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L earning in a unitary coherent hippocampus

Charles Fok and Tony Prescatt

Adaptive Behaviour Research Group, University of Sheff@l® 2TN, UK

Abstract. A previous paper [2] presented a moddQPF-HC) of the hippocam-
pus as a unitary coherent particle filter, which combinesctassical hippocam-
pal roles of associative memory and spatial navigatiomgisi Bayesian filter
framework. The present paper extends this model to includieelearning of
connections to and from the CA3 region. Learning in the edgenneural net-
work is equivalent to learning in a temporal restricted Bolann machine under
certain assumptions about neuromodulatory effects oneativity and learning
during theta cycles, which suggest detailed neural magdimgBayesian infer-
ence and learning within sub-stages of a theta cycle. Afegoelarisations (ADP)
are hypothesised to play a novel role to enable reuse ofnedyprior informa-
tion across sub-stages of theta.

1 Introduction

Anatomy. The principal input structures of the hippocampus are tipedicial layers
of Entorhinal Cortex (ECs). ECs projects to Dentate Gyrug)Which is believed to
sparsify the encoding of ECs. Both ECs and DG project to CAckvalso receives
strong recurrent connections that are disabled [3] by 8@h. CA3 and ECs project
to CA1, which in turn projects to the deep layers of Entorhamatex (ECd), closing a
loop if ECd sends information back to ECs. ECs, CA1 and ECdwstappear to share
a coding scheme, as evidenced by one-to-one topographecpoms. In contrast, DG
and CA3 outputs are thought to work in a second basis or lafete. In a second loop,
ECs and CA1 both project to Subiculum (Sub), which projezthée midbrain Septum
(Sep) via fornix. Septal ACh and GABA fibres project back igalts of hippocampus.
UCPF-HC model. A previous paper [2], mapped this hippocampal circuit cato
modified Temporal Restricted Boltzmann machine (TRBM,.[8pe TRBM assumes
Boolean observation vectors (including a bias nodg)Boolean hidden state vectors
(including a bias node);’; weight matricedV,... andW,.,,, and specifies joints,
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Unlike the standard TRBM, UCPF-HC uses the following defarstic update to obtain
maximuma posteriori estimates:

I]Aft < argmaXP(xtﬁt,l,zt) = {Ii’t(l) = (P(xt(i)|:i:t,1,zt) > %)}1 (2)

which is the zero-temperature limit of an annealed seqakB@tbbs sampler.



The noisy inputs; = y; + €; are mapped to the combined ECs and DG, where the
DG activations are functions of the ECs activations= (EC's;, DG,(ECs;)). CA3
is mapped to the hidden statg, CA1 performs a partial decoding into the DG basis.
Finally the estimated de-noised output is mapped to Bgd= ECd;. Each neural
population is a Boolean vector at each discrete timestep

A major problem with UCPF-HC tracking is tracking loss, aagiproximates the
whole posterior with a single sample. To deal with this, perfance of the filter is mon-
itored to heuristically detect when tracking is lost — bye$irolding a moving average of
discrepancy between observed and denoised sensors —dyaits are disabled when
lostness is detected. In UCPF-HC, the Subiculum-Septucnitiperforms this moni-
toring. Sub then compares the partially decoded CAL1 inféionagainst the original
ECs input, receiving one-to-one connections from bothomg)iIf they differ for an ex-
tended period of time, this indicates loss of trackifanic cholinergic projections from
Sep, activated via Sub, are well-placed to disable the CA8pwhen lostness occurs,
as they are known [3] to disable the recurrent connectio@N8.

The present study presents a new version of UCPF-HC, usmgltts maze en-
vironment detailed in [2], and extendend with ADP to perfdearning in CA3. The
plus-maze consists of 13 discrete locations as shown in(#g. Zhe agent sees unique
visual markers if facing two of the arms; it also has touchsses to report walls to
its immediate left, right and front. The original UCPF-HC debincluded mechanisms
to perform path integration in the grid and heading cellagsidometry and denoised
ECd states — to simplify the present study we assume thatgdcheading cells give
uncorrelated noisy (Global Positioning System style)eates of location and orienta-
tion, as would be obtained if the UCPF-HC’s outputs were géyzerfect or known to
be lost but the odometry was noisy.

ADP Physiology. CA3 pyramidal cells [1] exhibit a single cell short-term mam
effect called after-depolarisation (ADP), illustratedfig. 4(b). A spike (1) in mem-
brane potential}/, is followed by a fast after-hyper-polarisation (AHP, Z)eh an
after-depolarisation (ADP, 3) and a second, slower AHP I§éfore returning to its
resting potential (5). (See [7] sections 5.2.5 and 5.3.%fdetailed review.) ADP has
previously been suggested [5] as a basis for multiplexed-¢bom memories in hip-
pocampus, enabling around seven patterns to be storedaimaalsly by re-activating
themselves after other patterns, using the ADP gain plustenreal excitatory oscilla-
tor. We will suggest a related but novel role for ADPs, allogvpriors to be restored
during separate wake and sleep cycles [4] in a temporal mktw®P is dependent on
the presence of ACh or 5HT [6], and sepphbsic ACh has been suggested to play a
role in the hippocampal theta rhythm [3].

