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Abstract— Previous papers [4], [5] have described a detailed
mapping between biological hippocampal navigation and a tem-
poral restricted Boltzmann machine [20] with unitary coherent
particle filtering. These models have focused on the biological
structures and used simplified microworlds in implemented ex-
amples. As a first step in scaling the model up towards practical
bio-inspired robotic navigation, we present new results with the
model applied to real world visual data, though still limited by a
discretized configuration space. To extract useful features from
visual input we apply the SURF transform followed by a new
lamellae-based winner-take-all Dentate Gyrus. This new visual
processing stream allows the navigation system to function
without the need for a simplifying data assumption of the
previous models, and brings the hippocampal model closer to
being a practical robotic navigation system.

I. INTRODUCTION

The hippocampus is thought to play a key role in asso-

ciating an observed situation with similar memories [11],

[8], [16], [9]. An alternative school of thought is that the

hippocampus is a centre for navigation and map building

[17], [1], [3]. Both approaches associate its Dentate Gyrus

(DG) with the task of pattern separation [2], that is, creating

non-overlapping representations of state which can be used

to further discriminate between memories. All of these ideas

could provide useful inspiration for localisation and mapping

in mobile robotics, as explored in the RatSLAM system [12].

There are many models of the hippocampus which are

gradually converging toward each other, but this paper will

build on the ‘unitary coherent particle filter hippocampus’

(UCPF-HC) mapping of [4], [5] which begins with an ex-

plicitly Bayesian algorithm and works top-down towards the

biology. The model has previously been presented primarily

as a biological theory, but here we make initial steps towards

using it as a practical robotic localisation and mapping

method, by extending it to use more realistic sensory inputs.

This requires machine vision features and some changes to

the biological mapping.

This paper first gives a brief review of the hippocampus,

the UCPF-HC model, and of the visual SURF features.

It then presents a visual sensory extension to the model

including a modified Dentate Gyrus and CA1 to handle the

new sensors. We then show that the visual sensors allow

for more realistic navigation – though still in an artificially

discretized world – as a step towards bio-inspired mobile

robotics applications.

A. Anatomy

The principal input structures of the hippocampus are the

superficial layers of Entorhinal Cortex (ECs). ECs projects

to Dentate Gyrus (DG) which is believed to sparsify the

encoding of ECs. Both ECs and DG project to area CA3,

which also receives strong recurrent connections that are

disabled [7] by septal acetylcholine (ACh). CA3 and ECs

project to area CA1, which in turn projects to the deep

layers of Entorhinal cortex (ECd), closing a loop if ECd

sends information back to ECs. ECs, CA1 and ECd outputs

appear to share a coding scheme, as evidenced by one-to-one

topographic projections. In contrast, DG and CA3 outputs are

thought to work in other bases or latent spaces. In a second

loop, ECs and CA1 both project to Subiculum (Sub), which

projects to the midbrain Septum (Sep) via fornix. Septal ACh

and GABA fibres project back to all parts of hippocampus.

B. UCPF-HC model

The UCPF-HC model [4], [5] mapped this hippocam-

pal circuit onto a modified Temporal Restricted Boltzmann

machine (TRBM, [20]), a machine learning algorithm. The

TRBM is a Bayesian filter with Boolean observation vectors

(including an always-on bias node), z′; Boolean hidden state

vectors (also including an always-on bias node), x′; weight

matrices Wx′z′ and Wx′x′ . It specifies joint distributions,

P (xt, xt−1, zt) =
1

Z
exp

∑

t

(−x′

tWx′x′x′

t−1 − x′

tWx′z′z′t).

(1)

Unlike the standard TRBM, the unitary coherent particle

filter hippocampus mapping uses the following deterministic

update to obtain maximum a posteriori estimates:

x̂t ← argmaxP (xt|x̂t−1, zt) (2)

= {x̂t(i) = (P (xt(i)|x̂t−1, zt) >
1

2
)}i

which is the zero-temperature limit of an annealed sequential

Gibbs sampler. A version of the wake-sleep algorithm is

mapped onto particular phases of the hippocampal theta cycle

in [4], conjecturing use of after-depolarization effects to reset

the wake-sleep stages.

