
This is a repository copy of Riemann-Hilbert problems from Donaldson-Thomas theory.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/108392/

Version: Published Version

Article:

Bridgeland, T. (2019) Riemann-Hilbert problems from Donaldson-Thomas theory. 
Inventiones Mathematicae, 216 (1). pp. 69-124. ISSN 0020-9910 

https://doi.org/10.1007/s00222-018-0843-8

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Invent. math. (2019) 216:69–124

https://doi.org/10.1007/s00222-018-0843-8

Riemann–Hilbert problems from

Donaldson–Thomas theory

Tom Bridgeland1

Received: 24 April 2017 / Accepted: 2 November 2018 /

Published online: 14 December 2018

© The Author(s) 2018

Abstract We study a class of Riemann–Hilbert problems arising naturally

in Donaldson–Thomas theory. In certain special cases we show that these

problems have unique solutions which can be written explicitly as products of

gamma functions. We briefly explain connections with Gromov–Witten theory

and exact WKB analysis.

1 Introduction

In this paper we study a class of Riemann–Hilbert problems arising naturally in

Donaldson–Thomas theory. They involve maps from the complex plane to an

algebraic torus, with prescribed discontinuities along a collection of rays, and

are closely related to the Riemann–Hilbert problems considered by Gaiotto et

al. [14]; in physical terms we are considering the conformal limit of their story.

The same problems have also been considered by Stoppa and his collaborators

[1,12]. One of our main results is that in the ‘uncoupled’ case the Riemann–

Hilbert problem has a unique solution which can be written explicitly using

products of gamma functions (Theorem 3.2). The inspiration for this comes

from a calculation of Gaiotto [13].

We begin by introducing the notion of a BPS structure. This is a special

case of Kontsevich and Soibelman’s notion of a stability structure [21]. In
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70 T. Bridgeland

mathematical terms, it describes the output of unrefined Donaldson–Thomas

theory applied to a three-dimensional Calabi–Yau category with a stability

condition. There is also a notion of a variation of BPS structures over a complex

manifold, which axiomatises the behaviour of Donaldson–Thomas invariants

under changes of stability: the main ingredient is the Kontsevich–Soibelman

wall-crossing formula.

To any BPS structure satisfying a natural growth condition we associate a

Riemann–Hilbert problem. We go to some pains to set this up precisely. We

then prove the existence of a unique solution in the uncoupled case referred to

above. Given a variation of BPS structures over a complex manifold M , and a

family of solutions to the corresponding Riemann–Hilbert problems, we can

define a piecewise holomorphic function on M which we call the τ -function.

In the uncoupled case we give an explicit expression for this function using

the Barnes G-function (Theorem 3.4).

Variations of BPS structures also arise in theoretical physics in the study

of quantum field theories with N = 2 supersymmetry (see for example [14]).

Our τ -function then seems to be closely related to the partition function of the

theory. Thus, as a rough slogan, one can think of the BPS invariants as encoding

the Stokes phenomena which arise when Borel resumming the genus expansion

of the free energy. As an example of this relationship, we compute in Section 8

the asymptotic expansion of log(τ ) for the variation of BPS structures arising

in topological string theory, and show that it reproduces the genus 0 part of

the Gopakumar–Vafa expression for the Gromov–Witten generating function.

Another interesting class of BPS structures arise in theoretical physics from

supersymmetric gauge theories of class S. In the case of gauge group SU(2)

these theories play a central role in the paper of Gaiotto et al. [15]. The cor-

responding BPS structures depend on a Riemann surface equipped with a

meromorphic quadratic differential, and the BPS invariants encode counts of

finite-length geodesics. These structures arise mathematically via the stabil-

ity conditions studied by the author and Smith [8]. The work of Iwaki and

Nakanishi [18] shows that the corresponding Riemann–Hilbert problems can

be partially solved using the techniques of exact WKB analysis. We expect our

τ -function in this case to be closely related to the one computed by topological

recursion [10].

The theory we attempt to develop here is purely mathematical. One poten-

tial advantage of our approach is its generality: the only input for the theory

is a triangulated category satisfying the three-dimensional Calabi–Yau condi-

tion. When everything works, the output is a complex manifold—the space

of stability conditions—equipped with an interesting piecewise holomorphic

function: the tau function. Note that the theory is inherently global and non-

perturbative: it does not use expansions about some chosen limit point in the

space of stability conditions.
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Riemann–Hilbert problems from Donaldson–Thomas theory 71

We should admit straight away that at present there many unanswered ques-

tions and unsolved technical problems with the theory. In particular, for general

BPS structures we have no existence or uniqueness results for solutions to the

Riemann–Hilbert problem. It is also not clear why the τ -function as defined

here should exist in the general uncoupled case. Nonetheless, the strong anal-

ogy with Stokes structures in the theory of differential equations, and the

non-trivial answers obtained here (see also [5]) provide adequate mathemati-

cal motivation to study these problems further.

