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Abstract

Owing to their frequent occurrence in the natural environment, there has been significant interest

in refining our understanding of flow over dunes and other bedforms. Recent work in this area has

focused, in particular, on their shear layer characteristics and the manner by which flow structures

are generated. However, field-based studies, are reliant on single-, or multi-point measurements,

rather than delimiting flow structures from the velocity gradient tensor as is possible in numerical

work. Here, we extract pointwise time series from a well-resolved large-eddy simulation as a

means to connect these two approaches. The at-a-point analysis technique is termed the velocity-

intermittency quadrant method and relates the fluctuating, longitudinal velocity, u
′

1(t), to its

fluctuating pointwise Hölder regularity, α
′

1(t).

Despite the difference in boundary conditions, our results agree very well with previous experi-

ments that show the importance, in the region above the dunes, of a quadrant 3 (u
′

1 < 0, α
′

1 < 0)

flow configuration. Our higher density of sampling beneath the shear layer and close to the bed-

forms relative to past experimental work reveals a negative correlation between u
′

1(t) and α
′

1(t)

in this region. This consists of two distinct layers, with quadrant 4 (u
′

1 > 0, α
′

1 < 0) dominant

near the wall and quadrant 2 (u
′

1 < 0, α
′

1 > 0) dominant close to the lower part of the separated

shear layer. These results are consistent with a near-wall advection of vorticity into a region down-

stream of a temporarily foreshortened reattachment region, and the entrainment of slow moving

and quiescent fluid into a faster, more turbulent shear layer.

A comparison of instantaneous vorticity fields to the velocity-intermittency analysis shows how

the point-wise results reflect larger scale organisation of the flow. We illustrate this using results

from two instantaneous datasets. In the former, extreme velocity-intermittency events correspond-

ing to a foreshortened recirculation region (and high pressures on the stoss slope of the dune

immediately downstream), and the development of intense flow structures as a consequence. In

the other case development of a ‘skimming flow’ with relatively little exchange between the inner

and outer regions results in exceedances because of the coherence associated with this high velocity,

high turbulence outer region. Thus, our results shed further light on the characteristics of dune-

flow in the near-wall region and, importantly for field-based research, show that useful information

on flow structure can be obtained from single-point, single velocity component measurements.

∗ c.keylock@sheffield.ac.uk
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I. INTRODUCTION

Deformation of an erodible substrate into large-scale bedforms such as dunes, makes

understanding turbulence transport in aeolian, fluvial and marine environments complex

[1]. While the transport of erodible sand or gravel is a function of instantaneous forces

or their time integrated effect (impulse), the development of bedforms affects the spatial

distribution of such forces, feeding back into the potential for further erosion to take place

[2, 3]. Dunes are observed, and are deemed of significance to the dynamics of near-surface

boundary layers in various planetary environments [4]. As a consequence, there have been

extensive field studies of flow over such features in aeolian [5, 6] and fluvial or marine

environments [7–10] as well as many experimental studies [11–14].

While there are also examples of older numerical studies studying the flow structure in

these environments [15, 16], it is only recently that high resolution, eddy-resolving numerical

studies have been performed [17, 18], and flow structure generation mechanisms have been

considered using numerical models [19–22]. In the context of the two-dimensional dunes that

have tended to form the emphasis of previous experimental work [12, 13, 18, 19, 22], recent

work has focused on the generation mechanisms describing the large-scale hairpin features

in such flows, with a variety of mechanisms proposed:

• Stoesser et al. [18] suggested that these structures are produced close to reattachment

of the separated shear layer (SSL) that is generated close to the dune crest;

• Omidyeganeh and Piomelli [19] focused on the vortex tubes associated with the Kelvin-

Helmholtz vortices that are produced in the SSL. They found that the hairpins were a

consequence of disturbances to these structures owing to the presence of other struc-

tures in the outer part of the dune flow;

• Chang and Constantinescu [22] examined this looking not only at a fully developed flow

with periodic boundary conditions, but also at spatially developing transitional flow

where the subdued activity of the smaller scales made identification of the mechanism

responsible for the formation of the large-scale coherent structures much clearer. They

found that the vortex tube induced by the dune upstream is transported above the

SSL of the dune downstream, giving it a greater mean velocity, while retaining more

coherence. As the upstream tube passes (and perhaps touches) the tube in the SSL,
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significant distortion results, leading to the observed hairpin structures that scaled

with dune size.

Hence, there are some similarities here to the generation of much smaller hairpin structures

in the boundary layer [23–25] in terms of velocity gradients inducing lift-off and distortion

of tubes of vorticity. However, the pre-existence of a SSL, and the association with fixed

spatial positions (dune crests), rather than a spatially pseudo-random autogeneration, means

that the integrated effect on the velocity structure at a particular location are likely to be

very different. In addition to the large-scale hairpins, other types of large scale coherent

structures are present in flow over large scale roughness, including “superstreaks” that scale

with the size of roughness elements, and kolks. These kolk vortices form when the large-scale

hairpins interact with the flow field of the dunes downstream [26, 27].

One means of characterising this structure is in terms of the relation between velocity and

intermittency and, recently, it has been shown that the outer part of flow over bedforms has

a different coupling between the longitudinal velocity component, u1, and the intermittency

in the dynamics of this signal [28], compared to the structure of boundary-layer flows,

jets and wakes. This result has been confirmed by Keylock et al. [29] for a dune flow

dataset collected under very different experimental conditions (various measuring positions

about fixed dunes as opposed to one measuring postion and mobile bedforms advected

beneath the probe). While the previous experimental studies were able to resolve consistent

information on the nature of the velocity-intermittency structure in the outer part of a flow

over bedforms, the experimental design for those studies meant that limited information was

available beneath the dune crest (the inner flow region). In order to gain an insight into

the flow structure in this region, this study uses Large Eddy Simulation (LES) [30, 31] to

study the flow over sinusoidal bedforms. The simulation provides additional insights into the

velocity-intermittency structure of turbulent flow over bedforms, particularly in the near-

wall region. In addition, the ability to explain the velocity-intermittency results in terms of

the resolved coherent flow structures demonstrates the effectiveness of our quadrant method

[32] for capturing flow structure information from single-point, single velocity component

data.

The paper is organised as follows: First, we describe the numerical domain and properties

of the numerical simulation, as well as validation of the code against previous experimen-

tal and numerical studies. Second, we explain the background to, and specific calculation
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procedure for the velocity-intermittency analysis. The methods section concludes with an

explanation of the data clustering/classification technique used to group the 2048 time se-

ries analysed into discrete categories. The results section describes vertical profiles of mean

velocity and turbulence quantities before examining the correlation between velocity and

intermittency at various locations in the flow domain. These correlations are then disag-

gregated using our quadrant methodology to reveal greater structure to the flow than the

correlations imply. The velocity-intermittency structure of the outer and inner regions are

then described and linked to the nature of the flow structure at these respective locations

using information from instantaneous vorticity fields.

II. METHODS

A. Numerical methods and flow domain

The numerical simulations were undertaken using a nondissipative, parallel, finite-volume

LES code [33], which solves the incompressible Navier-Stokes equations on a nonuniform

Cartesian mesh. The fractional step algorithm uses a staggered conservative space-time

discretization with a semi-implicit iterative method to advance the equations in time. The

algorithm is second-order accurate in both space and time. The numerical method discretely

conserves energy [34] and uses strictly nondissipative (central) discretizations to solve for

the momentum and pressure. The subfilter-scale viscosity in the viscous terms is calculated

dynamically from the resolved velocity fields [33, 35]. The flow was driven by imposing

the mass flow rate, and the boundary condition at the free-surface was a slip-symmetry

condition, where the normal velocity component and the vertical derivatives of the horizontal

velocity components were set to zero (∂u1/∂y = ∂u3/∂y = 0). The dunes were represented

with a stair-step approximation, with no slip on each element of the dune surface.

Additional details concerning the numerical method, as well as validation studies are

given in Chang and Constantinescu [22], Chang et al. [36, 37], Chang and Constantinescu

[38]. Grid convergence work was undertaken to underpin the mesh design in those studies.