Noisy inputs zt = yt+ǫt are mapped to the combined ECs

and DG, where the DG activations are functions of the ECs

activations, zt = (ECst, DGt(ECst)). CA3 is mapped to
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Fig. 1: Illustration of the hippocampus model showing data

flows and hippocampus regions. SURF features are the new

visual inputs. (Subiculum circuit not shown.)

the hidden state, xt. CA1 performs a partial decoding into the

DG basis. Finally the estimated de-noised output is mapped

to ECd, ŷt = ECdt. Each neural population is a Boolean

vector at each discrete time step t.

A major problem with UCPF-HC is tracking loss, as

it approximates whole posteriors with single samples. To

recover from tracking loss, filter performance is monitored to

heuristically detect its occurrence – by thresholding a moving

average of discrepancy between observed and denoised sen-

sors – then the priors are disabled when lostness is detected.

In UCPF-HC, the Subiculum-Septum circuit performs this

monitoring. Subiculum then compares the partially decoded

CA1 information against the original ECs input, receiving

one-to-one connections from both regions. If they differ for

an extended period of time, this indicates loss of tracking,

and the recurrent CA3 connections are disabled by Septal

ACh.

The UCPF-HC model was shown in [5] to learn receptive

fields of CA3 cells corresponding to a mixture of places and

world features, as found in biology. This is in contrast to

pure place-cell models which can learn to perform mapping

and localisation (SLAM, e.g. [12]) but do not exhibit the

world feature detectors found in the biological primate CA3

[11], [8], [16], [9].

C. Visual SURF features

The UCPF-HC model was originally intended as an ex-

planatory theory of the biological hippocampus, though a

simple proof of concept computational implementation was

provided, running in a highly simplified microworld. This

included highly abstract touch and vision senses, but the

present paper will use a more advanced and realistic visual

feature input, SURF.

Speeded-Up Robust Features (SURF) [6] are a state-of-

the-art transform from images to a vector feature space, de-

signed to be informative for recognising objects in machine

vision. They have also been found useful in other navigation

algorithms, and are an evolution of the older Scale Invariant

Feature Transform [10]. The SURF transform begins by

detecting interest points in an image, found as the local

maxima of the scale pyramid of the image convolved with

Haar wavelets. The dominant wavelet orientation is found

at each interest point. Using the found interest point and

orientation, a small localised grid is constructed, and sums of

absolute and signed responses of vertical and horizontal Haar

wavelets in its cells taken as a 64-element feature vector.

II. METHODS

A. Environment and sensors

The microdomain used in the previous UCPF-HC mod-

els was a simulated plus-maze environment, containing 13

discrete locations consisting of four arms each containing

3 discrete locations, and a centre point. The robots state

within this environment is encoded by one of 13 places

(place ∈ [0 : 13]) and one of 4 head-directions corresponding

to discrete compass headings (hd ∈ {N,E, S,W}). Touch

sensors detect the presence of surrounding walls, and cells

responding to coloured posters at the ends of arms simulated

a crude form of colour detection.

Previously this simulated environment was completely

theoretical and senses were crafted to allow for maximal sep-

aration between locations descriptions. To bring the model

closer to a functional robotic application, a representation of

vision has been introduced to the original model’s array of

senses. Each location direction pair, (p, hd), has a selection

of associated views. Images correspond to real photographs

taken from within the courtyard of Regent Court, University

of Sheffield (Figure 2), whose paved paths form a real-world

plus maze shape. Photographs from the real location are

directly mapped to the simulated environment. Alternative

views of the same location are used to simulate changes in

the environment and incorrect odometry input upon revisiting

a location. Alternative images were taken at different times

of day, at slightly differing angles (±10◦) under different

lighting and weather conditions. To overcome the effective

noise introduced by using images under different lighting

conditions, robust SURF features are used to encode the

significant features of each image and detect similarities

between new and previously seen views.

SURF features are extracted for every image, and are

compared with a base set of SURF features. If the SURF

feature is found to be a close enough match to any feature in

the base set, the base set feature is determined to be present

for that image. This allows a Boolean visual observation

vector to be formed uniquely describing an image as a

combination of present features. This visual observation

vector is fed into the hippocampal model via the EC input



Fig. 2: An overhead view of Regent Court (Google Maps),

showing the mapping of the artificial plus maze used in

simulation to real life location.

and is processed alongside the existing odometry and sensory

information throughout learning and inference.

B. Pre-processing visual features

The base set of features required for matching must be a

range of features which are present in a range of images.

In order to extract SURF features that are present in a

range of images, the descriptions of individual SURF features

need to be merged. SURF features produce a description

of a feature in the form of 64 floating point numbers. The

approach used to extract common SURF features that are

as closely matched as possible by a range of images, was to

use a combination of the k-Nearest-Neighbour algorithm and

merging. The merged SURF features produced are similar

to that of merging groups using k-Means-Clustering and

taking the average SURF feature description for each group.

The distance between a pair of SURF features pi can

be determined as the Euclidean distance between the two

features,

d(pi) =

64
∑

j

(p
i[1]
j − p

i[2]
j )2. (3)

Algorithm 1 describes in depth the how this generalisation

was made, accompanied by Figure 3. The Fast Library for

Approximated Nearest Neighbour search [13] was used for

find the nearest neighbour with k = 2.

Determining whether a feature is present within an image

requires taking the Euclidean distance of Haar wavelet re-

sponses between a member of the merged SURF feature set,

and a SURF feature extracted from the image being analysed

(Equation 3). A feature is regarded present if this distance is

small enough, presence is thus a function of distance between

Haar wavelet responses,

c(fej, fek) =

{

1 if d(pi) < t′ s.t
(pi[1]=fej

pi[2]=fek

)

0 otherwise
. (4)

Algorithm 1 SURF feature generalisation

Extract most distinctive features from every image

Plot these features in 64 dimensional space using their

descriptors

Use kNN to find nearest neighbour to every individual

feature

while feature pair p exists s.t d(p) < t do

for each pair: pi in P s.t d(pi) < t do

Merge the two features Haar wavelet responses:

pn+1 = pi[1]+pi[2]

2
Add pn+1 to feature set

Remove pi[1] and pi[2] from feature set

end for

end while

The maximum distance to be regarded as present, t′,

depends on the particular set of merged features and the

features being analysed. It is the case, however, that the

distance from the original features to the newly merged

features is likely to be larger than the t used for merging

(Algorithm 1), if the feature has been used in multiple

merges. In order for even the same features that were used

in the initial merging to be present, the similarity threshold

between features required to indicate a ‘match’ needs to be

relaxed to t′ such that t′ > t. Without merging features

and relaxing the matching threshold t′, images will share

very few common features. Consequently a large Boolean

observational vector would be required to ensure each image

could be uniquely described by its combination of SURF

feature matches.

C. DG encoding

The previous UCPF-HC models used a small number

of simple touch and colour sensors, along with grid cells,

as the ECs input vector. Because these sensors were well

understood by the model authors, it was possible to handset

weights WEC→DG to make DG cells respond to particular

combinations of inputs, such as touches and locations.

The new model retains these handset weights for the

simple sensors, but as it introduces a large number (e.g. 80)

of merged SURF features into the ECs input, it is no longer

practical to choose and hand-set useful combinations of these

additional features, and so an automated approach must be

used instead.

The lamellae hypothesis [18], [14], [19] in neuroscience

states that single cells in EC project exclusively to localised

(2mm) regions of DG, known as lamellae. Following [14] we

model the visual part (only) of our DG as a set of N lamellae,

receiving input from subsets X of the merged SURF features

only.1

The Hebbian, winner-take-all learning of Algorithm 2 is

applied within each lamella, which forces it to sparsely

1In the full lammelae hypothesis, each lamella receives input from many
types of EC cells such as touch, grid and vision. However we chose not to
alter the structure of the old model’s sensor processing, in order to keep the
visual extensions as a removable/pluggable extension to the model.



...

K-NN

Merge
nearest

pairs

..
.

Image Present SURF features

    1

    2

     

    N

...

...

SURF
Features

Fig. 3: Illustration of the process required to derive a set of

SURF features common to multiple images, and computing

SURF description of images.

encode its input. Consequently only one neuron in each

lamella will be active at any time, and each lamella learns

to represent a set of mutually exclusive conjunctions of its

inputs. This ensures that the DG activity maintains sparse-

ness, as seen in biology, with only N neurons being active

in the entire DG subfield of N ×X neurons.

D. CA3, CA1, ECd decoding

CA3 projects to CA1, which in turn projects back onto the

deep layers of the EC (ECd). Several computational models

[15], [4] view the CA1 as a translator, helping to map from

the CA3 coding scheme back to the ECd representation. As

in the previous UCPF-HC model [4], we assume that CA1

decodes the output of CA3 into the same coding scheme used

by DG, then ECd decodes from this to the same scheme used

by ECs.

As in the previous model, we do not attempt to learn

the weights WCA3→CA1 in a biologically plausible way2.

Rather, we simply re-use the weights WDG→CA3 learned by

the TRBM. A naı̈ve decoding would be given by

CA1naive = (sig(WT
DG→CA3CA3) >

1

2
), (5)

and ignoring the EC components of the resulting (EC,DG)

vector. This decodes each CA1 cell individually using a

threshold. However, a better decoding is possible because we

have prior knowledge about the structure of DG’s lamellae,

which is reproduced in CA1. We know that due to winner-

take-all encoding, exactly one cell of each lamella will be

2though see [4] for a discussion of how it could be achieved.

Algorithm 2 Competitive learning algorithm for N neural

networks

for all lamella n in N do

Choose X random feature indices

Make fully connected neural network connecting EC[X]

features to DG lamella n

Randomise weights of all Wn = WEC[X]→DG[n]

end for

for P presentations of training data do

for all image I in training set do

for all lamella n in N do

Calculate output firing:

On = I ·Wn

Find winning neuron in lamella n:

a = max(On)
Update weights:

∆Wn
ij = αOn

j Ii if j = a else 0
Normalise weights:

Wn = Wn
∑

ij
Wn

ij

end for

end for

end for

active. Hence we may apply the winner-take-all rule again

in each CA1 lamella3, which has the effect of denoising the

CA1 in comparison to the naı̈ve method.

The weights WCA1→ECd need to invert the previous

sparse coding WECs→DG to return information to the orig-

inal entorhinal input basis. In the new model we have been

able to do this in quasi-biological way, using the classical

perceptron learning rule of algorithm 3.

Algorithm 3 Perceptron learning rule

Initialise weights to zero.

for P presentations of training data do

for all lamellae n in N do

for all encoded patterns ideal of input patterns I do

Calculate actual output activity of CA1:

yIdeal = [f(wn · Ideal)]

where f(x) =

{

1 if w · x+ b > 0
0 otherwise

Update weights:

∆wn = α(I − yIdeal)ideal
end for

end for

end for

III. RESULTS

The present model extends the previous UCPF-HC model

[4] by adding realistic visual input and new DG and CA1

processing of that visual input, after SURF preprocessing. It

retains the discrete locations of the plus maze from the old

model, but places them into real spaces around the Regent

3in our code this is described as ‘smart decoding’.



Court building as described in section II-A. One would

expect the introduction of additional sensors and processing

to improve the performance of the model.

We test the new model using the same protocol as in

the previous paper [4]. 30,000 random walk steps are taken

around the 13 discrete locations of the simulated Regent

Court environment, and the walk was replayed though the

learning algorithms until the weights converged. We used

a number of input neurons feeding into each lamellae,

N = 7 and a number of lamellae, X = 45, throughout

all experiments. To simulate noise within the odometry and

sensory input, the EC had 10% noise, ie. on average one

in 10 of its Boolean senses flipped. Python code is again

available as supplemental material from the authors.

The results show that the additional visual information

produces dramatic improvement in the model’s ability to

maintain an estimate of its true location.

Figure 4 shows the amount of time that the agent is

lost during the walk, (following the display format of [5],

[4]) in runs with the new SURF extensions disabled and

enabled. In a previous test of the learning model [5], a

simplifying assumption was made4 that the grid cells behave

as ‘noisy GPS’ [4] units rather than accumulating odometry

data – this was to make the learning problem easier while

demonstrating the biological learning mapping. Figure 4 now

shows the results of the original UCPF-HC model without

this assumption, No SURF No nGPS, which are in fact

very poor and comparable to Random weights5. The figure

reproduces previous results [4] for performance with the

learned model with the nGPS assumption made, Learned

with nGPS.

The two bars on the right of figure 4 show the performance

of the new model, with the new visual system enabled.

Using SURF features (and odometry) only, and without the

nGPS assumption, the model (Learned with SURF only)

outperforms the old model, achieving 95% accuracy. When

the old model’s sensors are included in addition to SURF

(Learned with SURF), the accuracy improves further to 97%.

Figure 5 shows the lostness probabilities with a larger,

20%, noise introduced to the input sensory information. This

shows that extremely noisy data still cannot be handled by

the present model thus there is room for improvement in

these cases, for example by using further sensors as well as

vision.

Figure 6 shows the real location of the robot (black line)

against the estimated location by the hippocampal model

within (blue line). These lines overlap throughout the whole

simulation, showing that a highly accurate estimation is

maintained. (See [5] for description of the complex display

format.)

4documented in its accompanying source code.
5In fact they are slightly worse, as the random weights tend to produce

very little change in the initial location. A stopped clock is accurate more
often than a slow one!

Fig. 5: Lostness probabilities working with 20% noisy data

input to EC.
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Fig. 6: Results showing almost perfect mapping between

ground truths of location and belief of location illustrating

extended models ability, with the septum intact.

IV. DISCUSSION AND FUTURE WORK

Previously the UCPF-HC model [4] used odometry and

simplified abstract sensory information. This input included

unrealistic ‘noisy GPS’ grid cell activity, whisker touch

senses and extremely simplified colour senses, with handset

receptive fields describing descriptive conjunctions of such

features in the DG and CA1.

The present study has extended this model to: receive

real-world visual SURF features as input; learn its own

DG receptive field for these additional features using the

biological hypothesis of DG lamellae; learn an improved

CA3 representation using this information; and decode it

back to ECd using a further lamellae based scheme in CA1.

The visual extensions allow navigation to be performed

with high accuracy, even when the noisy GPS assumption is

dropped, i.e. when the entorhinal grid cells are performing re-

alistic odometric integration as in a real mobile robot, rather

than acting as temporally independent location observations.
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This level of accuracy suggests that visual SURF features

coupled with the UCPF-HC model could form the basis of

a future localisation and mapping (SLAM) system for real

mobile robots.

However we have still retained the discrete location as-

sumption in this work, which precludes real robot implemen-

tation at this stage. The next future work step would thus be

to remove this, and allow a real robot using SURF features

to learn its own place representations in a continuous world,

as performed in RatSLAM [12] and similar architectures.

The present work suggests that SURF vision features could

be powerful enough to enable this research to take place. In

contrast to RatSLAM-like architectures, UCPF-HC is derived

from a top-down Bayesian machine learning model, which is

able to represent more complex states of the world than place

alone, and provides a probabilistic semantic interpretation of

the hippocampal function.
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