Plan of the paper

In Sect. 2 we introduce basic definitions concerning BPS structures. Section 3

contains a summary of the contents of the paper with technical details deferred

to later sections. In Sect. 4 we discuss the Riemann–Hilbert problem associated

to a BPS structure. In Sect. 5 we solve this problem in the uncoupled case using

elementary properties of the gamma function. Sections 6 and 7 discuss the

connections with Gromov–Witten invariants and exact WKB analysis referred

to above. In “Appendix A” we give a rigorous definition of a variation of BPS

structures following Kontsevich and Soibelman. “Appendix B” contains some

simple analytic results involving partially-defined self-maps of algebraic tori.

2 BPS structures: initial definitions

In this section we introduce the abstract notion of a BPS structure and

explain the corresponding picture of active rays and BPS automorphisms.

In mathematics, these structures arise naturally as the output of generalized

Donaldson–Thomas theory applied to a three-dimensional Calabi–Yau trian-

gulated category with a stability condition. These ideas go back to Kontsevich

and Soibelman [21, Section 2], building on work of Joyce (see [4] for a gentle

review). The same structures also arise in theoretical physics in the study of

quantum field theories with N = 2 supersymmetry [15, Section 1].

2.1 Definition and terminology

The following definition is a special case of the notion of stability data on a

graded Lie algebra [21, Section 2.1]. It was also studied by Stoppa and his

collaborators [1, Section 3], [12, Section 2].

Definition 2.1 A BPS structure consists of
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72 T. Bridgeland

(a) A finite-rank free abelian group Ŵ ∼= Z⊕n , equipped with a skew-

symmetric form

〈−,−〉: Ŵ × Ŵ→ Z,

(b) A homomorphism of abelian groups Z : Ŵ→ C,

(c) A map of sets � : Ŵ→ Q,

satisfying the following properties:

(i) Symmetry: �(−γ ) = �(γ ) for all γ ∈ Ŵ,

(ii) Support property: fixing a norm ‖·‖ on the finite-dimensional vector space

Ŵ ⊗Z R, there is a constant C > 0 such that

�(γ ) 
= 0 �⇒ |Z(γ )| > C · ‖γ ‖. (1)

The lattice Ŵ will be called the charge lattice, and the form 〈−,−〉 is the

intersection form. The group homomorphism Z is called the central charge.

The rational numbers �(γ ) are called BPS invariants. A class γ ∈ Ŵ will be

called active if �(γ ) 
= 0.

2.2 Donaldson–Thomas invariants

The Donaldson–Thomas (DT) invariants of a BPS structure (Ŵ, Z , �) are

defined by the expression

DT(γ ) =
∑

γ=mα

1

m2
�(α) ∈ Q, (2)

where the sum is over integers m > 0 such that γ is divisble by m in the lattice

Ŵ. The BPS and DT invariants are equivalent data: we can write

�(γ ) =
∑

γ=mα

μ(m)

m2
DT(α), (3)

where μ(m) is the Möbius function. One reason to prefer the BPS invariants

is that in many examples they are known, or conjectured, to be integers. Note

however that this depends on a genericity assumption (see Definition 2.3),

without which integrality fails even in very simple examples (see Sect. 2.9).
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Riemann–Hilbert problems from Donaldson–Thomas theory 73

2.3 Poisson algebraic torus

Given a lattice Ŵ ∼= Z⊕n equipped with a skew-symmetric form 〈−,−〉 as

above, we consider the algebraic torus

T+ = HomZ(Ŵ, C∗) ∼= (C∗)n,

and its co-ordinate ring (which is also the group ring of the lattice Ŵ)

C[T+] = C[Ŵ] ∼= C[y±1
1 , · · · , y±n

n ].

We write yγ ∈ C[T+] for the character of T+ corresponding to an element γ ∈
Ŵ. The skew-symmetric form 〈−,−〉 induces an invariant Poisson structure

on T+, given on characters by

{yα, yβ} = 〈α, β〉 · yα · yβ . (4)

As well as the torus T+, it will also be important for us to consider an associated

torsor

T− =
{

g : Ŵ→ C∗ : g(γ1 + γ2) = (−1)〈γ1,γ2〉g(γ1) · g(γ2)
}

,

which we call the twisted torus. This space is discussed in more detail in

the next subsection, but since the difference between T+ and T− just has the

effect of introducing signs into various formulae, it can safely be ignored at

first reading.