However, it should be emphasized that because of the need to obtain physically meaningful

Hölder exponents from the numerical model, which is a more stringent requirement than

the appropriate resolution of large scale flow structures, the present study was undertaken
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FIG. 1. The computational domain and the numerical mesh employed. Note that the origin for y

in this study is at the midheight of the bedform.

on a much finer numerical mesh than these past studies. Indeed, the mesh for the current

study was six times finer than in the simulations reported by Chang and Constantinescu

[22] at 5 wall units (and vertically, 2.5 units in the dune region). Hence, the first mesh

point is within the viscous sublayer, removing the need for wall functions, and dramatically

reducing any dependence on the subgrid model physics. Furthermore, the mesh refinement

used in the present study was close to that required by Direct Numerical Simulation (DNS)

at the same channel Reynolds number. Hence, because the subgrid scale viscosity from the

dynamic Smagorinsky model goes to zero in regions where the resolution approaches that

for a well-resolved DNS, this provides another means by which the simulation’s dependence

on subgrid scale physics is reduced. Analysis of the instantaneous and mean flow fields

confirmed the small values of the nondimensional subgrid scale viscosity (νSGS/ν < 0.05)

outside of the regions containing larger-scale turbulent eddies (separated shear layers and

in the troughs of the dunes). In the latter regions, the maximum instantaneous values of

νSGS/ν were close to 1.2, while the maximum time-averaged values were close to 0.5.

The numerical domain is shown in Fig. 1 and relevant properties, including the num-

ber of computational cells used in each direction, NL
x,y,z, and their size, ∆x,y,z, are given

in Table I. Because the large-scale ‘super-streak’ structures have a streamwise extent

greater than that for one dune [39], to capture such structures accurately in a simula-

tion with periodic boundary conditions requires a domain at least three times the length

of this structure so that periodic constraints do not impact on the inferred dynamics of

the vortices. Hence, the computational domain here, spanning four dune wavelengths,

exceeds that in most previous studies. The particular bedforms used in this study were

motivated by the work of Günther and von Rohr [40]. Such symmetrical dunes arise in
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Flow variable Value

Re (Uhc

ν
) 6700

Lx, Ly, Lz 4, 1, 5

NL
x , N

L
y , N

L
z 320, 160, 400

∆x 0.0125

∆y (near the dune) 0.00625

∆z 0.0125

Bedform wavelength λ = hc

Bedform shape 0.5hd cos 2πx/λ

Dune height, hd/hc 0.1

TABLE I. Properties of the flow domain and the mesh for the numerical experiment. The channel

height, hc, and inlet depth-averaged, mean velocity, U , were both equal to 1 and the mesh sizes

∆x,y,z are non-dimensionalised with respect to hc.

FIG. 2. The 32 sampling locations employed for all 16 values for the transverse coordinate, z,

and for all four dunes are shown in panel (a). These points are superimposed on a frame showing

the instantaneous spanwise vorticity, ωz for flow over and about the fourth and fifth dunes, with

colouring respecting the key for that panel. Panel (b) shows a portion of the flow domain at one

instance of time. The magnitude of the total vorticity on an x-y plane in the centre of the domain is

highlighted, with three-dimensional coherent structures resolved using the Q-criterion throughout

the domain.
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FIG. 3. Time series showing the stationarity of the Hölder exponents, α1 for the 32 sampling

locations shown in Fig. 2a. From top to bottom we commence with x/λ = χ.00, y/λ = 0.06, work

along increasing y and then move to the next x/λ position, finishing at x/λ = χ.75, y/λ = 0.9.

Each series is displaced vertically by an integer value for clarity.

nature when a mobile bed is subject to an oscillating flow, as occurs in tidal environments.

The geometry of the bedforms is stated in Table I. Within the computational domain,

time series were extracted from 2048 positions, corresponding to the 32 positions shown

in Fig. 2a, replicated over all four bedforms, for sixteen values of the transverse coor-

dinate, zλ ∈ {1.0, 1.5, 2.0, 2.3, 2.4, 2.425, 2.45, 2.5, 2.525, 2.55, 2.6, 2.7, 3.0, 3.5, 4.0, 4.5}. The

time-series were of a 200 hc/U duration and sampled every 1
30
hc/U , where U is the tempo-

rally and spatially averaged mean flow at the inlet to the domain. The data were obtained

after a period of convergence and it was checked that they were stationary from the perspec-

tive of the key term needed for our analysis method (the Hölder exponents, α1 described in

section IIC 1). To demonstrate this, we show the time series for α1 for all 32 locations in a

given x− y plane for a single dune in Fig. 3. It is clear that the data are stationary in their

mean, implying a stationary variance to the velocity time series, u1.

B. Validation of the LES with experiments and DNS

The LES code has been validated for a wide range of turbulent flows including channel

flow over dunes. The reader is referred to Chang and Constantinescu [22] for a detailed
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FIG. 4. Comparisons of vertical profiles of the u1 velocity component at x/λ = 0.0 and x/λ = 0.5

predicted by the LES simulation and measured with two different experimental techniques: Laser

Doppler velocimetry (LDV) [41] and particle imaging velocimetry (PIV) [40].This figure is taken

from Chang, K. and G. Constantinescu (2013), Coherent structures in flow over two-dimensional

dunes, Water Resour. Res. 49, 2446-2460, doi:10.1002/wrcr.20239 (copyright American Geophysi-

cal Union) and is reproduced with the permission of the AGU.

comparison between LES, experiment, and DNS for flow in a channel with dunes at the

bottom and a no-slip boundary condition at the top of the domain based on a coarser mesh

than adopted here. For example, Fig. 4 compares the vertical velocity profiles obtained at

two longitudinal positions (the dune crest, x/λ = 0.0, and the point of minimum elevation,

x/λ = 0.5) for an inflow Reynolds number (flow depth and depth-averaged mean velocity)

of 6700, which matched that in the experiments of Günther and von Rohr [40]. Higher or-

der statistical quantities (the root-mean-squared velocity, σ(u1), and the Reynolds stresses,

−⟨u
′

1u
′

2⟩) are compared to a direct numerical simulation (DNS) at a Reynolds number of

6920 by Cherukat et al. [42] in Fig. 5. It should be noted that this DNS was conducted

in a fairly narrow channel and the super streaks over the dunes were not resolved. These

super streak features were resolved with the original LES by Chang and Constantinescu

[22] as well as in the current study with a much finer mesh as is clear in Fig. 2 and in the

instantaneous fields shown towards the end of this paper.
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FIG. 5. Comparisons of vertical profiles of σ(u1) (left-hand panels) and the Reynolds stresses

(right-hand panels) obtained at three longitudinal locations (x/λ ∈ {0.0, 0.4, 0.8}) using an LES

simulation for flow over dunes conducted in the same domain as this study, and a DNS direct

numerical simulation by Cherukat et al. [42].

C. Velocity-intermittency analysis

The intermittency of turbulence has long been recognized, resulting in the various forms

for the corrections to Kolmogorov’s original (K41) [43] structure function scaling [44–46],

and explicit consideration of multifractal approaches [47, 48]. However, as a consequence of

scale-separation arguments [49], the formal links between velocity difference distributions,

intermittency, and their possible correlations with the velocity field have received less atten-

tion (although note that Kolmogorov permits the values for the coefficients in his revised

theory to be a function of the macrostructure of the flow [44] and it is suggested by Frisch

et al. [50] that Kolmogorov recognised this issue in 1941, but ignored it at the time to

facilitate the derivation of the 4
5
law).

In terms of experimental and theoretical investigation into these matters, the relation

between the longitudinal velocity difference, over a length, r, given by ∆ur = ux − ux+r

and ux was studied by Praskovsky et al. [51] who demonstrated the invalidity of the sweep-
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ing decorrelation hypothesis. More recently, Hosokawa [52] showed a dependence between

velocity increments and the local velocity sum that was broadly consistent with the conclu-

sion of Praskovsky et al. [51]. Further work on velocity dependence can be seen in studies

that move away from considering the velocity increment moments (structure functions) to

studying a Fokker-Planck equation for the evolution of the probability density function of

the increments [53, 54]. By further conditioning the distribution for p(∆ur|∆u2r) on the

velocity, i.e. p(∆ur|∆u2r, ux), Stresing and Peinke [55] were able to show the relevance of

describing the turbulent energy cascade with a velocity conditioning.

