented before as far as we are aware, performed
better than the other two. The three parametrizations differ in how
we define the vectors which undergo Keplerian motion and in the
precise forms of Kepler’s third law that we use.

We call our first parametrization ‘astrocentric’. The coordinates
of each planet are referenced relative to the binary, and we assume
that each astrocentric vector follows its own Keplerian two-body
orbit, with angular frequencies ni given by

n2
i a

3
i = G(m0 + mi) (2)

for i = 1, . . . , N. These are the coordinates used when fitting eclipse
times by most researchers to date. In astrocentric coordinates each
planet is placed upon the same footing, and is treated as if the
other planets were not there. Denoting astrocentric vectors by the
lowercase Greek letter ρ, the position vector ρ0 points from the
barycentre of all the bodies to the binary, and then the vectors ρi

point from the binary to the planets. In astrocentric coordinates the
reflex condition equation (1) becomes

ρ0 = −
N∑

i=1

kiρi , (3)

where ki = mi/M, where M = ∑N
j=0 mj is the total mass. We will

encounter these parameters in slightly modified form for the other
two parametrizations. A typical procedure is to start with N sets of
Keplerian elements from which the N vectors ρi , i = 1, . . . , N, can
be calculated. The binary vector ρ0 then follows from equation (3),
and the equivalent barycentric vectors follow from

Ri = ρi + ρ0. (4)

Despite their simplicity, astrocentric coordinates are unattractive
from a theoretical point of view. If one transforms from barycentric
to astrocentric coordinates, the kinetic energy part of the Hamilto-
nian, which in barycentric coordinates is

HK = 1

2

N∑
i=0

mi Ṙ
2
i , (5)

develops cross-terms such as ρ̇1ρ̇2. This problem can be avoided
using Jacobi coordinates (Malhotra 1993), and orbits prove to be
closer to Keplerian in these coordinates than they do in astrocentric
coordinates (Lee & Peale 2003); this was first pointed out for planets
around white dwarf binaries by Goździewski et al. (2012). We use
Jacobi coordinates for the second and third parametrizations as we
now discuss.

Jacobi coordinates, which we indicate with lowercase Latin letter
r , are defined as follows: vector r0 points from the system barycentre
to the binary; r1 points from the binary to the first planet; r2 points
from the centre of mass of the binary and first planet towards the
second planet and so on, with each new vector pointing from the
centre of mass of the combined set of objects up to that point to the
next object. These coordinates differ from the astrocentric series

ρ0, ρ1, ρ2, . . . , only from the third term onwards, and are therefore
no different in the two body case. It can be shown (Malhotra 1993)
that in Jacobi coordinates the kinetic energy part of the Hamiltonian
takes the simple form

HK = 1

2

N∑
i=1

μi ṙ2
i , (6)

where μi is the reduced mass of planet i in orbit with a single object
consisting of the binary and all planets up to number i − 1:

1

μi

= 1∑i−1
j=0 mj

+ 1

mi

. (7)

For three bodies the overall Hamiltonian can then be written as

H =
2∑

i=1

(
1

2
μi ṙ2

i − Gm0mi

ri

)
+ H ′, (8)

where

H ′ = Gm0m2

(
1

r2
− 1

|r2 + k′
1r1|

)
− Gm1m2

|r2 − (1 − k′
1)r1| , (9)

and k′
1 is one of a series of factors related to the centre-of-mass

sequence:

k′
i = mi∑i

j=0 mj

, i = 1, 2, . . . N. (10)

Since k′
1 = m1/(m0 + m1), both terms in equation (9) are of order

m1m2 (Malhotra 1993). If the planet masses are very small com-
pared to m0, we can neglect H′ with respect to the terms of the
summation, and the problem simplifies to two Kepler orbits in the
Jacobi coordinates for each planet, r1 and r2, with orbital angular
frequencies n1 and n2 given by

n2
1a

3
1 = G

m0

1 − k′
1

= G(m0 + m1), (11)

n2
2a

3
2 = G

m0

1 − k′
2

= G
m0(m0 + m1 + m2)

m0 + m1
. (12)

The factors k′
i are analogous to the ki introduced for astrocentric

coordinates, and appear in the following relations that correspond
to equations (3) and (4):

r0 = −
N∑

i=1

k′
i r i (13)

and

Ri = r i −
N∑

j=i

k′
j rj . (14)

Equation (12) relating the orbital frequency n2 to the semimajor
axis a2 is slightly unexpected. The form of the reduced mass μ2

suggests that this should represent a composite object consisting of
the binary and first planet with total mass m0 + m1, in orbit with
the second planet of mass m2. Hence one might have guessed that
equation (12) would simply read G(m0 + m1 + m2) on the right-
hand side. This is the motivation behind our third and final set of
coordinates, which, for want of a better term, we name ‘modified
Jacobi coordinates’. The only change we make for the modified
Jacobi coordinates is to alter equation (12) to read

n2
2a

3
2 = G(m0 + m1 + m2). (15)
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This choice corresponds to a slightly different partitioning of the
Hamiltonian in which the perturbation Hamiltonian takes on the
modified form

H ′′ = Gm0m2

(
1

r2
− 1

|r2 + k1r1|
)

+ Gm1m2

(
1

r2
− 1

|r2 − (1 − k1)r1|
)

. (16)

Just as for H′, both terms are of order m1m2, but H′ ′ is better for a
truly hierarchical set of orbits since if r1 � r2, the second term is
much smaller than it is in H′.

In contrast to the astrocentric case, the two planets are not
treated symmetrically by Jacobi coordinates and thus their order-
ing matters. Considering H′ ′, the order-of-magnitude of both terms
is Gm1m2r1/r

2
2 , thus the correct choice is to label the planets so

that r2 > r1, i.e. planet 1 should be the closest to the binary. This
reduces the size of H′ ′ by the ratio of the semimajor axes squared,
∼(a1/a2)2, relative to the reverse choice. Hence in the rest of the
paper, we number the planets in ascending order of their semimajor
axes, with planet 1 the innermost.

We have emphasized that Keplerian orbits are an approxima-
tion for N > 1. However, Keplerian elements can simply be re-
garded as a set of generalized coordinates which vary with time
for N > 1. Such ‘osculating’ elements precisely specify the paths
of the bodies, although the way in which the elements evolve with
time must be determined through numerical N-body integration.
Each of the three parametrizations can be used in this way, as well
as in the Keplerian approximation with all elements fixed. To do
so one starts from a set of elements at a particular time, which
are then translated into barycentric Cartesian coordinates. One then
proceeds using N-body integration thereafter. The translation step
varies with the parametrization in use, so identical N-body paths
correspond to slightly different sets of elements according to the
chosen parametrization, but used in this way the orbits are exact
within numerical error, which allows us to judge the degree of
approximation involved in the Keplerian approximation.

We wrote a numerical N-body integrator in C++ based upon
the Burlisch–Stoer method as implemented by Press et al. (2002),
which we ran from within a PYTHON wrapper. We verified our inte-
grator on the Kepler two-body problem, an equal-mass symmetric
three-body problem, against an entirely independent code written
by one of us (MB), and against the Burlisch–Stoer option of the
orbit integrator, MERCURY6 (Chambers 1999). For each of the three
parametrizations we computed N-body-integrated paths to equiv-
alent Keplerian approximated orbits. We selected MJD = 54500,
which corresponds to 2008 February 4 as the reference epoch since
it is weighted towards the era when the bulk of high-quality eclipse
times have been taken. We verified the significance of the planet
ordering for the two forms of Jacobi coordinates, finding that the
correct choice was better than the reverse by of order a factor of
5 in terms of root-mean-square (rms) difference versus Newtonian
models.

Fig. 1 compares the difference between Keplerian and Newto-
nian predictions for the three parametrizations for an orbit typical
of NN Ser. The ordering seen here with astrocentric coordinates
worst, and our modified version of Jacobi coordinates best, agrees
with what we found looking at a much broader range of orbit fits.
The differences in Fig. 1 range from a few tenths of a second to
more than 1 s, which given the timing precision of NN Ser can
be expected to have a noticeable effect upon parameters. There
are instances where deviations as large as 5 s occur, typically on

Figure 1. The difference in the planet-induced LTT delays of Keplerian
versus Newtonian models for a typical two-planet fit for NN Ser. Three
cases are shown: astrocentric (dashed–dotted), Jacobi (dashed) and modified
Jacobi (solid). The MJD = 54500 reference time corresponds to the time
around 19 yr in when all models agree. For reference the LTT variations
in NN Ser have a range of ±40 s. The Newtonian comparison orbits are
calculated separately for each of the three coordinate systems.

dynamically very unstable orbits. We will see that these can have
a quantitative effect upon the parameters, meaning that Keplerian
models, whatever the coordinate parametrization, are not adequate
for fitting the NN Ser times. In consequence, the majority of the
orbit fits in this paper were undertaken using Newtonian N-body
integrations, without Keplerian approximation. We employed the
modified Jacobi representation to translate from orbital elements
to initial position and velocity vectors to initialize these integra-
tions, because, as Fig. 1 shows, they are the best of the three we
investigated. We make one exception where we compare the results
from N-body integrated and equivalent Keplerian models, based in
each case upon the modified Jacobi prescription. When we need to
specify exactly what system we are using, we will use expressions
such as ‘astrocentric Keplerian’ and ‘Newtonian modified Jacobi’.
The first means orbits in which two astrocentric vectors execute
Kepler ellipses, i.e. an approximation; the second means that Ja-
cobi coordinates are used to initialize the orbits, using our modified
version of angular frequency, but thereafter the paths are computed
using N-body integration with no approximation beyond numerical
uncertainties.

3.2 Model-fitting approach

Sometimes sparse coverage, and often long orbital periods, mean
that timing work on circum-binary planets is plagued by degenera-
cies amongst fit parameters. This can cause problems simply in lo-
cating best-fitting models, and even more so in the determination of
uncertainties. For instance the widely used Levenberg–Marquardt
method often fails to locate the minimum in such circumstances
and the covariance matrix it generates can be far from capturing
the complexity of very non-quadratic, and possibly multiple min-
ima. A widely used method that can overcome these difficulties,
which we adopt here, is the Markov chain Monte Carlo (MCMC)
method. The aim of MCMC analysis is to obtain a set of possible
models distributed over model parameter space with the Bayesian
posterior probability distribution defined by the data. This is accom-
plished by stochastic jumping of the model parameters, followed
by selection or rejection according to the posterior probability of
the model M given the data D, P(M|D). This process results in long
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chains of models, which, if long enough to be well mixed, have the
desired probability distribution. By Bayes’ theorem the posterior
probability is proportional to the product of the prior probability
of the model, P(M), and the likelihood, P(D|M), which in our case
is determined by the factor exp (−χ2/2), where χ2 is the standard
goodness-of-fit parameter.

For the prior probabilities, we adopted uniform priors for all
temporal zero-points, the eccentricities (0–1) and the arguments
of periapsis (−180◦–+180◦). We used Jeffreys priors (1/a, 1/m)
for the semimajor axes and masses. Some care is needed over the
eccentricity e and the argument of periapsis ω, which sets the ori-
entation of the ellipse in its own plane, because ω becomes poorly
constrained as e → 0. This can cause difficulties if one iterates
using e and ω directly. We therefore transformed to x = √

e cos ω

and y = √
e sin ω, which since the Jacobian ||∂(x, y)/∂(e, ω)|| is

constant, maintains uniform priors in e and ω, but causes no diffi-
culties for small values of e. The choice of priors has a small but
non-negligible effect upon the results. For instance we find a signif-
icant range of semimajor axes in some models, and there is clearly
a difference between a uniform prior and 1/a. Although the priors
can have a quantitative effect upon results in such cases, they have
no qualitative impact upon the conclusions of this paper.

Armed with the MCMC runs, we are in a position to compute
uncertainties, and correlations between parameters. The MCMC
method is useful in cases of high dimensionality such as we face
here (the models we present require from 10 to 13 fit parameters)
and can give a good feel for the regions of parameter space sup-
ported by the data. Requiring no derivative information, it is highly
robust, a significant point for the Newtonian models where one
can generate trial orbits which do not even last the span of the ob-
served data. These cause difficulties for derivative-based methods
such as Levenburg–Marquardt for example. Generation of models
with the correct posterior probability distribution is also ideal for
subsequent dynamical analysis where one wants to tests models that
are consistent with the data.

The main disadvantage of the MCMC method is the sometimes
large computation time needed to achieve well mixed and con-
verged chains. The way in which the models are jumped during
the iterations is important. Small jumps lead to slow random-walk
behaviour with long correlation times, while large jumps lead to a
high chance of rejection for proposed models and long correlation
times once more. Ideally one jumps with a distribution that reflects
the correlations between parameters, but it is not always easy to
work out how to do this, and there is no magic bullet to solve this
in all cases. For instance if multiple minima are separated by high
enough χ2 ‘mountains’, a chain may never jump between them.
In this paper we adopted the affine-invariant method implemented
in the PYTHON package EMCEE (Foreman-Mackey et al. 2013). This
adapts its jumps to the developing distribution of models, which is
a great advantage over having to estimate this at the start, but even
so, the problem in this case turned out to be one of the most difficult
we have encountered, and in several cases we required >109 orbits
to reach near-ergodic behaviour. We computed the autocorrelation
functions of parameters as one means of assessing convergence, but
our main method, and the one we trust above any other, was visual,
by making plots of the mean and rms values of parameters as a
function of update cycle number along the chains. Initial ‘burn-in’
sections are obvious on such plots, as are long-term trends. There is
no way to be absolutely certain that convergence has been reached
in MCMC because there can be regions of parameter space that
barely mix with each other. Even if one computed 1010 models,
there would be no guarantee that a new region of viable models

would not show up after 1012. From the very many computations
we have carried out, including large numbers of false starts, we
believe that we have explored parameter space very fully, and there
are no undiscovered continents of lower χ2. However, as we will
describe later, we did encounter one case that converged too slowly
to give reliable results. This is fundamentally an issue of degeneracy
and it should improve greatly with further coverage.

3.3 Predicting the future

We start our analysis with our primary objective: how well does the
two-planet model developed by Beuermann et al. (2010) fare when
confronted with new data? Fig. 2 shows the most recent 11 yr of
data on NN Ser, dating back to 2002 May when we first started to
monitor it with ULTRACAM. The vertical dashed line at the end of
2010 marks the boundary between the times listed in Beuermann
et al. (2010) and the new times of this paper. The grey curves are
a subset of 50 MCMC-generated Newtonian models based upon
Beuermann et al. (2010)’s times alone. Without the new times or
orbit fits to guide the eye, one might have guessed that the new times
would perhaps range in O − C around ±3 s on this plot. However
earlier data, which are included in the fits, but off the left-hand side
of the plot windows (see Beuermann et al. (2010) and Fig. 9 later in
this paper), cause the planet model to predict a sharp upturn since
2010, corresponding to delayed eclipse times as the binary moves
away from us relative to its mean motion during the previous 8 yr.
In the planetary model, the upturn is primarily the result of the 7 MJ

outermost planet. Our new data are in remarkably good agreement
with this (remarkable to the authors at least). While this is not a
proof of the planetary model, it has nevertheless passed the test
well. We cannot say for sure that alternative models such as those
of Applegate (1992) do not have a similarly precise ‘memory’ of the
past, but neither is it clear that they do, whereas it is a key prediction
of the clockwork precision of Newtonian dynamics.

Including the new times when generating the fits, gives a much
tighter set of possible orbits illustrated in Fig. 3 which also shows
residuals between the data and the best of the fits shown. It should
be noted however that at this point we are following Beuermann
et al. (2010)’s assumption of zero eccentricity for the outer orbit,
which is largely responsible for the very tightly defined fit. The
dispersion increases once this constraint is lifted (independent of
whether Newtonian or Keplerian models are adopted).

3.4 Comparison with Beuermann et al. (2010)

The fits plotted in Figs 2 and 3 were based upon allowing the same
parameters to vary as used in Beuermann et al. (2010)’s model ‘2a’
(their best one), so in this section we look at the effect that the
new data have upon the parameters. We also consider the difference
made by using integrated Newtonian models compared to Keplerian
orbits; in all subsequent sections we use Newtonian models only. For
reference, in their (astrocentric Keplerian) model 2a, Beuermann
et al. (2010) allowed a total of 10 parameters to be free which were
the zero-point and period of the binary’s ephemeris, the period,
semimajor axis and reference epoch of the outer planet and the
period, semi-major axis, reference epoch, eccentricity and argument
of periastron of inner and lower mass planet. The orbit of the outer
planet was assumed to be circular.

Beuermann et al. (2010) give a detailed description of their fits in
terms of the periods ‘Pc’ and ‘Pd’ of the two planets (corresponding
to our P2 and P1), so we first focus upon this. Fig. 4 shows the

 at T
he U

niversity of Sheffield L
ibrary on N

ovem
ber 30, 2016

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


The planets around NN Ser: still there 481

Figure 2. 11 yr of eclipse times of NN Ser, starting in 2002 May. The dashed line marks the end of 2010; the data before this point are those listed in Beuermann
et al. (2010), including the two updates listed in Table 1. The times are plotted relative to the ephemeris BMJD(TDB) = 47344.0258547 + 0.1300801135E,
where E is the cycle number. This was chosen to give a flat trend in times from 2002 to 2010. The light-grey smooth curves show 50 Newtonian orbit fits to the
pre-2011 data only, generated via MCMC iteration, corresponding to the models of the lower left-hand panel of Fig. 4; the models were picked from the final
100 models of the MCMC chain. The times after 2010 are from this paper and were not used to create the fits, and yet they match the predicted trend well. For
clarity, only data with uncertainties <2 s are shown.

Figure 3. This plot is identical to Fig. 2 but now the orbital fits are based
upon all data, incorporating the new times and it includes a plot of the
residuals relative to the best of the orbits shown. For clarity, only points
with uncertainties <0.5 s are shown.

range of P1–P2 space supported under either the Keplerian or New-
tonian interpretations, and making use of either the data used by
Beuermann et al. (2010) only, or the full set including our new
times. The top left-hand panel is equivalent to Beuermann et al.
(2010) and indeed matches the range of models they located, al-
though the MCMC results show that the supported region is more
complex than their division into just two models perhaps suggests.
The top right-hand panel shows a significant shrinkage with the ad-
dition of new data and supports Beuermann et al. (2010)’s selection
of their model 2a. While some shrinkage is expected, the extent of
the change is notable, given that we have only increased the baseline
of coverage by around 15 per cent. We believe this is a combination
of degeneracy when fitting to pre-2011 data alone, combined with
our having turned the corner of another orbit of the outer planet
(planet 2), as shown in Fig. 2. Beuermann et al. (2010) found that

there is little to choose between their two models in terms of good-
ness of fit, although their model 2a was marginally favoured. This
is confirmed by the stripe of viable models connecting their 2a and
2b in the top left-hand panel of Fig. 4.

The lower panels show that, even though our choice of coor-
dinates was motivated by the desire to generate Keplerian orbits
which matched Newtonian orbits as closely as possible, there are
nonetheless regions of parameter space considerably affected by
three-body effects. In particular, the kink in the lower left-hand
panel located in the region where the period ratio is closer than
2:1, compared to its relatively simple Keplerian counterpart in the
upper left-hand panel, is evidence of this. Here deviations between
Keplerian and Newtonian orbits amount to several seconds, highly
significant given the precision of the NN Ser times, and the favoured
parameter distribution is distorted as a result. The effects are much
smaller above the 2:1 line, and show that the modified Jacobi co-
ordinates can work well. Strangely enough, as we remarked earlier,
although three-body effects are significant, the data are not good
enough to prove that they operate (which could provide compelling
independent support for the planet model) because there is suffi-
cient degeneracy for either Keplerian or Newtonian models to fit
the data equally well, albeit with differing sets of orbital elements.
Obviously, if there are planets orbiting the binary in NN Ser, the
weight of 300 yr of classical mechanics favours Newtonian models,
but it will be some time before this can be proved from the data
directly.

3.5 Dynamical stability

As discussed earlier, some proposed circumbinary orbits have been
shown to be unstable on short time-scales, and if multiple planetary
orbits are proposed, a check on their stability is essential. Having
said this, all the data needed for this are not to hand since we do
not know the mutual orientations of the planets’ orbits. Therefore,
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Figure 4. Regions of P1–P2 space supported by the data, shown in each case using 2000 models sampled from MCMC chains. The top left-hand panel is our
equivalent of Beuermann et al. (2010), i.e. we use only data taken before 2011 and assume Keplerian orbits (although our Jacobi formalism leads to a very
small change in position). The top right-hand panel shows Keplerian models based upon all of the data; the lower panels show the corresponding results for
Newtonian orbit integrations. The grey dashed lines mark 2:1 (right-hand panel) and 5:2 (left-hand panel) period ratios, while the crosses mark the models
‘2a’ (lower right) and ‘2b’ (upper left) from Beuermann et al. (2010). Black (grey) points delineate models which last either more (less) than 1 Myr, the
post-common-envelope age of NN Ser.

in the absence of evidence to the contrary, we assume, along with
previous researchers, that the orbits are coplanar. In addition we
assume that, like the binary itself, we see the planetary orbits edge-
on and for simplicity we set the orbital inclinations precisely to
90◦. This minimizes the masses of the planets relative to the binary,
which will usually tend to promote stability. NN Ser emerged from
its common envelope phase around 1 Myr ago, and prior to this
phase would have been significantly different, so we checked for
stability by integrating backwards in time for just 2 Myr . To a
certain extent stability is already included within the Newtonian
MCMC runs (lower panels of Fig. 4) since some proposed orbits
generated by MCMC jumps lead to collisions within the span of the
data and are rejected. It would have been easy to extend this so that
all long-term unstable orbits were similarly thrown out, however,
the CPU time penalty is far too great to allow this approach. Instead,
our approach during the MCMC runs was simply to integrate for the
25 yr baseline of the observations, leaving the longer term dynamical
stability computations to the small fraction of models retained (of
order 1 in 104) as we waited for the MCMC chains to reach a stable
state.

The differently shaded symbols in Fig. 4 distinguish between
‘stable’ orbits which last for >1 Myr (black) from the ‘unstable’
ones which do not (grey). In the upper left-hand panel, orbits are
mostly unstable below the 2:1 line (i.e. less extreme ratio), as one
might expect. They are stabilized near the 2:1 and 5:2 lines and
there is a mixed set of unstable and stable models in between.

The pattern of stability and instability is broadly consistent with
Beuermann et al. (2010)’s results, although our models seem to be
more stable between the 2:1 and 5:2 lines than their description
suggests. The topology of stable and unstable regions survives the
distorting influence of Newtonian effects in the lower left-hand
panel. Of order 50 per cent of these models proved to be stable.
Once the new data are included (right-hand panels), the supported
models are confined to the largely unstable region lying below
the 2:1 line in Fig. 4. Unsurprisingly therefore, very few of these
models turn out to be stable – around 1 in 6000. Although one
could argue that just one stable model consistent with the data is
all that is required to claim potential stability, the reduction in the
fraction of stable models is a worry for the planet model of NN Ser,
because it looks possible that with yet more data, we are likely to
be left with no long-lived models at all. Thus we now turn to look
at the consequences of freeing up the orbit fits by allowing non-
zero eccentricity in the outermost planetary orbit and changes in the
orbital period of the binary itself.

3.6 Eccentricity and binary orbital period variation

We have so far followed Beuermann et al. (2010)’s application of
Ockham’s razor by choosing the most restrictive model consistent
with the data. This helps the fitting process because of degeneracies,
as Beuermann et al. (2010) suggest, but it gives an overly optimistic
view of how well constrained NN Ser is. In following Beuermann
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et al. (2010)’s model 2, we are making the questionable assumptions
that the outer planet has a circular orbit and that NN Ser acts as a
perfect clock. While we do not need to deviate from these in order to
find good fits to the data, it would come as little surprise if they were
not entirely accurate, so it is of interest to examine the effect relaxing
these restrictions has upon the model parameters, and also upon the
issue of stability, which, as we have just seen, is looking marginal
in the light of the new data. We therefore carried out MCMC runs
with the outermost planet’s orbit allowed to be eccentric (two extra
free parameters, making 12), and then with the addition of ‘clock
drift’ in the form of a quadratic term β in the binary ephemeris,
bringing the number of free parameters to 13. We found that the
MCMC chain of the last case never converged owing to a strong
degeneracy between the quadratic term and the orbit of the outer
planet which allowed a2 to range up to values >12 au compared
to a value ≈5.4 au when no quadratic term was included. In order
to force convergence upon a reasonable time-scale, we therefore
applied a Gaussian prior on β, where the latter is defined by its
appearance in the ephemeris relation:

T = T0 + PE + βE2, (17)

with E the eclipse cycle number and T the time in days. The prior we
applied was P(β) ∝ exp (−(β/σβ )2/2), with σβ = 7.5 × 10−14 d,
25 times the magnitude expected for gravitational wave losses (see
later). This allows significant extra freedom, without suffering the
convergence issues of the unconstrained model. The constraint on
β allows the majority of the values we found when there was no
constraint at all, but cuts off an extended wing that reaches values
as high as β = 1.5 × 10−12 d.

Fig. 5 shows the change in the P1–P2 MCMC projection as the
orbital models are given these greater freedoms. The changes are
large, showing that parameter degeneracy remains significant. The
orbital parameters are consequently much more uncertain than the
constrained model 2 of Beuermann et al. (2010) suggests, and it is
no longer even clear whether their model 2a (near 2:1) is favoured
over 2b (5:2) as we see islands of stability corresponding to both
solutions. Perhaps most importantly, however, the increased model
freedom allows access to long-lived parts of parameter space, with
significant regions of stability, somewhat allaying the worry of the
previous section over the likely complete disappearance of any

such models. This is particularly the case once the binary’s period
is allowed to vary.

The means and standard deviations of the orbital parameters of
models plotted in Fig. 5 are listed in Table 2, along with the values
corresponding to the lower left-hand panel of Fig. 4. Most of the
parameters have an obvious meaning, but it should be noted that the
epochs T1 and T2 refer to the time when the respective planet reaches
the ascending node of its orbit, not the more usual periastron, as the
latter is poorly defined for small eccentricities. The eccentricity of
the outer planet e2 and the quadratic term in the binary ephemeris β

are consistent with zero, although, as we have just seen, dynamical
stability seems to suggest that e2 > 0, and it would not be surprising
were this the case. The χ2 values listed are the minimum of any
models of the MCMC chains. The MCMC method does not aspire to
find the absolute minimum χ2, and tests we have made suggest that
the values listed in the table are of order 0.5–1.5 above the absolute
minimum. The improvement in χ2 as more parameters are added
is marginal, so a circular outer orbit is fine for fitting the data. It is
the requirement of dynamical stability which leads us to favour the
model with eccentricity. In using the numbers of Table 2, it should
be realized that the mean values do not need to correspond to any
viable model: for instance, the mean of a spherical shell distribution
lies outside the distribution itself.

The quadratic term produced by a rate of angular momentum
change J̇ is given by

β = 3P 2

2

J̇

J
, (18)

where P is the orbital period and J is the angular momentum. For
the parameters of NN Ser (Parsons et al. 2010a), gravitational
wave radiation alone gives J̇ /J = −1.36 × 10−18 s−1, and there-
fore β = −3.0 × 10−15 d. Over the entire baseline of observations
of NN Ser, the βE2 term would then amount to 1.5 s. Although in
principle this is detectable, at present, because of the planets (or
whatever is causing the timing variability), there is strong degener-
acy in the fits once a quadratic term is allowed and we are far from
being able to measure a term this small. In fact, as we remarked
earlier, the degeneracy between β and the outermost planet’s orbital
parameters is so strong that β is only weakly constrained by our
data and the uncertainty listed for β in Table 2 largely reflects the

Figure 5. Regions of P1–P2 space supported by the data, showing the change as the models are given greater freedom. The leftmost panel is the constrained
model 2 (‘B’ for short) from Beuermann et al. (2010) for reference (i.e. it is identical to the lower right-hand panel of Fig. 4). In the centre panel, the eccentricity
of the outermost planet is allowed to be non-zero, while the rightmost panel allows the binary’s period to change in addition. Each panel shows 2000 Newtonian
models based upon all of the data. As before, the grey dashed lines mark 2:1 (top) and 5:2 (bottom) period ratios, and black and grey points indicate stable and
unstable models. From left-to-right, 0.02, 0.7 and 15 per cent of the models last more than 1 Myr.
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Table 2. The first three columns list the means and standard deviations of the orbital parameters of the models shown in Fig. 5. The
model of the left-hand column uses the same fit parameters as Beuermann et al. (2010)’s model 2, hence the ‘B’, with the next two
adding the extra freedoms indicated. The right-hand column is the same as the left-hand one except only the pre-2011 data were used.
The reference eclipse for the binary ephemeris, marked by T0, is shifted forward by 43 042 cycles relative to the usual ephemeris of
NN Ser to reduce the otherwise strong correlation between T0 and P.

Parameter B B + e2 B + e2 + β B
all all all pre-2011

T0 − 52942.9338 (MJD) (9.5 ± 0.1) × 10−5 (8.4 ± 2.8) × 10−5 (5.3 ± 4.4) × 10−5 (9.2 ± 0.8) × 10−5

P − 0.13008014 (d) (2.4 ± 0.1) × 10−9 (2.3 ± 0.3) × 10−9 (2.7 ± 0.5) × 10−9 (1.8 ± 2.6) × 10−9

β (10−12 d) – – 0.04 ± 0.05 –
a1 (au) 3.488 ± 0.012 3.43 ± 0.14 3.37 ± 0.15 3.28 ± 0.22
P1 (yr) 8.09 ± 0.04 7.9 ± 0.5 7.7 ± 0.5 7.4 ± 0.8
m1 (MJ) 2.688 ± 0.036 2.3 ± 0.5 2.2 ± 0.5 2.2 ± 0.9
T1 (MJD) 58205 ± 22 58106 ± 228 58043 ± 250 57826 ± 378
e1 0.163 ± 0.007 0.19 ± 0.05 0.19 ± 0.04 0.21 ± 0.04
ω1 (◦) −107.4 ± 2.7 −111 ± 13 −118 ± 15 −105 ± 8
a2 (au) 5.313 ± 0.005 5.35 ± 0.06 5.47 ± 0.15 5.51 ± 0.18
P2 (yr) 15.125 ± 0.021 15.27 ± 0.28 15.8 ± 0.7 16.0 ± 0.8
m2 (MJ) 7.46 ± 0.05 7.33 ± 0.31 7.29 ± 0.32 6.9 ± 1.4
T2 (MJD) 53973.3 ± 1.5 54016 ± 106 54096 ± 133 54008 ± 58
e2 – 0.08 ± 0.05 0.09 ± 0.05 –
ω2 (◦) – 43 ± 119 62 ± 95 –
χ2, Ndof 62.8, 66 62.6, 64 62.5, 63 31.8, 32

prior restriction we placed upon it. The gravitational wave radiation
(GWR) prediction is the minimum expected angular momentum
loss, as one also expects some loss from magnetic stellar wind
braking. The secondary star in NN Ser has a mass of 0.111 M�,
making it comparable to short-period (P ≈ 90 min) cataclysmic
variables for which there is evidence for angular momentum loss at
around 2.5 times the GWR rate at the same short periods (Knigge,
Baraffe & Patterson 2011), but this is still much smaller than we
can measure at present. We expect a substantial improvement in this
constraint over the next few years as the parameter degeneracy is
lifted. Given the current lack of constraint upon β from the data, at
present we favour the model in which β is fixed to zero.

3.7 Comparison with Beuermann et al. (2013)

As mentioned earlier, shortly after the first submission of this pa-
per, Beuermann et al. (2013) presented new eclipse times and a
stability analysis of NN Ser. In this section we compare our sets
of results which are based upon the same set of data prior to 2011,
but independent sets of new data thereafter, i.e. we do not use any
of their new data. Beuermann et al. (2013) consider only models
equivalent to our ‘B + e2’ models of the middle panel of Fig. 5.
They fitted their data through Levenberg–Marquardt minimization
of χ2, which, apart from the absence of prior probability factors,
finds the region of highest posterior probability, but does not ex-
plore the shape of region of parameter space supported by the data
as MCMC does. They imposed conditions of dynamical stability,
which makes a direct comparison with our results tricky since we
adopted the strategy of first seeing what parameter space was sup-
ported by the data and only then testing dynamical stability. They
found stable orbits close to the 2:1 resonance if they allowed the
orbit of the outermost planet to be eccentric. This is consistent with
what we find: there are almost no long-lived orbits if the outermost
orbit is forced to be circular, but some appear near the 2:1 line once
eccentricity is allowed. We refer to Beuermann et al. (2013) for a
detailed discussion of the nature of the stable solutions that they
find, in particular a demonstration that they are in mean-motion
resonance. Beuermann et al. (2013) did not consider any period

variation of the binary or explore the much wider range of orbits
this allows. Thus they did not uncover any of the stable models near
the 5:2 ratio which are permitted by the data once period variation is
included, and therefore, although we agree that the 2:1 resonance is
favoured, we feel that their exclusion of the 5:2 resonance at ‘99.3
per cent confidence’ is premature.

Beuermann et al. (2013) present a plot of the dynamical lifetime
as a function of the eccentricities of the two planets, e1 and e2

(their fig. 3). This provides us with an opportunity to compare
the constraints set by our two sets of data, although as already
remarked the differences between our two approaches make exact
comparison difficult. For instance, we reject the implication of the
right-hand two panels of their fig. 3 that the dynamical lifetime is
a single-valued function of e1 and e2; instead, once one allows for
the distribution of other parameters, there must be a distribution
of lifetimes at any given values of e1 and e2; we discuss a similar
issue at length in the next section. However, a comparison can still
be made accepting that Beuermann et al. (2013)’s figure shows the
lifetime of the most probable orbits, since for each e1–e2 point they
re-optimized the other 10 parameters. Our nearest equivalent to
their plot is shown in Fig. 6 for which we extended our dynamical
integrations to 100 Myr to delineate regions of greatest long-term
stability. The figure compares well with fig. 3 of Beuermann et al.
(2013) with many similar features. We see the same tight definition
of e1 at low values of e2, but spreading out as e2 increases. The
main island of stable models found by Beuermann et al. (2013)
coincides with the island of stable orbits that have high e2 values
seen in Fig. 6.

There are a few differences as well. Our data support a smaller
region of parameter space, owing to a higher overall precision
which more than compensates for a smaller number of eclipse time
measurements. In particular, a spur of large e2/low e1 allowed by
Beuermann et al. (2013)’s data is eliminated by ours, and there is
general exclusion of high e2 values leading to the large area of white
space on the right-hand side of the plot for which we chose the same
axis limits as Beuermann et al. (2013). We ascribe these differences
to signal-to-noise ratio rather than anything more fundamental. The
other most notable difference is that we find an island of stability
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Figure 6. The projection on to the e2–e1 plane of the MCMC chain al-
lowing for eccentricity in both orbits but not binary period change, i.e. the
models shown in the central panel of Fig. 5. The contours show regions
encompassing 68.3, 95.4 and 99.7 per cent of the orbits supported by the
data, with no restriction on stability. Small grey dots mark the orbits that
last between 106 and 50 × 106 yr; large blue dots mark those that last for
more than 50 × 106 yr. The contours are comparable to the left-hand panel
of fig. 3 from Beuermann et al. (2013), while the locations of the long-lived
models are comparable to the other two panels of their figure.

for e2 = 0.01–0.04 as well. Although there are signs of the same
region in Beuermann et al. (2013)’s figure, it is not as marked as
we find. This may be the result of the difference in approaches,
with Beuermann et al. (2013) tracing the highest probability region
for each e1–e2 value versus our exploration of the larger region of
supported parameter space.

These differences are small, and overall we conclude that we are
in substantial agreement with Beuermann et al. (2013). This is of
course to be hoped for given that we use the same data, with two
small corrections, up to 2011.

4 D ISCUSSION

The two-planet model for the variations in eclipse times of NN Ser
has survived both new precise data and an updated dynamical sta-
bility analysis. It is the first compact eclipsing binary apparently
hosting planets for which this can be said. It also delivers by far the
highest quality eclipse times with a weighted rms scatter around the
best-fitting orbit of σ = 0.07 s, where

σ 2 = χ2/(N − V )(∑N
i=1 1/σ 2

i

)
/N

, (19)

with N the number of data, V the number of variable parameters
and σ i the individual uncertainties on the eclipse times. The nearest
rival in this respect as far as we can determine is HU Aqr for which
Goździewski et al. (2012) quote a scatter of 0.7 s, and this after
significant pruning of discrepant points. Our typical best-fitting
values of χ2 are around 63 with 76 points and 10–13 fit parameters.
The expected value of χ2 is thus 63–66 ± 11, so there are as yet no
signs of systematics in the data.

We have shown that the range of orbits consistent with
Beuermann et al. (2010)’s data leads to a good prediction for the
location in the O − C diagram of the new data, so the planet model
has predictive power. Moreover, allowing a non-zero eccentricity of

the outer planet’s orbit, we find stable solutions. The latter result is
interesting, and perhaps counter-intuitive at first sight. One might
expect if the outer planet’s orbit is allowed to be eccentric then it is
more likely to de-stabilize the orbit of the lighter inner planet. This
is what Horner et al. (2012a) found, but we believe their analysis to
suffer from significant technical flaws. Some of these are common
to other papers from the same authors, as we now discuss.

4.1 Previous dynamical stability analyses of NN Ser
and related systems

Beuermann et al. (2010) carried out a limited stability analysis of
NN Ser’s putative planetary system using 100 000-yr-long integra-
tions and identified stable regions of parameter space, which they
tentatively associated with 2:1 and 5:2 mean-motion resonances.
Horner et al. (2012a) pointed out that 105 yr was too short to assess
long-term stability, and also criticized the restriction to circular or-
bits for the outer planet. They too found significant stability when
the outer planet was held in a circular orbit, but when they allowed
its eccentricity to vary and re-fitted the orbits, they found that the
solution lay within a broad region of very short-lived orbits, al-
though uncertainties were sufficient to allow for some long lasting
ones too. They concluded this from an examination of the lifetime
of the system as a function of the inner planet’s semimajor axis a1

and eccentricity e1 (their fig. 5), and ascribed it to the significant
eccentricity (e2 = 0.22) they found for the outer planet’s orbit. Our
results do not agree with theirs, and this is not simply to do with
the new data, because we still find significant numbers of stable
solutions when we restrict our analysis to the pre-2011 data used
by Beuermann et al. (2010) and Horner et al. (2012a).

Instead, we believe that the work presented in Horner et al.
(2012a) suffers from a series of flaws, the last of which renders
it largely irrelevant to the question of stability of NN Ser. The same
problem affects a series of similar papers from the same authors,
and thus we devote this section to where we think this work has
gone awry.

We start with minor issues. First of all, NN Ser is not, and never
has been, a cataclysmic variable, and, since its white dwarf is hot
(Teff ≈ 60 000 K; Wood & Marsh 1991), it only emerged from its
common envelope around 1 Myr ago. This renders most of Horner
et al.’s 100-Myr-long integrations superfluous since the system was
undoubtedly very different prior to the common envelope in a way
that cannot be modelled with the Newtonian dynamics of a few, con-
stant point masses. Still, this does not alter Horner et al.’s claim of
instability since they place NN Ser within a zone where orbits typi-
cally survive only ∼3000 yr. Another minor issue is that they used a
total mass for NN Ser of 0.69 M� from Haefner et al. (2004) rather
than the more recent determination of 0.646 M� from Parsons et al.
(2010a) which was used by Beuermann et al. (2010), thus they were
not self-consistent since they started from Beuermann et al. (2010)’s
solutions. Once more, however, this probably does not affect their
essential claims. Their use of astrocentric Keplerian fits, both from
Beuermann et al. (2010) and of their own devising, are further draw-
backs, because, as discussed earlier, no Keplerian model is accurate
enough to match the precision of the NN Ser times, and astrocentric
coordinates perform worst of the three coordinate parametrizations
we examined. However, our calculations indicate that this should
not have made a qualitative difference to Horner et al.’s work either.

This brings us to what we believe is the major problem with
Horner et al. (2012a)’s analysis, a problem which applies equally
to the series of papers from the same group analysing stability in
related systems. The figures upon which Horner et al. (2012a) base
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Figure 7. Scatter plots of the 10 parameters used during the MCMC runs
shown in the lower left-hand panel of Fig. 4. These are based upon the pre-
2011 data alone, with the outer planet held in a circular orbit and N-body
effects accounted for.

their conclusions show cuts through parameter space in which dy-
namical lifetime is plotted as a function of two orbital parameters
perturbed by ±3σ in a grid around their best-fitting values, vari-
ously the semimajor axis, eccentricity and argument of periastron
of the inner planet. The problem with all of them is that they do
not represent orbits consistent with the data because in each case
the remaining 10 free parameters have not been adjusted. Corre-
lations between orbital parameters are highly significant. Rather
than slices through parameter space which very rapidly fall out of
the region supported by the data, what should be plotted are the
lifetimes of the projection of models consistent with the data. In
general, as we indicated earlier when discussing Fig. 6, the result
is not even a single-valued function of position in a 2D projec-
tion, and it is quite possible to have very short- and very long-lived
models right on top of each other, an impossibility in Horner et al.
(2012a)’s presentation. The MCMC method delivers just what is
needed through its generation of models which follow the poste-
rior probability distribution implied by the data. Fig. 7 displays all
possible two-parameter projections of our MCMC models of the
pre-2011 data and shows complex and high-degree correlations be-
tween all parameters. If anything, this figure undersells the problem
since projections from high- to low dimensionality smear out cor-
relations (imagine projecting a spherical shell distribution from 3D
to 2D for instance). Failing to account for these correlations is a
serious error of methodology, and we believe it is this which ex-
plains the difference between our results and those of Horner et al.
(2012a); Fig. 7 also makes it clear that covariance matrix uncertain-
ties based upon a quadratic approximation to the minimum χ2 can
under some circumstances be extremely misleading.

Fig. 8 presents a schematic illustration of the problem with Horner
et al. (2012a)’s approach. It compares ±3σ range in X of a set of
points correlated in X and Y with the much smaller zone where
these points intersect the X-axis. Under this analogy, Horner et al.
(2012a)’s method is the equivalent of choosing a set of models that
run along the X-axis over the ±3σ range, as we show with the reg-
ularly spaced points in Fig. 8. These barely sample the region of

Figure 8. A schematic illustration of a serious problem with Horner et al.
(2012a)’s stability analyses. The outermost vertical lines mark the ±3σ

range in X of the correlated set of points. This range is much larger than the
range covering the intersection of these points with the X-axis, as indicated
by the innermost pair of vertical lines. The regularly spaced points along
the X-axis which span the ±3σ range largely fall outside the region of
the correlated points. The equivalents in Horner et al. (2012a) are the 2D
grids over which they compute dynamical lifetimes; in the main these grids
represent orbits which are incompatible with the data.

the correlated points; the problem can be expected to worsen with
more dimensions. To assess the scale of the problem in the specific
case of NN Ser, we calculated the size of the 2D intersection in a
plot analogous to Horner et al. (2012a)’s fig. 5 which covers ±3σ

ranges on the inner planet’s semimajor axis and eccentricity, a1 and
e1. When just these two parameters are perturbed, we find that the
χ2 minimum is nearly quadratic. We thus defined the intersection
as the region for which χ2 − χ2

min < 13.8 (99.9 per cent two param-
eter, joint confidence). We found that the interaction cross-section
occupies just one part in 104 of the total area plotted. In other words
99.99 per cent of the area plotted by Horner et al. (2012a) in their
fig. 5 is outside the region of 10-dimensional parameter space sup-
ported by the data, just as the regularly spaced points in Fig. 8 are
by-and-large outside the 2D distribution of points.

The problem with Horner et al. (2012a)’s analysis of NN Ser is of
wide impact since a very similar approach was applied to HU Aqr by
Horner et al. (2011) and Wittenmyer et al. (2012), NSVS 14256825
by Wittenmyer, Horner & Marshall (2013), HW Vir by Horner
et al. (2012b) and, most recently, to QS Vir by Horner et al. (2013).
In some cases these authors have averaged the results over other
parameters such as the mean anomaly and argument of periastron
of the particular planet orbit they perturb, but, as far as we can
determine, in no case do they allow for simultaneous variations
of all other fit parameters as is essential (and simply averaging
over other parameters fails to account for the weighting required to
reflect the constraints of the data in any case). We conclude that the
issue of stability or instability in these systems needs re-opening.
It may well turn out that the conclusions of this series of papers,
which have for the most part found that proposed multiplanet orbits
around binaries are not dynamically viable, will remain unchanged
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Figure 9. 50 orbit fits to NN Ser allowing for eccentricity in the outer
planet’s orbit diverge in the near future. Darker lines highlight those models
which are stable for more than a Myr. The reference ephemeris for this plot is
BMJD(TDB) = 47344.0243673 + 0.130080141716E. The plot extends until
2020 July. Vertical lines at the bottom of the plot show the time sampling.
Only points with uncertainties <0.5 s are shown.

(we think it highly likely that the orbits proposed for QS Vir are
unstable for instance), but some work is now required to be sure
that this is the case. This problem does not apply to the recent
study of NN Ser by Beuermann et al. (2013) because although
their lifetime versus e1–e2 plots are superficially similar to Horner
et al. (2012a)’s plots, Beuermann et al.’s optimization of the other
parameters ensures that they stayed in regions of parameter space
supported by the data.

4.2 The immediate future of NN Ser

Since we have shown that the expected period change of the binary
is much less than our current measurement uncertainty, our favoured
model for NN Ser is one in which we allow the outer planet’s orbit
to be eccentric, but do not allow for any change in binary period, i.e.
the middle set from Fig. 5. Using this set of models, Fig. 9 shows
all of the eclipse times of NN Ser with uncertainties less than 0.5 s,
and projects a few years into the future. We are still paying the price
for the poor coverage of the 1990s, but the next few years should
see a great tightening of the constraints. It appears from this plot
that a sampling interval of order a year or two should suffice.

4.3 The planet hypothesis of eclipse timing variations

Rather to our surprise, the new eclipse times of NN Ser presented
in this paper are in good agreement with predictions based upon
Beuermann et al. (2010)’s model in which two planets orbiting
the binary cause the timing variations. We say to our surprise, be-
cause if all eclipse timing variations of compact binary stars are
caused by planets, circumbinary planets must be common, since
when looked at in detail the majority show timing variations (Zoro-
tovic & Schreiber 2013). We have long worried, and continue to
worry, that the planet models are a glorified form of Fourier analy-
sis, capable of fitting a large variety of smooth variations. We may
simply have been lucky so far with NN Ser that the ‘orbits’ re-
turned have been stable, so, although our results are in line with the
planet model, we do not regard the question as to the reality of the
planets to be settled yet. Currently the main obstacle to a definitive
answer is the still-considerable degeneracy in the orbit fits. Con-
tinued monitoring will cure this. However, it is notable that this
degeneracy survives even with our mean timing precision of around

0.07 s. Since one would need ∼200 eclipse times of 1 s precision
to match a single time of 0.07 s precision, we require not just ex-
tended coverage, but extended precision coverage. The ultimate goal
should be to remove this degeneracy and, beyond this, detect N-body
effects.

The planet model for NN Ser also survives the test of dynamical
stability which has cut down so many other claims. Although we
have challenged the methodology of many of these tests, we suspect
that the general implication of implausibly unstable orbits found for
many systems will prove to be correct. This is not the case for NN Ser
yet, although it perhaps might be when further data are acquired,
because the addition of new data has consistently made it harder
to locate long-lived solutions. Around 50 per cent of viable orbits
fitted to the data of Beuermann et al. (2010) (with circular outer
orbits) were long-lived. With our new data, this dropped to 0.02 per
cent, prompting us to allow for eccentric outer orbits. Even allowing
for eccentricity, we found a similar drop from 7.6 to 0.7 per cent
when we added the two ULTRACAM points from 2013 July.

5 C O N C L U S I O N S

We have presented 25 new high precision eclipse times of the close
white dwarf binary, NN Ser. The new times impressively follow the
increasing delay predicted according to the two-planet model pre-
sented by Beuermann et al. (2010). Moreover, some of the models
supported by the full set of data are dynamically stable. We found
during our analysis that the difference between Keplerian and prop-
erly integrated Newtonian models is significant compared to the
data uncertainties and must be accounted for during fitting, not just
in follow-up dynamical analysis.

The new data substantially reduce the degree of degeneracy in the
planet model fits, but much still remains, especially if the models are
given complete freedom with eccentricity in both orbits and orbital
period change of the inner binary allowed. Such freedom may even
be necessary as with the new data, very few of the orbits with the
outer planet constrained to have a circular orbit are stable. With ec-
centricity allowed for both orbits we find orbital periods of 7.9 ± 0.5
and 15.3 ± 0.3 yr, and masses of 2.3 ± 0.5 and 7.3 ± 0.3 MJ,
with stable orbits having close to 2:1 and 5:2 period ratios. At
present, if a quadratic term is allowed in the binary ephemeris,
degeneracy between it and the outermost planet’s orbit precludes
an astrophysically significant measurement of the period change
of the binary; this should improve significantly over the next few
years.

Finally, we have demonstrated that several existing dynamical
stability analyses of NN Ser and related systems are based upon a
flawed methodology and require revision.

AC K N OW L E D G E M E N T S

Dimitri Veras, Danny Steeghs, Peter Wheatley and Boris Gänsicke
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