2.4 Twisted torus

Let us again fix a lattice Ŵ ∼= Z⊕n equipped with a skew-symmetric form

〈−,−〉. The torus T+ acts freely and transitively on the twisted torus T− via

( f · g)(γ ) = f (γ ) · g(γ ) ∈ C∗, f ∈ T+, g ∈ T−.

Choosing a base-point g0 ∈ T− therefore gives a bijection

θg0 : T+→ T−, f �→ f · g0. (5)

We can use the identification θg0 to give T− the structure of an algebraic

variety. The result is independent of the choice of base-point g0 ∈ T−, since

the translation maps on T+ are algebraic. Similarly, the Poisson structure (4)

on T+ is invariant under translations, and hence can be transferred to T− via

the map (5).
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74 T. Bridgeland

Fig. 1 The ray diagram

associated to a BPS structure

Z(γ1)Z(γ2)

Z(γ3)

−Z(γ1) −Z(γ2)

−Z(γ3)

The co-ordinate ring of T− is spanned as a vector space by the functions

xγ : T−→ C∗, xγ (g) = g(γ ) ∈ C∗,

which we refer to as twisted characters. Thus

C[T−] =
⊕

γ∈Ŵ
C · xγ , xγ1 · xγ2 = (−1)〈γ1,γ2〉 · xγ1+γ2 . (6)

The Poisson bracket on C[T−] is given on twisted characters by

{xα, xβ} = 〈α, β〉 · xα · xβ . (7)

From now on we shall denote the twisted torus T− simply by T.

2.5 Ray diagram

Let (Ŵ, Z , �) be a BPS structure. The support property implies that in any

bounded region of C there are only finitely many points of the form Z(γ ) with

γ ∈ Ŵ an active class. It also implies that all such points are nonzero.

By a ray in C∗ we mean a subset of the form ℓ = R>0 · z for some z ∈ C∗.
Such a ray will be called active if it contains a point Z(γ ) for some active class

γ ∈ Ŵ. Taken together the active rays form a picture as in Fig. 1, which we

call the ray diagram of the BPS structure. In general there will be countably

many active rays. We define the height of an active ray ℓ ⊂ C∗ to be

H(ℓ) = inf
{

|Z(γ )| : γ ∈ Ŵ such that Z(γ ) ∈ ℓ and �(γ ) 
= 0
}

.

Non-active rays are considered to have infinite height. The support property

ensures that for any H > 0 there are only finitely many rays of height < H .
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Riemann–Hilbert problems from Donaldson–Thomas theory 75

Associated to any ray ℓ ⊂ C∗ is a forma < H .

Associated to any ray ℓ ⊂ C∗ is a formal sum of twisted characters

DT(ℓ) =
∑

γ∈Ŵ:Z(γ )∈ℓ
DT(γ ) · xγ . (8)

Naively, we would like to view DT(ℓ) as a well-defined holomorphic function

on the twisted torus T, and consider the associated time 1 Hamiltonian flow

as a Poisson automorphism

S(ℓ) ∈ Aut(T).

We refer to this as the BPS automorphism associated to the ray ℓ; making good

sense of it is one of the main technical problems we shall need to deal with.

2.6 Further terminology

In this section we gather some terminology for describing BPS structures of

various special kinds.

Definition 2.2 We say that a BPS structure (Z , Ŵ, �) is

(a) finite, if there are only finitely many active classes γ ∈ Ŵ;

(b) ray-finite, if for any ray ℓ ⊂ C∗ there are only finitely many active classes

γ ∈ Ŵ for which Z(γ ) ∈ ℓ;

(c) convergent, if for some R > 0

∑

γ∈Ŵ
|�(γ )| · e−R|Z(γ )| <∞. (9)

An equivalent condition to (9) already appears in the work of Gaiotto et

al. [14, Appendix C]. The same condition also plays a prominent role in the

work of Barbieri and Stoppa [1, Definition 3.5].

Definition 2.3 We say that a BPS structure (Z , Ŵ, �) is

(a) uncoupled, if for any two active classes γ1, γ2 ∈ Ŵ one has 〈γ1, γ2〉 = 0;

(b) generic, if for any two active classes γ1, γ2 ∈ Ŵ one has

R>0 · Z(γ1) = R>0 · Z(γ2) �⇒ 〈γ1, γ2〉 = 0.

(c) integral, if the BPS invariants �(γ ) ∈ Z are all integers.
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76 T. Bridgeland

The uncoupled condition ensures that the Hamiltonian flows for any pair of

functions on T of the form DT(γ ) · xγ commute. This situation corresponds

to the case of ‘mutually local corrections’ in [14]. Genericity is the weaker

condition that all such flows for which Z(γ ) lies on a given fixed ray ℓ ⊂ C∗

should commute.

2.7 BPS automorphisms

As mentioned above, the main technical problem we have to deal with is

making suitable definitions of the BPS automorphisms S(ℓ) associated to a

BPS structure. Since we will use three different approaches at various points

in the paper, it is perhaps worth briefly summarising these here.

(i) Formal approach If we are only interested in the elements S(ℓ) for rays

ℓ ⊂ C∗ lying in a fixed acute sector 
 ⊂ C∗, then we can work with a

variant of the algebra C[T] consisting of formal sums of the form

∑

Z(γ )∈

aγ · xγ , aγ ∈ C,

such that for any H > 0 there are only finitely many terms with |Z(γ )| <
H . This is the approach we shall use in “Appendix A” to define variations of

BPS structures: it has the advantage of not requiring any extra assumptions.

(ii) Analytic approach In “Appendix B”, we associate to each convex sector


 ⊂ C∗, and each real number R > 0, a non-empty analytic open subset

U
(R) ⊂ T defined to be the interior of the subset

{

g ∈ T : Z(γ ) ∈ 
 and �(γ ) 
= 0 �⇒ |g(γ )| < exp(−R‖γ ‖)
}

⊂ T.

We then show that if the BPS structure is convergent, and R > 0 is

sufficiently large, then for any active ray ℓ ⊂ 
, the formal series DT(ℓ)

is absolutely convergent on U
(R) ⊂ T, and that the time 1 Hamiltonian

flow of the resulting function defines a holomorphic embedding

S(ℓ) : U
(R)→ T.

We can then view this map as being a partially-defined automorphism of

T. For a more precise statement see Proposition 4.1.

(iii) Birational approach In the case of a generic, integral and ray-finite BPS

structure, the partially-defined automorphisms S(ℓ)discussed in (ii) extend

to birational automorphisms of T; see Propostion 4.2. The induced pull-
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Riemann–Hilbert problems from Donaldson–Thomas theory 77

back of twisted characters is expressed by the formula

S(ℓ)∗(xβ) = xβ ·
∏

Z(γ )∈ℓ
(1− xγ )�(γ )〈β,γ 〉 (10)

which is often taken as a definition (see e.g. [14, Section 2.2]).

2.8 Doubling construction

It is often useful to be able to assume that the form 〈−,−〉 is non-degenerate.

To reduce to this case we can use the following doubling construction [21,

Section 2.6]. Suppose given a BPS structure (Ŵ, Z , �). The doubled BPS

structure takes the form

(Ŵ ⊕ Ŵ∨, Z , �),

where Ŵ∨ = HomZ(Ŵ, Z) is the dual lattice. We equip the doubled lattice

ŴD = Ŵ ⊕ Ŵ∨ with the non-degenerate skew-symmetric form

〈

(γ1, λ1), (γ2, λ2)
〉

= 〈γ1, γ2〉 + λ1(γ2)− λ2(γ1). (11)

The central charge is defined by Z(γ, λ) = Z(γ ), and the BPS invariants by

�(γ, λ) =
{

�(γ ) if λ = 0,

0 otherwise.

The support property reduces to that for the original structure. Slightly more

generally, we can consider BPS structures of the form (Ŵ ⊕ Ŵ∨, Z ⊕ Z∨, �)

where Z∨ : Ŵ∨ → C is an arbitrary group homomorphism; we sometimes

refer to these as twisted doubles.

2.9 A basic example: the Kronecker quiver

Interesting examples of BPS structures can be obtained from Donaldson–

Thomas theory. It is important to note that with our conventions the form

〈−,−〉 should be taken to be the negative of the Euler form. In the case of

the generalised Kronecker quiver with k > 0 arrows (see also [17]) these BPS

structures (Ŵ, Z , �) have

Ŵ = Ze1 ⊕ Ze2, 〈e1, e2〉 = k,
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78 T. Bridgeland

and are specified by a central charge Z : Ŵ → C satisfying Im Z(ei ) > 0 for

i = 1, 2. The BPS invariants depend only on the sign of

ν = Im (Z(e2)/Z(e1)).

If ν > 0 then the only nonzero BPS invariants are �(± e1) = �(± e2) = 1.

In the case ν = 0 the BPS structure is non-generic, and also non-integral in

general: Joyce and Song [19, Section 6.2] show that

�(e1 + e2) = (−1)k−1 · k

2
.

The most interesting case is ν < 0. When k = 1 the only nonzero BPS

invariants are

�(± e1) = �(± e2) = �(±(e1 + e2)) = 1.

The case k = 2 has the infinite set of nonzero invariants

�(± (me1 + ne2)) = 1 if |m − n| = 1, �(± (e1 + e2)) = −2,

with all others being zero. In general, for k > 2, these BPS structures are not

very well-understood. However, it is known [26, Theorem 6.4] that they are

not in general ray-finite. It is also expected that there exist regions in C∗ in

which the active rays are dense.

3 Summary of the contents of the paper

In this section we give a rough summary of the contents of the rest of the paper.

Precise statements and proofs can be found in later sections.

3.1 The Riemann–Hilbert problem

Given a convergent BPS structure (Ŵ, Z , �) we will consider an associated

Riemann–Hilbert problem. It depends on a choice of a point ξ ∈ T which we

call the constant term. We discuss the statement of this problem more carefully

in Sect. 4; for now we just give the rough idea.

Problem 3.1 Fix a point ξ ∈ T. Construct a piecewise holomorphic map

X : C∗→ T

with the following three properties:
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Riemann–Hilbert problems from Donaldson–Thomas theory 79

(a) As t ∈ C∗ crosses an active ray ℓ ⊂ C∗ in the anti-clockwise direction, the

function X (t) undergoes a discontinuous jump described by the formula

X (t) �→ S(ℓ)(X (t)).

(b) As t → 0 one has exp(Z/t) · X (t)→ ξ .

(c) As t →∞ the element X (t) has at most polynomial growth.

The gist of condition (a) is that the function X should be holomorphic in

the complement of the active rays, and for each active ray ℓ ⊂ C∗ the analytic

continuations of the two functions on either side should differ by composition

with the corresponding automorphism S(ℓ).

To make sense of (b), note that

exp(Z/t) : Ŵ→ C∗

is an element of the torus T+, and recall that T = T− is a torsor for T+. We

often write

exp(Z/t) · X (t) = Y (t) · ξ, (12)

which then defines a map Y : C∗ → T+. Clearly the maps X and Y are

equivalent data; we use whichever is most convenient.

Composing with the (twisted) characters of T±, we can alternatively encode

the solution in either of the two systems of maps

Xγ = xγ ◦ X : C∗→ C∗, Yγ = yγ ◦ Y : C∗→ C∗.

Condition (c) is then the statement that for each γ ∈ Ŵ there should exist k > 0

such that

|t |−k < |Xγ (t)| < |t |k, |t | ≫ 0.

Problem 3.1 is closely analogous to the Riemann–Hilbert problems which

arise in the study of differential equations with irregular singularities. In that

case the Stokes factors S(ℓ) lie in a finite-dimensional group GLn(C), whereas

in our situation they are elements of the infinite-dimensional group of Poisson

automorphisms of the torus T. We will return to this analogy in the sequel to

this paper [6].

3.2 Solution in the uncoupled case

In the case of a finite, integral, uncoupled BPS structure, and for certain choices

of ξ ∈ T, the Riemann–Hilbert problem introduced above has a unique solu-
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80 T. Bridgeland

tion, which can be written explicitly in terms of products of modified gamma

functions. The inspiration for this comes from work of Gaiotto [13, Sec-

tion 3.1].

Consider the multi-valued meromophic function on C∗ defined by

�(w) = ew · Ŵ(w)
√

2π · ww− 1
2

. (13)

Taking the principal value of log on C∗\R<0, we consider �(w) as a single-

valued holomorphic function on this domain. The formula (13) is obtained

by exponentiating the initial terms in the Stirling expansion, and ensures that

�(w) → 1 as w → ∞ in the complement of any closed subsector of C∗

containing the negative real axis R<0.

Theorem 3.2 Let (Z , Ŵ, �) be a finite, integral, uncoupled BPS structure.

Suppose that ξ ∈ T satisfies ξ(γ ) = 1 for all active classes γ ∈ Ŵ. Then

Problem 3.1 has the unique solution

Yβ(t) =
∏

Im Z(γ )/t>0

�

(

Z(γ )

2π i t

)�(γ )〈β,γ 〉
(14)

where the product is over the finitely many active classes with Im Z(γ )/t > 0.

Note that the uncoupled assumption implies that the active classes γ ∈ Ŵ

span a subgroup of Ŵ on which the form 〈−,−〉 vanishes, and this ensures

that there exist elements ξ ∈ T satisfying ξ(γ ) = 1 for all such classes. The

proof of Theorem 3.2 is a good exercise in the basic properties of the gamma

function. The details are given in Sect. 5.

3.3 Variations of BPS structure

The variation of BPS invariants in Donaldson–Thomas theory under changes in

stability parameters is controlled by the Kontsevich–Soibelman wall-crossing

formula. This forms the main ingredient in the following definition of a vari-

ation of BPS structures, which is a special case of the notion of a continuous

family of stability structures from [21, Section 2.3]. Full details can be found

in “Appendix A”; here we just give the rough idea.

Definition 3.3 A variation of BPS structure over a complex manifold M con-

sists of a collection of BPS structures (Ŵp, Z p, �p) indexed by the points

p ∈ M , such that

(a) The charge lattices Ŵp form a local system of abelian groups, and the

intersection forms 〈−,−〉p are covariantly constant.
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Riemann–Hilbert problems from Donaldson–Thomas theory 81

(b) Given a covariantly constant family of elements γp ∈ Ŵp, the central

charges Z p(γp) ∈ C are holomorphic functions of p ∈ M .

(c) The constant in the support property (1) can be chosen uniformly on com-

pact subsets.

(d) For each acute sector 
 ⊂ C∗, the clockwise product over active rays in




Sp(
) =
∏

ℓ⊂


Sp(ℓ) ∈ Aut(Tp), (15)

is covariantly constant as p ∈ M varies, providing the boundary rays of


 are never active.

Note that the local system in (a) induces a flat Ehresmann connection on

the bundle of tori

(T+)p = HomZ(Ŵp, C∗),

over the manifold M , and hence also on the associated bundle of twisted tori Tp.

It will require some work to make rigorous sense of the wall-crossing formula,

condition (d). We do this using formal completions in “Appendix A” following

[21]. This needs no convergence assumptions and completely describes the

behaviour of the BPS invariants as the point p ∈ M varies: once one knows

all the invariants �(γ ) at some point of M , they are determined at all other

points.

The material of Sect. 2.9 gives interesting examples of variations of BPS

structures. For a fixed k ≥ 1 the corresponding BPS structure (Ŵ, Z , �) is

determined by the pair

(Z(e1), Z(e2)) ∈ h2,

where h denotes the upper half-plane. As this point varies we obtain a variation

of BPS structures. In particular, the BPS invariants for ν < 0 are completely

determined by the trivial case ν > 0 and the wall-crossing formula (15).

3.4 Tau functions

Let us consider a variation of BPS structures (Ŵp, Z p, �p) over a complex

manifold M . We call such a variation framed if the local system (Ŵp)p∈M is

trivial, so that we can identify all the lattices Ŵp with a fixed lattice Ŵ. We can

always reduce to this case by passing to a cover of M , or by restricting to a

neighbourhood of a given point p ∈ M .
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82 T. Bridgeland

Associated to a framed variation (Ŵ, Z p, �p) there is a holomorphic map

π : M → HomZ(Ŵ, C) ∼= Cn, p �→ Z p

which we call the period map. We say that the variation is miniversal if

the period map is a local isomorphism. In that case, if we choose a basis

(γ1, . . . , γn) ⊂ Ŵ, the functions zi = Z(γi ) form a system of local co-ordinates

in a neighbourhood of any given point of M .

Consider a framed, miniversal variation (Ŵp, Z p, �p) over a manifold M ,

and choose a basis (γ1, . . . , γn) ⊂ Ŵ as above. For each point p ∈ M we

can consider the Riemann–Hilbert problem associated to the BPS structure

(Ŵ, Z p, �p). The wall-crossing formula, Definition 3.3 (d), makes it reason-

able to ask for a family of solutions to these problems which is a piecewise

holomorphic function of p ∈ M . Such a family of solutions is given by a

piecewise holomorphic map

Y : M × C∗→ T+,

which we view as a function of the co-ordinates (z1, . . . , zn) ∈ Cn and the

parameter t ∈ C∗. We define a τ -function for the given family of solutions to

be a piecewise holomorphic function

τ : M × C∗→ C∗,

which is invariant under simultaneous rescaling of all co-ordinates zi and the

parameter t , and which satisfies the equations

1

2π i
·
∂ log Yγ j

∂t
=
∑

i

ǫi j

∂ log τ

∂zi

, (16)

where ǫi j = 〈γi , γ j 〉. When the form 〈−,−〉 is non-degenerate these condi-

tions uniquely determine τ up to multiplication by a constant scalar factor.

It is not clear at present why a τ -function should exist in general, and

the above definition should be thought of as being somewhat experimental.

Nonetheless, in the uncoupled case we will see that τ -functions do exist, and

are closely related to various partition functions arising in quantum field theory.

We hope to return to the general case in future publications.

3.5 Tau function in the uncoupled case

Suppose given a miniversal variation of finite, uncoupled BPS structures over

a complex manifold M . We will show that the family of solutions given by
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Theorem 3.2 has a corresponding τ -function. To describe this function we first

introduce the expression

ϒ(w) = e−ζ ′(−1) e
3
4 w2

G(w + 1)

(2π)
w
2 w

w2

2

, (17)

where G(x) is the Barnes G-function, and ζ(s) the Riemann zeta function.

Theorem 3.4 Let (Ŵ, Z p, �p) be a framed, miniversal variation of finite,

uncoupled BPS structures over a complex manifold M. Then the function

τ(Z , t) =
∏

Im Z(γ )/t>0

ϒ

(

Z(γ )

2π i t

)�(γ )

(18)

is a τ -function for the family of solutions given by Theorem 3.2.

The known asymptotics of the G-function imply that τ(Z , t) has an asymp-

totic expansion involving the Bernoulli numbers

log τ(Z , t) ∼ 1

24

∑

γ∈Ŵ
�(γ ) log

(

2π i t

Z(γ )

)

+
∑

g≥2

∑

γ∈Ŵ

�(γ ) · B2g

4g (2g − 2)

(

2π i t

Z(γ )

)2g−2

(19)

valid as t → 0 in any half-plane whose boundary rays are not active.

3.6 Two classes of examples

There are two important classes of examples of BPS structures where we can

say something about solutions to the Riemann–Hilbert problem. Both are also

of interest in theoretical physics. They are treated a little more thoroughly in

Sects. 6 and 7 , but there are many unanswered questions which we leave for

future research.

(i) Topological strings Let X be a compact Calabi–Yau threefold. There is a

variation of BPS structures over the complexified Kähler cone

{ωC = B + iω ∈ H2(X, C) : ω ample},

arising mathematically from generalised Donaldson–Thomas theory applied

to coherent sheaves on X supported in dimension≤ 1. The BPS invariants are

expected to coincide with the genus 0 Gopakumar–Vafa invariants (see [19,
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Conjecture 6.20]). Assuming this, we argue that the asymptotic expansion of

the resulting τ -function should be related to the Gromov–Witten partition func-

tion of X . More precisely, it should reproduce the g ≥ 2 terms in those parts

of the partition function arising from constant maps and genus 0 degenerate

contributions:

log τ(ωC, t) ∼ χ(X)
∑

g≥2

B2g B2g−2 (2π t)2g−2

4g (2g − 2) (2g − 2)!

+
∑

g≥2

β∈H2(X,Z)

�(β)
B2g (2π t)2g−2

2g (2g − 2)! Li3−2g(e
2π iωC·β).

We give a complete proof of this result in the case of the resolved conifold in [5]:

this involves writing down a non-perturbative version of the above expression

and checking that it gives rise via (16) to a solution to the Riemann–Hilbert

problem.

(ii) Theories of class S Our second example relates to the class of N = 2,

d = 4 gauge theories known as theories of class S. We consider only the case

of gauge group SU(2). To specify the theory we need to fix a genus g ≥ 0 and

a collection of d ≥ 1 integers

m = (m1, . . . , md), mi ≥ 2.

Mathematically, we can then proceed by introducing a complex orbifold

Quad(g, m) parameterizing pairs (S, q) consisting of a Riemann surface S

of genus g, and a meromorphic quadratic differential q on S which has simple

zeroes, and poles of the given multiplicities mi . It is proved in [8] that this

space also arises as a (discrete quotient of) the space of stability conditions

on a triangulated category D(g, m) having the three-dimensional Calabi–Yau

property. Applying generalized Donaldson–Thomas theory then leads to a

variation of BPS structures over Quad(g, m), whose central charge is given

by the periods of the differential q, and whose BPS invariants are counts of

finite-length trajectories. Work of Iwaki and Nakanishi [18] shows that the

Riemann–Hilbert problem corresponding to a pair (S, q) is closely related to

exact WKB analysis of the corresponding Schrödinger equation

h̄2 d2

dz2
y(z; h̄) = q(z)y(z, h̄),

where z is some local co-ordinate in a fixed projective structure on S, and

h̄ should be identified with the variable t in Problem 3.1. This story is the

conformal limit of that described by Gaiotto et al. in the paper [15].
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4 The BPS Riemann–Hilbert problem

In this section we discuss the Riemann–Hilbert problem defined by a con-

vergent BPS structure. It is closely related to the Riemann–Hilbert problem

considered by Gaiotto et al. [14], and has also been studied by Stoppa and his

collaborators [1,12].

4.1 Analytic BPS automorphisms

We begin by summarising some basic analytic facts which are proved in

“Appendix B”. Let (Ŵ, Z , �) be a BPS structure, let T be the associated twisted

torus, and fix an acute sector 
 ⊂ C∗. For each real number R > 0 define the

open subset U
(R) ⊂ T to be the interior of the subset

{

g ∈ T : Z(γ ) ∈ 
 and �(γ ) 
= 0 �⇒ |g(γ )| < exp(−R‖γ ‖)
}

⊂ T.

It follows from the support property that the subset U
(R) ⊂ T is non-empty

(see Lemma B.2). Recall the definition of the height of a ray ℓ ⊂ C∗ from

Sect. 2.5.

Proposition 4.1 Let (Ŵ, Z , �) be a convergent BPS structure, and 
 ⊂ C∗ a

convex sector. For sufficiently large R > 0 the following statements hold:

(i) For each ray ℓ ⊂ 
, the power series DT(ℓ) is absolutely convergent on

U
(R), and hence defines a holomorphic function

DT(ℓ) : U
(R)→ C.

(ii) The time 1 Hamiltonian flow of the function DT(ℓ) with respect to the

Poisson structure {−,−} on T defines a holomorphic embedding

S(ℓ) : U
(R)→ T.

(iii) For each H > 0, the composition in clockwise order

S<H (
) = Sℓ1 ◦ Sℓ2 ◦ · · · ◦ Sℓk
,

corresponding to the finitely many rays ℓi ⊂ 
 of height < H exists, and

the pointwise limit

S(
) = lim
H→∞

S<H (
) : U
(R)→ T

is a well-defined holomorphic embedding.
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Proof See “Appendix B”, Proposition B.3. ⊓⊔

We think of the maps S(ℓ) constructed in Proposition 4.1 as giving partially-

defined automorphisms of the twisted torus T. We will usually restrict attention

to BPS structures which in the terminology of Sect. 2.6 are ray-finite, generic

and integral. The map S(ℓ) can then be computed using the following result.

Proposition 4.2 Suppose that (Ŵ, Z , �) is ray-finite, generic and integral.

Then for any ray ℓ ⊂ C∗ the embedding S(ℓ) of Proposition 4.1 extends to a

birational automorphism of T, whose action on twisted characters is given by

S(ℓ)∗(xβ) = xβ ·
∏

Z(γ )∈ℓ
(1− xγ )�(γ )〈β,γ 〉. (20)

Proof See “Appendix B”, Proposition B.6. ⊓⊔

Note that if the BPS structure (Ŵ, Z , �) satisfies the stronger condition of

being finite, then there are only finitely many active rays, so for any acute

sector 
 ⊂ C∗ the map S(
) of Proposition 4.1 also extends to a birational

automorphism of T.

4.2 Statement of the problem

Let (Ŵ, Z , �) be a convergent BPS structure and denote by T the associated

twisted torus. Given a ray r ⊂ C∗ we consider the corresponding half-plane

Hr = {t ∈ C∗ : t = z · v with z ∈ r and Re(v) > 0} ⊂ C∗.

We shall be dealing with functions of the form

Xr : Hr → T.

Composing with the twisted characters of T we can equivalently consider

functions

Xr,γ : Hr → C∗, Xr,γ (t) = xγ (Xr (t)).

The Riemann–Hilbert problem associated to the BPS structure (Ŵ, Z , �)

depends on a choice of element ξ ∈ T which we refer to as the constant term.

It reads as follows:

Problem 4.3 Fix an element ξ ∈ T. For each non-active ray r ⊂ C∗ we seek

a holomorphic function Xr : Hr → T such that the following three conditions

are satisfied:
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(RH1) Jumping. Suppose that two non-active rays r1, r2 ⊂ C∗ form the bound-

ary rays of a convex sector 
 ⊂ C∗ taken in clockwise order. Then

Xr1(t) = S(
)(Xr2(t)),

for all t ∈ Hr1 ∩Hr2 with 0 < |t | ≪ 1.

(RH2) Finite limit at 0. For each non-active ray r ⊂ C∗ and each class γ ∈ Ