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Abstract. In a series of papers, we have formalized a Bayesian per-
ception approach for robotics based on recent progress in understand-
ing animal perception. A main principle is to accumulate evidence for
multiple perceptual alternatives until reaching a preset belief threshold,
formally related to Bayesian sequential analysis methods for optimal de-
cision making. Here we describe how this approach extends naturally to
active perception, by moving the sensor with an active control strategy
according to the accumulated beliefs during the decision making process.
This approach can be seen as a method for solving problems involving Si-
multaneous Object Localization and IDentification (SOLID), or ‘where’
and ‘what’. Considering an example in robot touch, we find that active
perception gives an efficient and accurate solution to the SOLID prob-
lem, whereas passive perception was inaccurate and non-robust when
the object location was uncertain. Thus, this general approach enables
robust and accurate robot perception in unstructured environments.

1 Introduction

Twenty five years after Bajcsy’s landmark paper on active perception [1], it re-
mains the case that most machine perception involves static analysis of passively
sampled data. Certainly, there has been progress on passive approaches to pat-
tern recognition in relation to machine learning and uncertainty, and there is
a diverse body of work on active vision; nevertheless, a search through recent
progress in robot vision, audition or touch reveals the majority of papers still
rely on wholly forward perceptual processes without any sensorimotor feedback.

Why this slow uptake, when early arguments for active control of perception
were compelling [1, 2] and, as Bajcsy said, it should be axiomatic that perception
is active? One factor is the required complexity of the robot hardware, which
must involve actuated sensors and sensorimotor control loops. However, this
should not be a barrier, since the technology is readily available and many stan-
dard robot platforms have these capabilities. A more likely explanation is that
researchers have focussed on sensing problems, e.g. identification, that can be
solved adequately in many scenarios without introducing active methods for sen-
sorimotor control. That being said, conventional robotics is reaching an impasse
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Fig. 1. Experimental setup. (A) Schematic of tactile sensor contacting a cylindrical
test object. The fingertip is moved horizontally to sample object contacts from different
positions. (B) Top-down view of experiment, with the fingertip mounting on the arm
of the Cartesian robot visible to the left.

with present methods, such as poor performance in unstructured environments,
which is preventing wider robot utilization beyond traditional factory settings.

In a series of papers [3–8], we have formalized an approach for robot per-
ception based on recent progress in understanding animal perception [9, 10]. A
main principle is to accumulate evidence for multiple perceptual alternatives un-
til reaching a preset belief threshold that triggers a decision, formally related to
Bayesian sequential analysis methods for optimal decision making [11]. Here we
describe how this perception approach extends naturally from passive to active
perception and some implications of this theory of active Bayesian perception.

Our proposal for active Bayesian perception is tested with a simple but il-
lustrative task of perceiving the identity (diameter) and location (horizontal)
position of a test rod using tapping movements of a biomimetic fingertip with
unknown contact location (Fig. 1). We demonstrate first that passive perception
can solve this task, but the perceptual acuity and reaction time depend strongly
on the location of the fingertip relative to the rod. We then show that an active
‘fixation point’ control strategy can substantially improve the overall quality of
the perception, by moving the fingertip to locations with good perception in-
dependent of the starting position. Thus, active perception gives far superior
robustness, accuracy and speed to the decision making than passive methods.
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Fig. 2. Active and passive Bayesian perception applied to simultaneous object local-
ization and identification. Passive Bayesian perception (left) has a recursive Bayesian
update to give the marginal ‘where’ and ‘what’ perceptual beliefs, with decision termi-
nation at sufficient ‘what’ belief. Active Bayesian perception (right) has active control
of the sensor location depending on the current beliefs (here just the ‘where’ beliefs).

2 Methods

2.1 Conceptual foundations

The main goal of this work is to advance our understanding of the role of active
perception for situated agents in determining the ‘where’ and ‘what’ properties
of objects. We refer to the computational task that must then be solved by
Simultaneous Object Localization and IDentification (SOLID), to emphasize a
similarity with SLAM of having two interdependent task aims, in that knowledge
of localization aids the computation of identification (mapping) and similarly
that knowledge of object identity (mapping) aids localization.

Passive Bayesian perception accumulates belief for distinct ‘where’ and ‘what’
classes by making successive taps against a test object until at least one of the
marginal ‘what’ beliefs crosses a belief threshold, when a ‘where’ and ‘what’
decision is made. The passive nature of the perception means that the ‘where’
position class is constant over this process (Fig. 1A).

Active Bayesian perception also accumulates belief for the ‘where’ (horizon-
tal position) and ‘what’ (cylinder diameter) perceptual classes by successively
tapping until reaching a predefined ‘what’ belief threshold. In addition, it uti-
lizes a sensorimotor loop to move the sensor according to the online marginal
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belief estimates during the perceptual process (Fig. 1B). For example, the sensor
could be controlled with a ‘fixation point’ strategy, with the marginal ‘where’
beliefs used to infer a best estimate for current location and thus a relative move
towards a preset target position on the object.

2.2 Algorithmic foundations

Our algorithm for active perception is based on including a sensorimotor feed-
back loop in an optimal decision making method for passive perception derived
from Bayesian sequential analysis [3].

Measurement model and likelihood estimation: Each tap against a test object
gives a multi-dimensional time series of sensor values across theK taxels (Fig. 3).
The likelihood of a perceptual class cn ∈ C for a test tap zt (with samples sj) is
evaluated with a measurement model [3, 4]

P (zt|cn) =
JK

√

∏J

j=1

∏K

k=1
Pk(sj |cn). (1)

The sample distribution is determined off-line from the training data using a
‘bag-of-samples’ histogram method

Pk(s|cn) =
hk(b(s))
∑

b hk(b)
, (2)

with hk(b) the occupation number of a bin (and b(s) ∋ s), taking 100 bins across
the full data range. We will use K = 12 taxels and J = 50 time samples per tap.

Bayesian update: Bayes’ rule is used to recursively update the beliefs P (cn|zt)
for the N perceptual classes cn with likelihoods P (zt|cn) of the present tap zt

P (cn|zt) =
P (zt|cn)P (cn|zt−1)

P (zt|zt−1)
. (3)

The likelihoods P (zt|cn) are assumed i.i.d. over time t (so z1:t−1 drops out). The
marginal probabilities are conditioned on the preceding tap and given by

P (zt|zt−1) =

N
∑

n=1

P (zt|cn)P (cn|zt−1). (4)

Iterating the update (3,4), a sequence of taps z1, · · · , zt gives a sequence of poste-
riors P (cn|z1), · · · , P (cn|zt) initialized from uniform priors P (cn) = P (cn|z0) =
1/N . We will use N = 80 classes over 16 positions and 5 object curvatures.

Marginal ‘where’ and ‘what’ posteriors: The perceptual classes have L ‘where’
(position) and M ‘what’ (curvature) components, with each class cn an (xl, wm)
’where-what’ pair (i.e. C = X×W ). Then the beliefs over the individual ‘where’
and ‘what’ classes are found by marginalizing

P (xl|zt) =

M
∑

m=1

P (xl, wm|zt), (5)

P (wm|zt) =

L
∑

l=1

P (xl, wm|zt), (6)

4 LM2013, 065, v2: ’A SOLID case fo...’



Active touch 5

with the ‘where’ beliefs summed over all ‘what’ classes and the ‘what’ beliefs over
all ‘where’ perceptual classes. Here we use L = 16 position classes and M = 5
curvature classes.

Stopping condition on the ‘what’ posteriors: Following methods for passive
Bayesian perception using sequential analysis [3], a threshold crossing rule on
the marginal ‘what’ posterior triggers the final ‘what’ decision, given by the
maximal a posteriori (MAP) estimate

if any P (wm|zt) > θW then wMAP = argmax
wm∈W

P (W |zt). (7)

This belief threshold θW is a free parameter that adjusts the balance between
decision speed and accuracy.

Move decision on the ‘where’ posteriors: Analogously to the stop decision, a
sensor move requires a marginal ‘where’ posterior to cross its decision threshold,
with a MAP estimate used for the ‘where’ decision

if any P (xl|zt) > θX then xMAP = argmax
xl∈X

P (X|zt). (8)

Here we consider two particular cases, termed

passive perception : θX = 1 (never moves)

active perception : θX = 0 (always tries to move).

There are many possible strategies to control the movement ∆ depending on the
task. Whatever the strategy, the ‘where’ posteriors should be kept aligned with
the sensor by shifting the joint ‘where-what’ posteriors with each move

P (xl, wm|zt) = P (xl −∆,wm|zt). (9)

For simplicity, we recalculate the posteriors lying outside the original range by
assuming they are uniformly distributed.

‘Fixation point’ active perception strategy: Here we consider a control strat-
egy with fixation point xfixed that the sensor attempts to move to. Then the
appropriate move ∆ is found from the ‘where’ decision xMAP of sensor location

x → x+∆ (xMAP) , ∆(xMAP) = xfixed − xMAP. (10)

This move ∆ defines both the motor command to the sensor and the shift (9)
applied to the posteriors.

2.3 Data collection

The tactile sensors used in this study have a rounded shape that resembles a
human fingertip [12], of dimensions 14.5mm long by 13mm wide. They consist of
an inner support wrapped with a flexible printed circuit board (PCB) containing
12 conductive patches for the touch sensor ‘taxels’. These are coated with PCB
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Fig. 3. Fingertip pressure data recorded as the finger taps against a test rod (diameter
4mm) at a constant rate of 1 tap/sec. The range of finger positions spanned 16mm
over 320 s, giving 320 taps spaced every 0.05mm. Tickmarks are shown every 1mm
displacement, or 20 taps. Data from the different taxels are represented in distinct
colors depending on the taxel position shown on the diagram to the right.

and silicone layers that together comprise a capacitive touch sensor to detect
pressure via compression. Data was collected at 50 samples per second with 256
vales, and then normalized and high-pass filtered before analysis [12].

The present experiments test the capabilities of the tactile fingertip mounted
on an xy-positioning robot. This robot can move the sensor over a horizontal
plane in a highly controlled and repeatable manner onto various test stimuli
(∼50µm accuracy), and has been used for testing various tactile sensors [13]. The
fingertip was mounted at an angle appropriate for contacting axially symmetric
shapes such as cylinders aligned along the z-axis perpendicular to the plane of
movement (Fig. 1A). Five steel rods with diameters 4mm, 6mm, 8mm, 10mm
and 12mm were used as test objects (Fig. 1B). They were mounted with their
axes vertically upwards but their centers offset in the y-direction (by 4mm,
3mm, 2mm, 1mm and 0mm) to align their closest point to the fingertip in the
direction of tapping.

The touch data were collected while having the fingertip repeatedly tap in
the y-direction onto and off each test object with rate 1 tap/sec, while moving
at constant speed of 0.05mm/sec in the x-direction across the closest face of the
object. The fingertip was angled so the rod axis lay across the fingertip (down the
taxels in Fig. 3), and moved so that the rod initially contacted the fingertip at
its base and finally contacted only the tip. In each case, an x-range of 16mm was
considered. This gave 320 taps per object at increments of 0.05mm. Each tap of
the fingertip against the object resulted in a 1 sec time series of pressure readings
for all 12 taxels covering the fingertip (Figs 2B-E). This data was sampled at
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Fig. 4. Examples of the accumulating/depreciating beliefs for the (80) distinct ‘where’
and ‘what’ percept classes as data from more taps is included. Panel (A) shows an
example with a clear winning percept and panel (B) of ambiguity.

50Hz, giving 50 samples per taxel per tap. Distinct training and test sets were
collected for all 5 cylinder diameters.

3 Results

3.1 Evidence accumulation for robot perception

The ‘where’ and ‘what’ perceptual task is to identify the diameter of the rod
being sensed and the location of the contact using tactile fingertip data over
a sequence of test taps. Examples of the perceptual beliefs derived from tap
sequences from two different test cases are shown in Fig. 4, which plots the
beliefs for each putative percept against the number of taps. These probabilities
begin at equality corresponding to uniform priors and then evolve smoothly with
some rising gradually towards unity and others falling towards zero. In the first
example (Fig. 4A), the decision given by the largest perceptual belief remains
the same after applying 2 taps or more, while the second example (Fig. 4B) flips
between the two leading choices.

There are two common methods for making decisions from sequential data
of this type: (i) set in advance the number of taps that will be used, or (ii) set
in advance a belief threshold that will trigger the decision, so that the reaction
time is a dynamic quantity that depends on the data received. Recent progress
in perceptual neuroscience strongly supports that animals use a belief threshold
to make decisions [9], which is related to sequential analysis methods for optimal
decision making [11]. Accordingly, a comparison of these two methods on tactile
robot data found that the belief threshold method gave superior performance in
perceptual acuity [3]. This can be seen intuitively from Fig. 4: if for example 10
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Fig. 5. Active perception results depends on the decision threshold and fixation point.
The mean accuracy of identifying the cylinder (A) and the mean reaction time (B)
vary with threshold (gray-shade of plot) and fixation point (x-axis). Each data point
corresponds to 1000 decision trials.

taps were set in advance, then the decision is unnecessarily slow in situations
of clarity (Fig. 4A) and too quick in situations of ambiguity (Fig. 4B). Instead,
setting a belief threshold allows the decision time to adjust dynamically to the
uncertainty of the situation.

3.2 Passive perception of where and what

This section considers the application of passive Bayesian perception to the
‘where’ and ‘what’ perceptual task of identifying the rod diameter and fingertip
location relative to the rod. Results are generated using a Monte Carlo method
averaged over distinct decision trials (1000 iterations per location and threshold),
each with test taps drawn from one ‘where’ and ‘what’ class consistent with the
sensor not being able to change position during perception.

Average decision errors and reaction times for perceiving shape and hori-
zontal position were examined over belief thresholds ranging from 0.1 to 0.995

8 LM2013, 065, v2: ’A SOLID case fo...’
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Fig. 6. Example trajectories for passive and active perception. (A) Passive perception,
with horizontal position fixed against time. (B) Active perception, with trajectories
converging on the fixation point (8mm) independent of starting position. 100 trajec-
tories were selected randomly for each case.

(Fig. 5). Statistically robust estimates of the mean errors were found by aver-
aging the absolute classification errors over many test instances. These mean
errors decreased steadily with belief threshold, reaching a minimum of about
0.4mm for rod diameter (identity) and 0.1mm for rod position for the largest
thresholds (Figs 5A,B; black curves) The number of taps to reach a decision had
a reaction time distribution, such that increasing the belief threshold increased
the mean reaction time (Fig. 5C; black curve).

Clearly, the best perceptual acuities and reaction times are in the center of
the range of fingertip positions (Fig. 5, position class at 8mm). However, in
passive perception, there is no way to modify the position from where an object
is sensed. Hence, average values across all possible sensing positions give a typical
perceptual acuity: these are shown in red on Fig. 7, with the overall mean acuities
for rod diameter and horizontal position of 2mm and 0.2mm respectively.

3.3 Active perception of where and what

This section considers active Bayesian perception in the same scenario as for
passive perception above, with a ‘where’ and ‘what’ perceptual task of identifying
the rod diameter and fingertip location relative to the rod. Results are again
generated using a Monte Carlo method (1000 decision trials), now with an active
control strategy that aims for a fixation point in the center of the horizontal range
(8mm), as visible in the trajectories for active perception (Fig. 6).

Average decision errors and reaction times for perceiving shape and hori-
zontal position were examined over the same range of ‘what’ belief thresholds

LM2013, 065, v2: ’A SOLID case fo...’ 9
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Fig. 7. Decision acuity for active and passive perception. (A,B) Dependence of the
mean absolute errors of rod diameter and position plotted against the ‘what’ belief
threshold. Passive perception is shown in red and active perception in black. (C,D)
Dependence of these perceptual acuities instead plotted against mean reaction time
(with belief threshold an implicit parameter determining all quantities).

as passive perception (0.1 to 0.995), permitting direct comparison of the active
and passive approaches (Fig. 7). Once again, the mean absolute errors decreased
steadily with belief threshold (black plots), reaching a minimum of about 0.4mm
for rod diameter (identity) and 0.01mm for rod position for the largest thresh-
olds. The number of taps to reach a decision had a reaction time distribution,
with mean reaction time increasing with ‘what’ decision threshold; treating this
threshold as an implicit parameter gave a direct plot of decision error against
mean reaction time (Fig. 7C,D).

Comparing active perception with passive perception, the best mean absolute
errors improve from 2mm to 0.4mm for rod diameter (cf. 4-12mm range) and
from 0.2mm to 0.01mm for horizontal position (cf. 0-16mm range). Evidently,
active perception gives the finest perceptual acuity compared with the passive
method when compared at both similar reaction times and belief thresholds.

10 LM2013, 065, v2: ’A SOLID case fo...’
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4 Discussion

The aim of this study is to demonstrate that active perception gives substantial
benefits for robot perception over passive methods. We proposed an algorithm
for active Bayesian perception that accumulates evidence until reaching a deci-
sion threshold while a sensorimotor feedback loop moves the sensor to a ‘good’
fixation point relative to the perceived object. This algorithm contrasts with
standard ‘passive’ methods for robot perception that lack this feedback loop.
We then compared active and passive perception on a simple but illustrative
task of simultaneous object localization and identification (‘where’ and ‘what’)
with a biomimetic fingertip, in which both the position and diameter of a rod is
perceived with discrete tapping movements.

The main findings are:
(i) The ‘where’ and ‘what’ perceptual acuities for both passive and active percep-
tion improved with increasing belief threshold. Accordingly, the mean reaction
time also increased with belief threshold, corresponding to more data being col-
lected to reach sufficient belief to make a decision.
(ii) Passive perception has an issue that that not all sensing locations are equal:
those locations for which the center of the fingertip contacts the rod gave better
perception than at the extremities. Thus, passive perception is non-robust.
(iii) Active perception was able to give robust perception whatever the initial
contact location of the fingertip against the rod by utilizing a sensorimotor loop
to compensate uncertainty in initial sensor placement. Thus, active perception
can be robust in unstructured environments [7].
(iv) In consequence, active perception gave an order-of-magnitude improvement
in perceptual acuity over the passive method, with best mean errors improving
from 2mm to 0.4mm for rod diameter (cf. 4-12mm range) and from 0.2mm to
0.01mm for horizontal position (cf. 0-16mm range).

5 Conclusion

In this paper, we demonstrated that active Bayesian perception with a sensori-
motor control loop between the perceptual beliefs and the motion of the sensor
can robustly and accurately solve problems of Simultaneous Object Localiza-
tion and IDentification (SOLID), or ‘where’ and ‘what’ objects are in the world.
Whereas active perception gave an efficient and accurate solution to the SOLID
problem in unstructured environments, passive perception could be inaccurate
and non-robust under uncertainty about object location.

In seminal work on active perception, Bajcsy said it is axiomatic that per-
ception (in animals) is active [1]. Robotics is currently in a state of transition
from rigidly controlled tasks in predictable structured environments like factory
assembly lines, to applications in unpredictable unstructured environments like
our homes, hospitals and workplaces. In our opinion, future robots will need
active perception to accomplish these tasks in unstructured environments, and
thus it may also become axiomatic that robot perception is active too.
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