While this conditional distribution function technique is suited to the analysis of long ex-

perimental datasets consisting of millions of samples, it is much less appropriate for studying

velocity-intermittency properties derived from eddy-resolving numerical studies or shorter

duration geophysical field studies. This deficiency of the Fokker-Planck approach was the

rationale for the development of a velocity-intermittency analysis framework better suited

to the study of shorter duration time series [32]. This method is adopted in this paper and

explained more thoroughly below. In addition to its links to fundamental questions regard-

ing turbulence cascades and dynamics, this analysis permits an implicit consideration of the

role of flow structures in the dynamics from single point time series (from which the veloc-

ity gradient tensor cannot be resolved). Hence, identification of the velocity-intermittency

structure complements more conventional analysis of turbulent kinetic energy and Reynolds

stresses for single-point data by giving information that one can connect to resolved flow

structures [29].

1. Hölder exponents

Similar to multifractal analyses [47], our velocity-intermittency approach is underpinned

by the notion of Hölder exponents. The Hölder exponents for a turbulence velocity time

series can be used to identify flow structures from single-point measurements [56] and can

be formally related to more classical structure function analysis using the Frisch-Parisi con-

jecture [57]:

D(α1) = min
n

(α1(t)n− ξn + 1), (1)

where the singularity (multifractal) spectrum, D(α1), is given by the set of non-empty

values for α1(t), the Hölder exponents for velocity component, u1, and ξn is the structure
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function scaling exponent for the nth moment of the velocity increment distribution. Hence,

analysis in terms of the Hölder regularity of the velocity signal provides a direct connection

to considerations of turbulent intermittency [44] and the multifractal structure of turbulent

velocity signals [47, 48, 58].

The Hölder exponent is defined through consideration of the differentiability of a signal

relative to polynomial approximations about a particular point [59, 60]. These are given by

a Taylor series expansion:

pT (t) =
m−1∑

i=0

ui
1(T )

i!
(t− T )i (2)

where we study a velocity time series, u1(t), in a neighbourhood, δ, about a position, T , and

m is the number of times that u is differentiable in T ± δ. We then state that u1(t) has a

pointwise Hölder exponent, α1 ≡ α(u1) ≥ 0 if a constant K > 0 and the polynomial pT (t)

of degree m exist such that

|u1(t)− pT (t)| ≤ K|t− T |β (3)

The Hölder regularity, α1, of u1(t) at T is then given by the supremum of β that fulfils Eq.

3.

We evaluate α1 using a time domain scaling method [60, 61]. This method performed well

in a comparative test of various such algorithms [62] and is based on the determination of the

oscillations within the vicinity of a particular target position and then a log-log regression

of these signal oscillations, OT±δ, within some distance δ of T against δ, where OT±δ is given

by:

OT±δ = max [u1(t ∈ {T − δ, . . . , T + δ})]−min [u1(t ∈ {T − δ, . . . , T + δ})] (4)

and δ is distributed logarithmically. In our study 21 ≤ δ ≤ 210 to provide as broad a scaling

regime as possible (i.e. spanning integral and inertial scales to incorporate both dune flow

turbulent macrostructure [22, 39] and cascade effects while minimizing algorithm end-effect

issues (our time series each consist of 6000 values).

2. Velocity-intermittency quadrants

The approach we use for determining the velocity-intermittency coupling is based on the

notion of quadrants, commonly used to characterise boundary-layer flows [63–65]. However,

in our formulation, the fluctuating vertical velocity component, u
′

3(t) is replaced by the
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Quadrant u
′

1 α
′

1

Q1 + +

Q2 - +

Q3 - -

Q4 + -

TABLE II. Definition of velocity-intermittency quadrants

α 1 / 
*

−2 −1 0 1 2

−2

−1

0

1

2

−2 −1 0 1 2

−2

−1

0

1

2

u
1
 / *

α 1 / 
*

−2 −1 0 1 2

−2

−1

0

1

2

u
1
 / *

−2 −1 0 1 2

−2

−1

0

1

2

(a)

(c)

(b)

(d)

FIG. 6. Joint probability distributions of the velocity-intermittency in the space used to define the

quadrants used in this paper. Data are from the centre-line of the domain (z/λ = 2.5) and are

averaged over the four dunes studied at locations (x/λ = χ.00, yλ = 0.90; a); (x/λ = χ.50, yλ =

0.04; b); (x/λ = χ.00, yλ = 0.06; c); and, (x/λ = χ.50, yλ = −0.02; d). Contours are shown in

0.2% intervals commencing at 0.2%. The origin is displayed with a black, dotted line, while two

example integer hole sizes, H ∈ {1, 2} are shown with grey, dotted lines.

fluctuating pointwise Hölder regularity, α
′

1(t) of the fluctuating longitudinal component,

u
′

1(t) [32]. Hence, having obtained α1(t) from u1(t), we form quadrants by subtracting the

respective mean values, α
′

1(t) ≡ α1(t) − ⟨α1⟩, u
′

1(t) ≡ u1(t) − ⟨u1⟩ and then classifying the

data based on the sign of the fluctuating terms (Table II).

To illustrate the method more clearly, we show velocity-intermittency quadrant plots

from four selected positions in our numerical domain, combining data from all four dunes,
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in Fig. 6. We follow the idea in classical quadrant analysis of identifying selected events

(ejections and sweeps in the standard analysis) based on a threshold ‘hole size’. Because the

units of measurement for our variables differ, we normalise using the respective standard

deviations, σ(. . .):

α
′∗

1 (t) =
α

′

1(t)

σ(α1)

u
′∗

1 (t) =
u

′

1(t)

σ(u1)
(5)

We then define our hole size, H, as values for the product, α
′∗
1 (t)u

′∗
1 (t), and example thresh-

olds are shown in Fig. 6 for H ∈ {1, 2} as grey, dotted lines. The four locations chosen in

Fig. 6 can be seen from Fig. 2 to represent very different local flow environments:

• (x/λ = χ.00, yλ = 0.90) - The outer flow far above the dunes (a);

• (x/λ = χ.50, yλ = 0.04) - Within the shear layer formed by separation at the upstream

crest (b);

• (x/λ = χ.00, yλ = 0.06) - Close to the point of separation at the dune crest (c); and,

• (x/λ = χ.50, yλ = −0.02) - Near the bed and in the region of reattachment and

recirculation (d).

It is clear from these plots that the velocity-intermittency relations are structured quite dif-

ferently at the four selected locations. The two locations in the regions directly influenced

by shear generated by the dunes, (b) and (c), exhibit a clear negative correlation, with ex-

treme velocity-intermittency states preferentially located in quadrants 2 and 4, respectively.

There is a weak positive correlation at position (a), with the general negative skew at this

location resulting in a slight preference for extreme states to be located in quadrant 3. The

velocity-intermittency plot in the recirculation region is more isotropic (Fig. 6d), without

a strong correlation. However, a preference for extreme occurrences to occur in quadrant 4

can be detected.

To quantify this structure, we then count the number of records exceeding a given choice

ofH in each quadrant, NQ(H), and plot this as an empirical probability defined as a function

of the proportion of the total exceedances at a given H:

pQ(H) =
NQ(H)

∑4
Q=1 NQ(H)

(6)
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Hence, the data in Table III are extracted from Fig. 6 and are initially expressed as an

empirical probability of the full number of points in the data record (such that the values

always decrease and tend to 0 as H tends to infinity). The second block of values are those

after renormalisation by the total number of points exceeding each threshold,
∑4

Q=1 NQ(H)

as defined in eq. 6. These pQ(H) values can then be plotted as a function of H for each

quadrant. Different examples of these types of plots are shown in Fig. 7 for a range of

flows. From this figure, it is clear that turbulent flows in different domains may be readily

discriminated from others using this velocity-intermittency analysis. Interpretation of these

results was provided previously by Keylock et al. [32] and Keylock et al. [28]. As an example,

it can be seen that quadrant 2 dominates the statistics at large H for the jet data (red line),

leading to a large, positive value for the gradient of pQ and H in this quadrant. This is

indicative of regions of low velocity with relatively subdued turbulence driving the extreme

statistics, and for the jet experiment, this may be readily interpreted as the entrainment of

quiescent fluid from the surrounding fluid into the jet as it expands away from the nozzle.

The near-wall boundary layer data (solid green and blue lines) have a positive slope in

quadrant 4. This is consistent with the standard ejection-sweep model for flow near the wall

[64, 66], meaning that fast moving and highly turbulent sweeps dominate the statistics in

this region.

Figure 7 also contains information on the velocity-intermittency structure over mobile

gravel bedforms, as analyzed by Keylock et al. [28] using data collected by Singh et al.

[67, 68]. The region analysed was above the shear layer developed at the dune crest and

shows a particularly strong quadrant 3 dominance, even relative to boundary-layer flow

above 150 wall units (dotted green and blue lines). This reflects the large, coehrent struc-

tures that develop in this region as described in previous studies [19, 22]. Because of their

movement upwards from regions of relatively low velocity, these highly turbulent structures

are associated with a lower velocity than is typical at this depth, explaining the positive slope

in quadrant 3. Recently it has been shown that, despite the very different experimental con-

ditions (fixed, artificial dunes rather than mobile, low-angled gravel bedforms), a well-known

dataset on flow over dunes [13] also contains clear evidence of the same velocity-intermittency

relation as that seen in Fig. 7 for flow over bedforms [29]. This highlights the robustness of

our method and the existence of an ‘outer region bedform velocity-intermittency structure’.

In the same way that a given set of lines in Fig. 7 summarises the information in velocity-
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intermittency quadrant plots such as those in Fig. 6, to examine the velocity-intermittency

response at the 2048 locations studied, requires a further distillation of the information

contained in plots such as Fig. 7. Following Keylock et al. [29], we accomplish this by

approximating the behaviour of the pQ(H) vs H relations by their slopes, dpQ/dH. Hence,

the four lines in Fig. 7 are replaced by four gradient values. Subsequent results in this paper

express these four values as bar charts.

Using this velocity-intermittency framework, the current study complements previous

experimental work by using a well-resolved large-eddy simulation to examine the velocity-

intermittency properties of dune flow dynamics, looking in particular at the near-bed region

where the previous experimental data undersampled the flow. This was an intrinsic feature

of the experiments of [67, 68] as the bedforms were free to develop and advect beneath the

probe. Hence, the probe had to be positioned so that it sampled the flow above the crest.

Therefore, the LES results provide new information on the near-wall velocity-intermittency

structure for what is an important, emergent boundary-condition for flows over a mobile

bed [1].

D. Data classification by K -means clustering

Because we can obtain results from a large number of spatial locations using numerical

methods, we employ an automatic data classification technique to see if the natural groupings

in the data conform to our understanding of the flow field. That is, averaging results

across multiple points can, in the case of a multimodal behaviour, give a result that is

not representative of any observed flow state. In such instances, clustering analysis reveals

which types of behaviour are present at a particular point. We use the well-known K -means

clustering method applied to straight line approximations to the proportional occupany of

each quadrant as a function of H. That is, for the equations in this subsection, γ ≡ dpQ/dH,

for each quadrant at each sampling location. The K -means approach defines clusters by

minimizing the within cluster sum-of-squares difference. Hence, with i = 1, . . . , k clusters

and j = 1, . . . , η data vectors (k < η), one seeks to minimize

argmin
S

=
k∑

i=1

∑

γj

Si||γj − µi||
2 (7)

16



(0.0, 0.9) (0.5, 0.05) (0.0, 0.06) (0.5,−0.02)

H Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

0.0 0.29 0.20 0.26 0.25 0.19 0.29 0.21 0.32 0.15 0.32 0.21 0.33 0.22 0.25 0.25 0.27

0.5 0.13 0.08 0.12 0.10 0.07 0.16 0.06 0.14 0.04 0.18 0.05 0.17 0.07 0.10 0.10 0.12

1.0 0.06 0.03 0.06 0.05 0.03 0.10 0.03 0.07 0.02 0.12 0.01 0.10 0.03 0.05 0.04 0.07

1.5 0.03 0.01 0.03 0.03 0.02 0.07 0.01 0.03 0.01 0.08 0.00 0.06 0.01 0.03 0.02 0.04

0.0 0.29 0.20 0.26 0.25 0.19 0.29 0.21 0.32 0.15 0.32 0.21 0.33 0.22 0.25 0.25 0.27

0.5 0.30 0.18 0.28 0.23 0.15 0.37 0.15 0.33 0.09 0.40 0.12 0.39 0.18 0.27 0.25 0.31

1.0 0.29 0.16 0.30 0.25 0.14 0.45 0.12 0.30 0.08 0.48 0.04 0.40 0.15 0.26 0.23 0.36

1.5 0.26 0.14 0.33 0.27 0.12 0.52 0.09 0.40 0.05 0.53 0.02 0.40 0.10 0.28 0.23 0.40

TABLE III. Calculation of the hole size threshold exceedances for each quadrant for the four

locations shown in Fig. 6 (coordinates at the top of each column) and four choices of hole size, H.

The first set of results are expressed as empirical probabilities of the length of the full data record.

The second set of results are given as a function of the number of values exceeding the selected

threshold. This is what is defined as pQ(H) in the text and used for analysis.

From an initial guess of the k means, µ
(0)
1 , . . . , µ

(0)
k , the standard algorithm alternates between

assignment and update steps:

S
(t)
i = {γj : ||γj − µ

(t)
i ||2 ≤ ||γj − µ

(t)
ℓ ||2 ∀ 1 ≤ ℓ ≤ k} (8)

Following the assignment of γj to just one Si, the cluster means are updated:

µ
(t+1)
i =

1

|S
(t)
i |

∑

γj∈S
(t)
i

γj (9)

The optimal number of clusters, K ∈ k, is obtained from consideration of two criteria

after convergence (t = ∞), where δi,j = ||γj − µ
(∞)
i ||2:

• For a given j = J , we define (D1)J = min{δ
(∞)
1,J , . . . , δ

(∞)
k,J }, (Dk)J = max{δ

(∞)
1,J , . . . , δ

(∞)
k,J }.

Hence, (D1/D2)j is a measure of cluster distinctiveness for vector j. The average ra-

tio over all η vectors is then a summarial measure of the effectiveness of ease of
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FIG. 7. An analysis of velocity-intermittency for various experiments. The data from flow over

mobile bedforms studied by Keylock et al. [28] are shown as a solid black line, while other lines

correspond to data from a turbulent jet experiment [53] (solid black line with hollow squares), wake

data at 8.5 ms−1 (grey dotted) and 24.3 ms−1 (grey) [69], and data below 150 wall units (solid

black lines) and higher into the flow (dotted black lines) at 6 ms−1 (hollow diamonds) and 8 ms−1

(solid circles) for the upstream boundary layer from the study by Keylock et al. [32]. This figure

is modified from: Keylock, C.J., Singh, A., Foufoula-Georgiou, E. 2013. The influence of bedforms

on the velocity-intermittency structure of turbulent flow over a gravel bed, Geophysical Research

Letters 40, 1-5, doi:10.1002/grl.50337. (copyright American Geophysical Union) and is reproduced

with the permission of the AGU.

classification into k clusters:

⟨D1/D2⟩ =
1

η

η∑

j=1

(D1/D2)j (10)

• The effectiveness of the variance partitioning over all clusters is given by the mean

distance of the members of a cluster to the cluster centroid, µi, then averaged over all

k clusters:

δav =
1

k

k∑

i=1

1

|S
(∞)
i |

∑

γj∈S
(t)
i

δi,j (11)

In the analysis below, we use these two methods to discern the optimal number of clusters

in our data, which we then interpret physically in terms of quadrant-dominance.
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III. RESULTS

A. Elementary flow properties

Vertical profiles for the time-averaged longitudinal velocity component, ⟨u1⟩, the standard

deviation of u1, σ(u1), and the primary Reynolds stress component, −⟨u‘
1u

‘
2⟩ are shown in

Fig. 8 as a function of longitudinal coordinate, x. The results shown are also averaged over

the 16 choices for z and the four dunes, as indicated by the “av” subscript. The position

notation, x = χ.75, for example, means that rather than identifying a specific dune (e.g.

x = 1.75) results have been averaged or compiled over all four dunes, χ ∈ {1, 2, 3, 4}.

These data show the expected pattern of an increasing mean velocity above the dune

crest, and a decrease in the standard deviation and Reynolds stress both above and beyond

y ∼ hd, highlighting the shear layer development at this height. It is interesting to note

that peak values for σ(u1)av are similar at x = χ.25 and x = χ.50, and only decay by about

10% by x = χ.75. In contrast, average Reynolds stresses nearly double from x = χ.25 to

x = χ.50, and then return to approximately the x = χ.25 values by x = χ.75. In the σ(u1)

results, in particular, but also with the Reynolds stresses, there is a clear ‘bulge’ to the profile

at y/λ ∼ 0.5, which constrasts with the rapid decay from the wall seen in a boundary-layer.

It can be seen in the total vorticity plane in Fig. 2b that coherent structures with significant

vorticity are penetrating to at least this height in the domain. These are associated with the

upstream vortex tube overlying the SSL [22], increasing the longitudinal turbulence effects

in this region and highlighting the complexity of the bedform flow environment.

The variability in the results shown in Fig. 8 for each of the four dunes was calculated

on a point-by-point basis and peaked at the height of the shear layer, where the difference

between maximum and minimum values was of the order of 10%. It should be noted that

because of the strong vertical gradients of the flow variables in this region, slight differences

in the vertical location of the shear layer can have a dramatic impact on the calculated

difference statistics. Because of this, and because there was no systematic trend in these

statistics, in addition to the temporal stationarity shown in Fig. 3, the results were deemed

also to be spatially stationary.
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FIG. 8. Vertical profiles of ⟨u1⟩ (top row), σ(u1) (middle row) and −⟨u
′

1u
′

2⟩ (bottom row) aver-

aged over sixteen choices for z and the four dunes. The values in each column are a function of

longitudinal position, x.

B. Average relations between u1 and α1

The general structure of the correlation between u1 and α1 as a function of position is

shown in Fig. 9. One observes a peak negative correlation just above the crest (x/λ =

χ.00, y/λ = 0.06), and this zone moves downwards and expands past the crest, appear-

ing to reach a maximum vertical extent at x/λ = χ.50 where it extends from −0.03 <

y/λ = 0.03. Positive correlations are prevalent higher into the flow (y/λ > 0.7 and

x/λ ∈ {χ.00, χ.25}, y/λ = 0.2). These results are indicative of general Q2 or Q4 domi-

nance in the lower flow, with Q1 or Q3 dominant in the outer flow.

As outlined above, in order to summarise the quadrant-based results effectively, we found

the linear slopes, dpQ/dH, of the occupancy-H plots (Fig. 7) for each quadrant. Results

averaged over all positions are shown in Fig. 10 and highlight which specific quadrants

explain the correlations observed in Fig. 9. Spatial differences in the vertical and horizontal

directions are clear. The trend for stronger negative correlations towards the bed seen in

Fig. 9 is actually made up of two distinct regions:
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FIG. 9. The median correlation, R(u1, α1), between u1 and α1, determined over all dunes, χ ∈

{1, 2, 3, 4}), on the centreline of the domain (z = 2.5/λ). The lower panel focuses on the near-wall

region and square symbols highlight positive correlations.

• Flow near the bed (y/λ . 0.02), dominated by strong positive slopes for Q4, with

negative values for the other quadrants; and,

• The 0.02 < y/λ < 0.06 region (black colour) dominated by positive slopes for Q2 with

negative slopes for the other terms.

Immediately adjacent to the dune, there are also locations where both Q2 and Q4 have

positive slopes that are reduced in magnitude, but are still sufficient to yield negative cor-

relations in Fig. 9. At x/λ ∈ {χ.50, χ.75}, y/λ ∈ {0.1, 0.2} both Q2 and Q3 have positive

slopes, explaining the low correlation in this region.

The previous study of the velocity-intermittency structure for dune flow was based on

the experimental work of Venditti and Bennett [13]. In that experiment, the shape of

the bedforms differed from that used here (sinusoidal here, asymmetric in Venditti and

Bennett [13]) and there were also relatively few samples collected below the dune crest. The

second lowest row of samples were 50% of the bedform height above the crest (y/hd = 1.5).

This corresponded well to the mean elevation in the experimental data of Singh et al. [67],

permitting Keylock et al. [29] to compare velocity-intermittency characteristics to those in

Keylock et al. [28], which showed an excellent agreement, and a clear Q3 dominance at this

height. This led to the suggestion of a dune flow class for the flow above the shear layer
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FIG. 10. Bar charts of the slopes extracted from quadrant plots similar to Fig. 7 for the 32 positions

sampled within the dune region. Results are averaged over the four dunes, and over seven central

locations in the transverse direction: z/λ ∈ {2.425, 2.45, 2.5, 2.525, 2.55, 2.6, 2.7}. Quadrants are

shown in ascending order from bottom to top in each subplot. Black shading indicates the pattern

of Q2 dominance described in the text and corresponding to the centroid of cluster, K5 and white

shading shows quadrant patterns that do not match any of the identified cluster centroids. The

three other shadings correspond to patterns that are similar to clusters K4 (darker) to K1 (lighter),

with no pattern clearly mapping into K3.

that forms at the dune crest as one with a Q3-dominant velocity-intermittency structure

(see the black line in Fig. 7). The asymmetry of the dunes in the Venditti and Bennett

[13] dataset meant that there was 15hd between crests, and 2hd from the point of minimum

elevation to the next crest, compared to 10hd and 5hd, respectively, here. The region of

Q3 dominance was most clearly expressed 9hd or more from the crest for the asymmetric

case. In the current case, this most closely corresponds to x = χ.00, but Fig. 2 shows

qualitatively, and Chang and Constantinescu [22] described more thoroughly how vortices

from the upstream dune are deflected above the separated shear layer from the current dune,

as noted above. Hence, it is to be anticipated that as a consequence of this deflection, the

region of maximum Q3 dominance at x = χ.00 will be displaced upwards from the dune crest.

Indeed, this was found to be the case, with the data from x/λ ∈ {χ.00, χ.25}, y/λ = 0.2 with

the clearest Q3 dominance (dark shading in Fig. 10). That this is the region affected by

22



2 3 4 5 6 7 8 9 10
0.25

0.30

0.35

〈D
1 / 

D
2〉

2 3 4 5 6 7 8 9 10
0

0.005

0.010

0.015

no. of clusters (k)
δ av

(a)

(b)

FIG. 11. Selection of the number of clusters. The mean ratio between the minimum distance to

a cluster centroid, D1, and the second smallest distance to a cluster centroid, D2, as a function of

the number of clusters, is shown in panel (a). Panel (b) shows the average distance to a cluster

centroid averaged over all clusters.

vortex generation from the crest of the previous dune may be inferred from the right-hand

edge of the background frame in Fig. 2a and the investigation by Chang and Constantinescu

[22]. Hence, the region exhibiting positive values for Q3 is in the upper half of the shear layer,

where crest-generation processes are not affected by recirculation and near-wall phenomena.

This region extends into the flow directly above the crest of the dune that is positioned

immediately downstream. The Q3 dominance in these regions occurs both because the

advection of large-scale structures is less than the mean flow (as forward momentum has

been transfered into angular momentum), and because the hairpin-like structures that form

in this region (Fig. 2a,b) are moving upward through the flow from regions of lower mean

velocity. Because large magnitude velocity fluctuations (hence, intermittency) are associated

with their passage, there is a u
′

1 < 0, α
′

1 < 0 (or Q3) dominance at large H.

C. Summary of location-specific velocity-intermittency behaviour

In order to go beyond the average results at each position shown in Fig. 10 a statisti-

cal classifier of the velocity-intermittency structure at all positions was employed (rather

than undertaking an averaging operation). Consequently, a K -means clustering algorithm,

was used to automatically classify types of observed velocity-intermittency behaviour as

described above.

The quadrant slope results, dpQ/dH, for the velocity-intermittency structure at 2048
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positions (32 locations in a given x − y plane, 16 transverse positions, and 4 dunes) were

analysed. The primary criterion used to determine the optimal number of clusters is given by

Eq. 10 and, as shown in Fig. 11a, either three or five clusters were optimal. Supplementing

this analysis with Eq. 11, as shown in Fig. 11b, K = 5 was deemed optimal and these

natural groupings in the data are shown in Fig. 12. The shading used here respects that

used in Fig. 10 and nK is the number of vectors assigned to a given cluster (from 2048).

The sampling bias towards the bed, clearly affects any interpretation of these values with

respect to the global prominence of particular flow states, but the most commonly observed

cluster, K5, is that with strong Q2 dominance, followed by a weaker Q2 dominance in K2.

Altogether, there were 1049 cases (51.2% of 2048) where dpQ/dH for Q2 was greater than

+0.05 and 65% of the time, these cases occurred at y/λ ≤ 0.06, which accounted for 50% of

the sampled positions.

Although only two of the thirty two locations in Fig. 10 showed a dominant Q3 state (and

slopes for dpQ/dH in Q2 were still positive there), clusterK4, with a clear Q3 dominant state,

is the third most numerous cluster, occurring 19.6% of the time. In fact, there were 382 cases

(18.7% of 2048) where dpQ/dH for Q3 was greater than +0.05 and 54% of the time, these

cases occurred at y ∈ {0.1, 0.2}, which equates to a quarter of the sampled locations overall

and a dominance in the primary region above the shear-layer generated at the crest, which

is compatible with our past results [28, 29]. The single most important positions for K4

occurrence were x/λ = χ.00, y/λ = 0.2 (11% of total occurrences), x/λ = χ.25, y/λ = 0.2

(9%), and then x/λ = χ.50, y/λ = 0.1 and x/λ = χ.75, y/λ = 0.1 (both 8%). This

reduction of y with x for locations with dominant Q3 extremes, shows that the sites at

x/λ ∈ {χ.00, χ.25} are capturing the dynamics above the SSL generated from the previous

dune, while x/λ ∈ {χ.50, χ.75} reflect the conditions above the SSL generated from the

current dune’s crest. More generally, and indicating that this K4, Q3-dominant flow state is

a characteristic of the outer part of flow over dunes, 88% of occurrences were at y/λ ≥ 0.1,

which equated to half the sampled locations, but 86% of the flow depth.

Subsequent analysis in Fig. 13 shows the histogram of occurrences of different cluster

membership at the 32 locations in the x − y plane, with shading indicating the cluster

dominating at a particular position, and white used when none of the five identified clusters

appears to dominate the histogram. Given that averaging the response over different cluster

types leads to a mean quadrant response that blends together different quadrant dominant
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FIG. 12. The five cluster centroids extracted using the K -means algorithm displayed in a similar

form to the results in Fig. 10, with the shading for each cluster respecting that used in that figure

(cluster K3 does not feature there). The data plotted in the bar graphs are tabulated in the bottom

right.

states, Fig. 13 is a more representative map of velocity-intermittency structure than Fig.

10.

D. Outer flow velocity-intermittency structure and associated flow structures

Figure 13 shows that clusters K3 (Q1 dominance) and K4 (Q3 dominance) are of greatest

importance for most of the flow depth (y/λ > 0.1). However, with the exception of x =

χ.00, y/λ = 0.20, one cluster does not dominate the results as clearly as in the near-wall

locations. This is why the simple averaging over all sites in Fig. 10 departs from Fig. 13 to

a greater extent in the outer flow. In addition to the observation that cluster K4 (with its

Q3 dominance) occurs more frequently in the outer region, what is seen in Fig. 13 is that K4

occurs more often than any other cluster for all x/λ at y/λ = 0.2, and x/λ ∈ {χ.50, χ.75} for

y/λ = 0.1. Because y/λ = 0.2 corresponds to y/hd = 1.5, these results correspond directly

to regions of Q3 dominance in the previous experimental work [28, 29] and Fig. 14 compares

the numerical results from this study with those experiments. Results are shown for the data

of Venditti and Bennett [13] at various choices for y/hd, including y/hd = 1.5, and those

of Singh et al. [67], which were obtained with a mobile bed at an average dimensionless
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FIG. 13. The percentage of times (from 64 occurrences: four dunes and sixteen lateral positions)

that particularK -means clusters are expressed at each longitudinal and vertical position considered.

Shading indicates which cluster is dominant following the scheme used in Fig. 10 and 12. White

boxes indicate locations where no cluster dominates.

1 2 3 4
−0.1

0

0.1

dp
Q

 / 
dH

−0.1

0

0.1

−0.1

0

0.1

dp
Q

 / 
dH

−0.1

0

0.1

1 2 3 4
−0.1

0

0.1

Quadrant

dp
Q

 / 
dH

1 2 3 4
−0.1

0

0.1

Quadrant

Singh et al.K
4

y/ h
d
 = 2.25

y/ h
d
 = 0.75 y/ h

d
 = 1.5

y/ h
d
 = 3

FIG. 14. The centroid of the cluster exhibiting Q3 dominance (K4), together with results from

data collected by Singh et al. [67] and analysed by Keylock et al. [28] (labeled Singh et al.) and

the longitudinally averaged results for four vertical heights (y/hd ∈ {0.75, 1.5, 2.25, 3.0}) from data

collected by Venditti and Bennett [13] and analysed by Keylock et al. [29].
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flow depth of y/hd = 1.5. It is clear that the Q3 velocity-intermittency signal is consistent

for two physical experiments with asymmetric bedforms but very different experimental

procedures [13, 67], and our numerical experiment for symmetric bedforms. Hence, the flow

structures located in this region (Fig. 2) induce a quadrant structure that is extreme in

its Q3 dominance relative to other flow types studied (Fig. 7). However, it is most similar

to the outer part of a boundary-layer, where it is well-known that the flow dynamics are

affected by hairpin vortex packets generated near the wall and advected higher into the flow

[24, 70]. As is clear from Fig. 8, the point of maximum shear is below this region of Q3

dominance. However, the positive gradient of ⟨u1⟩ above this height induces a lift on the flow

structures associated with the upper part of the shear layer. This results in the production of

the flow structures discussed by Omidyeganeh and Piomelli [19] and clearly associated with

locations of high total vorticity in Fig. 2b. Lift-up of these structures leads to regions of

intense vorticity in 0.07 < y/λ < 0.5 moving slower than the surrounding ambient and a Q3

velocity-intermittency structure. Such vortical structures can be observed at various points

in Fig. 2b and at x/λ = 3.9, y/λ = 0.2 in Fig. 2a. These longitudinally-oriented structures

are discontinuous in z, explaining why the mean results in Fig. 10 contrast with those in

Fig. 13. While positive slopes for Q3 are observed in the outer flow in Fig. 10, there is a

stronger Q2 presence in the mean. That this is a mixing of states is seen by the clustering,

which shows that K5 with its Q2 dominance is also important at y/λ ∈ {0.1, 0.2}. Note

that dpQ/dH for Q2 in K5 and Q3 in K4 are 0.18 and 0.11, respectively (from the table in

Fig. 12). This difference is approximately respected in the Q2 and Q3 bars in the blue plots

in Fig. 10 at x/λ ∈ {χ.50, χ.75} and x/λ ∈ {χ.50, χ.75}, However, the Q3 bars are rather

longer than 0.11
0.18

times the length of those for Q2, explaining the K4 dominance in Fig. 13.

That the quadrant 3 dominance seen in our numerical results and the previous experimental

data and shown in Fig. 14 is stronger than that in the outer part of the boundary-layer (Fig.

7) indicates that where they arise, dune-induced flow structures are a stronger feature of

the flow field than boundary-layer hairpin vortices, even though the background turbulence

intensities in the region of the separated shear layer are higher than those seen in near the

wall.

The ‘bulge’ in σ(u1) at y/λ ∼ 0.5 seen in Fig. 8 identifies the presence of the overlying

shear layer from the upstream dune [22]. From Fig. 12 it is clear that we see a K3 dominance

at y/λ = 0.5, indicating the importance of Q1 in this region. Reference to Fig. 7 shows that
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Q1 dominance is associated with our previous study of wake dynamics [32], which makes

sense in this context: While the SSL from the current dune is subject to active shearing

and flow structure development, with our geometry, the overlying features were generated

at least 10 dune heights earlier. Hence, while straining is still active, vortex production has

declined. Therefore, we see the ’bulge’ in σ(u1), but not in −⟨u
′

1u
′

2⟩.

E. Near-bed velocity-intermittency structure and associated flow structures

An important advantage of the numerical simulations compared to the previous experi-

mental studies is the opportunity to sample flow characteristics close to the bed in the lee of

the dune crest more easily. In this region (the bottom plots in the first three columns of Fig.

10 and Fig. 13), the level of agreement between the analyses is very clear as highlighted by

the identical shading at the same locations. Quadrant 4 dominance (K1, grey) occurs in the

sites closest to the bed in the lee, with K2 (green) dominant immediately above these loca-

tions. The weakly positive values for both Q2 and Q4 in K2 suggests this is a transitional

case, separating the near-wall flow where Q4 is the most important quadrant, and the overly-

ing Q2 dominance inK5 (black). This interpretation is supported by the fact that the second

most common configuration in the K2-dominant regions shaded in green at x ≥ χ.50 is the

K5 grouping, and that the K2 grouping is the second most common where K5 is dominant

(black locations in Fig. 13). The exceptions to this are the K2 dominant locations closest

to the dune crest at (x/λ = χ.00, y/λ = 0.06) and (x/λ = χ.25, y/λ = 0.04), where K1 is

the second most common cluster and K5 is third. Figure 12 shows that K1 is dominated by

Q4 behaviour, and this is the dominant cluster closest to the bed at x/λ ∈ {χ.25, χ.50}.

Figure 7 shows that positive Q4 dominance near the wall is entirely expected based on

the velocity-intermittency structure of boundary-layer flow below 150 wall units. However,

the values for dpQ=4/dH are much greater than have been found for a boundary-layer flow,

particularly at x/λ = χ.25, y = 0.02 and x/λ = χ.50, y/λ ∈ {−0.02,−0.04}, suggesting that

a different mechanism than the sweep events that arise as part of the near-wall bursting cycle

is responsible. Instead, the mechanism is a consequence of the impingement of the lower

part of the SSL on the wall, and the concomitant occurrence of relatively rapid (u
′

1 > 0),

and highly turbulent (α
′

1 < 0) vortical structures into this region [71, 72]. Transport of such

vorticity back toward the dune crest explains why K1 is the second most frequented cluster
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FIG. 15. Instantaneous velocity (u), pressure (p) and vorticity (ωx) fields (rows) for three different

frames (columns) from the simulation.The capital letters indicate features described in the text.

at (x/λ = χ.00, y/λ = 0.06) and (x/λ = χ.25, y/λ = 0.04).

The generation of coherent structures by shearing over the dune crest is very clear from the

Q-criterion results in Fig. 2b. Furthermore, Fig. 2a also shows the development of a shear

layer at the dune crest and the generation of vortical structures in the wake that effectively

increase the depth of this feature from a narrow band of vorticity at x/λ = 3.0 to something

that extends from 0 ≤ y/λ < 0.1 at x/λ = 3.6. This corresponds very well to the region

of K5 dominance in Fig. 10 and 13. Note that positive values for Q2 (the defining feature

of K5) are associated with the behaviour of a jet in Fig. 7 (and are also important for the

structure of near-wall boundary-layer flow). This is because the entrainment of quiescent

fluid with little turbulence (u
′

1 < 0, α
′

1 > 0) into the jet at the turbulent-non turbulent

interface dominates the extreme statistics at large H. The Q2 dominance immediately

below the SSL may also be explained in terms of a similar entrainment mechanism: the

recirculation region on the underside of the shear layer has a weakly negative ⟨u1⟩ and a

lower turbulence level than the sheared region. Hence, as the shear layer entrains such fluid,

these ‘patches’ dominate the large H statistics.
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F. Varying instantaneous flow field characteristics

In this sub-section, we focus on three points in time where the velocity-intermittency

characteristics along the centre-line differ significantly. Hence, it is shown how changes

to the covariance for the velocity-intermittency relations permit different flow states to be

identified.

The left hand column (panels a, d, g) of Fig. 15 shows u, p, and ωx for a time frame

during the simulation where the covariance of the velocity-intermittency between the 32

sampled locations between dunes 2 and 3 on the centre-line of the domain (z/λ = 2.5) was

of particularly low magnitude (for both positive and negative signs of the covariance). For

this case, the pressure on the stoss slope of dune 3 is relatively weak as seen in panel (d). This

is coupled to a weak but extensive recirculation region in panel (a), and disruption to the

flow above the dune crest in (a) as a consequence of vortices generated upstream that can be

observed in the upper part of panel (g). Beyond the reattachment point, a filament of near-

bed negative vorticity indicates the preliminary development of a new boundary-layer. At

this instant in time, only one of the 32 locations exceeds H = 1 for its velocity-intermittency

values, and this is the vortex picked out by ‘A’ in panel (g). Hence, the majority of features

detected at this point in time are typical of the point-wise behaviour at each location,

although the degree of spatial coherence between locations is less than normal. This is

borne out by the three-dimensional view of this region, which shows relatively few vortical

structures visible along the centre-line in Fig. 16b and d.

The central column of panels in Fig. 15 are for a frame where there were high magnitude

covariances between points of both signs. Fourteen locations exhibited H > 1 exceedances,

and these are indicated by ‘B’ to ‘G’ in the panels of this column (with ‘D’ representing

six exceedances). The most notable feature at this time is the vertically extensive high

pressure region in (e) and the associated collapse of the recirculation region (b), with a

very prominent shear-layer also evident (h). Strong acceleration over the crest drives the

hole size exceedance at ‘B’, with z(u) = +1.8 compared to z(α) = −0.6, while that at ‘C’

is due to the collapse of the recirculation region: velocity is more positive than typically

observed (z(u) = +1.0), while the closer proximity of the shear-layer to the bed drives

associated vortical structures into this region, giving z(α) = −2.0. The occurrence of this

strong Q4 event at (x/λ = 2.25, y/λ = 0.02) is consistent with Q4 dominance at this point
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(and at x/λ = 2.50, y/λ ∈ {−0.02,−0.04} in Fig. 10 and 13), indicating that this near-bed

behaviour is associated with collapse of the recirculation region. A vertically extensive region

of hole-size exceedances, labelled ‘D’ in panel (e) is associated with the pressure anomaly

between the dunes at x/λ = χ.50. The nature of these events at this time is also consistent

with Fig. 10 and 13, with Q4 arising at y/λ = −0.04, Q2 at y/λ = 0.0, 0.04, and with

Q3 behaviour occurring at y/λ ∈ {0.05, 0.06and0.2}. Figure 13 shows that it is rare for

Q3 dominance to propagate down this far towards the bed, indicating that this particular

collapse of the recirculation region generates an extreme change in the vertical extent of Q3

behaviour. Given that a strong response in Q3 was determined by Keylock et al. [28, 29] to

be a particular signature of flow over bedforms (Fig. 7), clearly recirculation region collapse

is one means by which a spatially extensive region of relatively slow and turbulent fluid is

observed near the bed rather than in the outer flow (y/λ ≥ 0.01).

The more intense shear-layer activity in (h) compared to (g) means that the region

of near-wall negative vorticity associated with boundary-layer re-development commences

nearer the crest of dune 3 in (h). Hence, the exceedance at ‘E’ is generated by a high value

of the Hölder exponent (less turbulent activity than anticipated), z(α) = 2.9, and a Q2

response that is consistent with Fig. 13. The exceedances labelled ‘F’ and ‘G’ occur at

x/λ = 2.75, y/λ = 0.1 and x/λ = 2.75, y/λ = 0.06, respectively, and are clearly linked to

different vortical structures in (h). This is reflected in their differing quadrants with both

dominated by negative α
′

as anticipated, with z(α) = −1.5 and -1.6, respectively, but with

sign changes occurring for u
′

, with z(u) = 1.3 (Q2) and -0.8 (Q3), respectively. Thus, at this

moment in time, these sites experience the opposite rotation of their vortices as differences

in velocity, with a consistent signal from the high enstrophy of a negative value for z(α).

The right-hand column in Fig. 15 shows a frame where there were strong positive covari-

ances between locations, but no strong negative relations. This is indicative of a larger scale

correlated response, rather than the strong local vortex development that drives different

quadrant behaviours in the central column. As with (e), there is also a strong pressure on

the stoss slope in (f), although its vertical extent is reduced, and the recirculation region is

more extensive in (c) than in (b). There is also an area of reduced positive pressure on the

crest of dune 3 associated with the higher than usual velocity in this region. This would

appear to explain the H > 1 exceedance at ‘K’, which is driven by an acceleration on the

upslope region between these relatively high and low pressure regions with z(u) = 1.5. The
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other exceedances in this frame all occur in the outer region (labelled ‘H’, ‘I’, ‘J’ and ‘L’),

indicating the large-scale correlated behaviour. These H > 1 exceedances are Q4 events

with both z(u) > 1 and z(α) < −1, but there is no evidence for strong vortical structures

in this region (y/λ ∼ 0.2) for panel (i) compared to (g) and (h). This means that the strain

rate part of the velocity gradient tensor is driving intermittency when a coherent outer flow

develops rather than the more common association between intermittency and vorticity seen

in the other hole size exceedances in Fig. 15.

Compared to the other frames, there is a pseudo-independence between the inner and

outer flows in (c), leading to something more similar to the typical mean-flow picture of

flow over bedforms, with a ‘skimming flow’ in the outer region. However, the number of

threshold exceedances is greater than in the left-hand column, indicating that both of these

cases are unusual for different reasons. While few threshold exceedances is to be expected

in a typical frame, the left-hand column is an unusual point in time because of the limited

point-to-point covariance at the sampled locations. The mean-flow picture in the right-hand

column is also unusual because of the spatial extent of the positive covariance in the outer

region and the threshold exceedances driven by it. More typically vortex development and

advection breaks up the coherence in this region. This can be quantified in Fig. 13 where

the proportion of Q4 events (cluster K1) similar to those at ‘H’, ‘I’, ‘J’ and ‘L’ is shown to

only occur about 5% of the time on average over all the sites at y/λ = 0.2. It is the rarest

type of event at this elevation from the bed.

The contrasting nature of the number of threshold exceedances between the left-hand

and central columns in Fig. 15 implies very different levels of flow structure development

in the neighbourhood of the centre-line of the domain at these times. This is shown to be

the case in Fig. 16, which shows ωx on a Q > 75 isosurface for the more queiscent case

in (b) and the more active case in (a), with corresponding values for ωz on a Q > 100

isosurface in (c) and (d). For both time frames, many of the structures identified towards

the wall are longitudinally extensive (at least half a dune wavelength) and correspond to the

tubes observed in our earlier numerical work [22] and in other studies [19]. However, when

looking even closer to the bed, but on the stoss side and towards the crest of the two dunes,

thin, transversally-oriented near-wall vortical structures may also be identified, particularly

in panels (c) and (d). Such near-wall development of transverse vorticity downstream of

reattachment is indicative of a re-developing boundary-layer. It is also in this transverse
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FIG. 16. Three-dimensional visualization of ωx for the fields shown on the centre and left of Fig.

15 at a threshold of Q ≥ 75 are given in panels (a) and (b), respectively. The lower set of panels

show ωz on a Q ≥ 100 isosurface.

direction that one would anticipate the vortex axes to be oriented for Kelvin-Helmholtz-like

structures formed following separation over the crest. Panels (c) and (d) show that such

regions of −ωz are created in this region (x/λ ∼ 2.2) and that close to z/λ = 2.5 a partic-

ularly large structure is evident in panel (c). However, any such tendency is complicated

by the longitudinal orientation of the flow structures inherited from upstream. Thus, three-

dimensionality to the flow structure over two-dimensional bed-forms is a consequence of the

interaction between transverse near-bed roll-up and Kelvin-Helmholtz structures with high

magnitudes for ωz, and advected longitudinal structures with high magnitudes for ωx. All of

these different types of flow features contribute to the velocity-intermittency characteristics

at a point, meaning that this single-point method provides information on flow structure.

IV. CONCLUSION

Our Large Eddy Simulation (LES) of the velocity-intermittency structure of flow over

symmetrical bedforms has revealed important commonalities with our previous experimen-

tal studies despite the differences in Reynolds numbers and the precise geometry of the
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bedforms. For the region immediately above that of active shearing from the dune crest,

we find the u
′

1 < 0, α
′

1 < 0 quadrant 3 (Q3) cases dominate extreme flow events and there

was excellent agreement with our experimental studies of this problem in different reference

frames (see Fig. 14). Previous investigations such as that by Omidyeganeh and Piomelli [19]

found hairpin vortex formation in the dune field was related to the presence of other struc-

tures in the outer dune flow, and Chang and Constantinescu [22] highlighted the importance

of the upstream shear layer as an outer flow characteristic that affected large-scale hairpin

development. That the quadrant 3 dominant cluster K4 occurs preferentially in the outer

flow in both laboratory and numerical studies for dune flows, as well as in the near-wall

region of a boundary-layer, indicates that this is a signature of these outer region flow struc-

tures and they can be clearly seen close to this height in Fig. 2, 15 and 16. Averaging the

results at different transversal positions blended together two states: that of Q3 dominance

reflected in K4 and the generally underlying Q2 dominant state, K5, as shown in Fig. 13.

This highlights the utility of a data clustering and classification methodology, rather than

simple arithmetic averaging when studying flow structures in such complex environments.

As we have previously noted, the degree of Q3 dominance seen in the outer flow over

a dune is unusual relative to jets, boundary-layers and wakes (Fig. 7). Hence, it is an

important signature of this type of flow environment. That this signature relates so closely to

the large scale flow structures in this region, shows that our velocity-intermittency quadrant

technique reveals information on flow structure from single-point measurements of the u1

velocity component. It is also important to highlight that this technique works successfully

with relatively short time-series, as first shown by Keylock et al. [32]. This may be contrasted

with methods based on conditioning velocity increments at some separation r on those at

2r and the velocity state, which require millions of points to converge [55]. Hence, not only

is the method of use in numerical studies, where time-series will typically be over fewer

integral scales than well-resolved laboratory wind tunnel measurements, but it will be of

use in field studies that attempt to understand the dynamics of large-scale systems [73].

Thus, this method can be applied to help fluvial scientists and engineers gain an enhanced

understanding of the processes affecting mixing dynamics and sediment transport.

An important advantage of our numerical study compared to the experimental investi-

gations of velocity-intermittency structure is that we have been able to study the near-wall

flow field in much greater detail than was possible in those studies. The negative correlation
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between u
′

1 and α
′

1 near the wall actually consists of two distinct regions: a near-wall region

where reattachment of part of the separated shear layer injects vorticity at the bed into the

recirculation region [71], leading to a dominant quadrant 4 state where u
′

1 > 0 and α
′

1 < 0

(as seen at the wall in the lee of the dune in Fig. 2a), and a region higher into the flow

domain, on the underside of the shear layer, where the shear layer dynamics are influenced

by the entrainment of relatively slow and quiescent fluid, leading to a dominant quadrant 2

state where u
′

1 < 0 and α
′

1 > 0. There is a resemblance between this mechanism and that

observed in a turbulent jet flow [32], and both have the strong quadrant 2 response (Fig. 7).

While the velocity-intermittency quadrant technique has been shown to be a useful way

to characterise the flow field from single-point measurements, the implications of the success

of this method for developing improved closure schemes for environmental flows forced in a

complex fashion should also be noted [74]. Kolmogorov noted the potential importance of

flow macrostructure on turbulence structure [44] (see his equations 3 and 4). Such couplings

across scales are clearer in shear flows than they are in homogeneous isotropic turbulence

[75], and suggest corrections to standard modelling methods for such flows. For example,

while classical test filtering in the sense of Germano [35] (see Meneveau [76] for a recent

review) permits the Smagorinsky coefficient in the subfilter-scales of a LES to vary dynam-

ically, velocity-intermittency coupling implies refined perspectives on the relation between

production and dissipation [77, 78], and an alternative approach to closure development.

One such model can be derived by expanding about a base Kolmogorov −5
3
spectrum to

obtain additional components that correspond to fluctuations in dissipation [79] that may

be a consequence of macroscale coupling. An alternative, and more empirical, but more

direct velocity-intermittency framework would be to use the Hölder exponent as a means

to scale velocity fluctuations and develop fractal-based closures [80, 81] into a multifractal

formulation where the velocity field guides the value of the selected Hölder exponent. This

is a topic of ongoing research.
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