2 On-linelearning for the UCPF-HC model

The previous version [2] of UCPF-HC did not perform any retidi learning. CA3
cell semantics were specified by hand — for example cells smzeified to respond to
conjunctions of places, headings and light states. Ided @&ponses were computed
offline, from these hand-set specifications and ground ttath sets, then weights for
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Fig. 1. The four substepsinfer, wake, sleep®, sleep® within one theta cycle in the learning
neural network model. Circles denote populations of nesirémrows indicate fully connected
neural network projections (this it a Bayesian network diagram). Thick arrows indicate con-
nections whose weights are updated with Hebbian (+) aneHgtibian (-) rules. Dotted arrows
indicate where learning occurs but no information is prigiddi.e. when the child population is
clamped from elsewhere). Filled-in nodes are fixed valueseh substep, unfilled nodes are to
be computed. The bias population contains a single neuréachvidalways on, and abstracts the
threshold values in CA3. In the first substep of the next cyaé¢er:,1, CA3 receives & signal
which disconnects the recurrent connections and switch@®P recurrent activation.

each input population to CA3pp, were set using independent wake-sleep [4] updates,
Awij = a({CA3ipop;) ppop,casp) — (CA3iDOP;) P(pop,c a3Jb)) (©)

whereP is the empirical data distribution including the hand-skeil hidden values;

P is the model’s generative distribution; ahds the set of hidden nodes biases, preset
empirically to model priors on the handset semantics. Tlais mot indented as a realis-
tic learning model, rather just a computational method tdtseweights. In particular
the computation was greatly simplified by having accessaaigu-truth hidden states,
which made the weights mutually independent given the Iiaseality the agent does
not have access to ground truth hidden states — only to sensor

We do not give the new model access to ideal CA3 states or bafttieir semantics
— this time the semantics must be learned. The semantics @fld@A1, and hence the
weightsWgeo_, pe andWe a1 gc remain set by hand — we focus only on extending
the model to learn all connections to and from CA3: nam&lcs—,c a3, Wpa—cas,
Weaz—scas andWeaz_car-

To simplify both the presentation and implementation of gerning model, we
will first present the hippocampal learning algorithm foe tiCPF-HC neural network
as afait accompli, then describe a graphical model simplification used inrty@émen-
tation. The graphical model formulation also providesghsiinto the purposes of the
neural network processes, which were in fact derived frogrgttaphical model during
development. The algorithm is based on the wake-sleep gsdné is now intended as
a biological model.



one theta cycle

infery | wake; | sleepy inferi41

OBS

CA3

Fig. 2. The reduced TRBM model. This network is equivalent to theralenetwork, but includes
undirected connections, and groups the information fronDECand CAL1 into a single observ-
able population, OBS.

2.1 Neural network model

The neural learning algorithm is based on the wake-sleegrithgn [4] and is illus-
trated in fig. 1. It assumes that for every discrete time stéere are four substeps,
infers, wakey, sleep}, sleep? corresponding to different phases of one hippocampal
theta cycle. These substeps have differing connectivitylearning dynamics, which
might be controlled by neuromodulators during the thetdecythe substeps occur se-
quentially. But importantly, CA3 activation during the fer, substep is required to
directly influence CA3 atvake;; and CA3 activation ain fer; is required to directly
influence CA3 atin fer;y1; as shown by the arrows in the figure. We tentatively sug-
gest that ADP, discussed in section 1, might play a role ih $eimporally incontiguous
transmission of information.

Thein fer, substep is identical to inference in the UCPF-HC model. BSsar
data is observed; deterministic DG activations (via hahtdég-_, p) are computed,
and thus act as observations too. We assume that the stat&3o&iGn fer;_; was
inferred exactly and correctly by the UCPF, and is availasen input via recurrent
transmission weight8/ca3_,c43. Using these inputs, CA3 is updated with a Gibbs
sampling step at temperatuié = 0. CA1l and ECd decode it to retrieve denoised
sensor estimates.

In thewake; substep, the same input vector is maintained in EC and DGCa&id
activation becomes clamped by a training signal from the B@st. We assume that
conjunctions of facts from ECs are represented perfectyAd by this process, as in
DG. We require a delayed copy of the recurrent CA3 input fianfier;_; as was re-
ceived in thein fer; step —not a recurrent CA3 input fromin fer; — as the recurrent
input to CA3 inwake;. CA3 is resampled &' = 1 and Hebbian learning is performed
at all synapses to and from CA3. In thkeep; substep, the recurrent CA3 connections
are used directly so that CA3's state now is influenced byriégsipus statewake;. Its
connections from ECs and DG are made ineffectual. CA3 is fthgmain at temper-
atureT = 1, then CAl and ECd is decoded from it. $feep? we assume that ECs
becomes clamped to the ECd result — feeding back the denoigpdt into the input.
CA3is resampled again @t = 1 and antihebbian learning is performed in all synapses
to and from CA3. The theta cycle is now complete, and the netbegins ain fer;, ;.



2.2 Reduced undirected model

We next explain why the neural network is equivalent to thduoed graphical model
shown in fig. 2. It is a new variant of the temporal restrictedtBnann machine [8].

DG consists entirely of cells whose receptive fields are&®pr conjunctions of
ECs fields. In the reduced model, we form a single popula@BS, which contains
both DG and ECs cells. CA1 in the neural model consists of elh identical fields
to DG cells, which are thus also implicitly contained in OB®e weightdVops_c a3
are undirected as in the TRBM, though the steps of learniegithorrespond to the
steps learning the weights in the neural model.

In phasein fer;, CA3 is driven by inputs from EC and DG in the directed neural
model, which is equivalent to the undirected link to the obsd OBS population in
the reduced model. (The bias link is also changed from dicktd undirected in the
reduced model — again this is an equivalence as the bias &y/slabserved.) In this
phase, the temperature is zero so the inferences are alh@y4APs. This gives the
best denosied estimate of the state of the world.
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Fig. 3. (a) Training errors. Error is the sum of ECs-ECd discrepsmaiver all training data in
each epoch. (b) Lostness probabilities in learned, randmirhandset-semantics weights. Error
bars show one standard deviation of uncertainty about thalption mean.

In phasewake,, the drivers of CA3 are the same, but the temperaturéis 1. In
the neural model, CAl is clamped to EC, and Hebbian learniegrs inWgco_c a3,
Wpa—scas andWe as_,ca1. This is equivalent to clamping OBS again in the reduced
model, and Hebbian learning ¥ 45_ca1- As in the neural model there is also Heb-
bian learning on the recurrent CA3 connections.

In phasesleep, of the undirected model, a CA3 sample is drawn conditioned on
its recurrent state only. Then an OBS sample is drawn camait on CA3, and finally
a new CA3 sample is drawn conditioned on its recurrents antherOBS sample.
Antihebbian learning is performed on all connections to CA3is is equivalent to the
process in the neural modekgeep; andsleep?, and is a standard TRBM sleep step.

Phasein fer;y; is the start of the next cycle, and like the neural model, iregu
historical CA3 input fromin fer,, as might be obtained using ADP.
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3 Results

We tested the learning algorithm in the plus-maze world [8Beusing a path of 30,000
random walk steps. The path was replayed for several epatiighe weights con-
verged. For computational simplicity, learning was parfed used the equivalent re-
duced model, though inference was performed with the fulralemodel, sharing the
learned weights. Python code for the simulation is avadldidm the authors. There
is some subtlety in handling learning for cases where the &blostness circuit is
activated, which is detailed in the appendix. Fig. 5(a) shive training errors during
learning — using a learning rate af= 0.001 — most of the learning takes place in the
first 10 epochs. As in the original [2] UCPF-HC model, the mémetwork is used to
infer denoised ECd estimates of position and sensors. Hiy shows the average rate
of location errors using the learned weights, comparedagftie handset semantic of
the original UCPF-HC model. A run with randomised, untraimeeights is shown for
comparison. Inspecting the receptive fields of CA3 cellsied by the training, we find
cells in fig. 4(a) responding to individual places (3 and 4yjions around a place (2);
the ends of the arms (5); and less well defined fields (1 and 6).

1 2 3 1
- | v
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(@) Examples of learned CA3 recepti® Typical membrane time course following
fields, over the plus maze. a spike under ADP dynamics.

Fig. 4.

4 Discussion

We have presented a top-down mapping of a wake-sleep Iggafgorithm onto the bi-
ological hippocampal circuit and existing UCPF-HC modéleTUCPF-HC model was
extended by adding detailed substeps within theta cyclaghaspecify the connec-
tivity and learning operations required by the algorithep#logical hypotheses. Our
revised model demonstrates a biological plausible onéaering mechanism for CA3
pyramidal cells, and thus lends support to our general ingsis that the hippocampal
system may operate as a unitary coherent particle filtes fiipie of mapping necessar-
ily makes strong predictions about what neurons would beired to do to implement
the algorithm. In particular we have relied on specific tigyfeatures of ADP and on



ACh to switch between recurrent CA3 activation and ADP-HaS8A3 memories. It re-
mains to be seen whether biological ADP and ACh are able taigedhese functions.

The inference step was performed at zero temperature aepairom higher tem-
perature wake and sleep steps. There are several possilalgore on this theme. First,
both wake and sleep could be performed at zero temperaamswving the need for a
separate inference step, and resulting in a different tfpetimisation during learning
(minimising K L[QT'|| PT] rather thanK L[Q||P]. In the limit Q = P they would give
the same result). Second, wake and sleep steps could beledtemrun for several
steps. This would result in longer sequences of uninteedifyacking of observations,
alternating with longer ‘hallucinated’ sequences of gatest samples. The latter would
resemble sequence replay and preplay known to take plac&3n C

Future work could implement the neural learning model diyein place of the
reduced simplification. It could also consider memorieshef agent’s own actions as
way to increase the predictability of plus maze sequendesll¥ the agent should
iteratively estimate the amount of error in its own locat&stimates rather than rely on
the artificial noisy GPS assumption used in this proof-afaapt implementation.
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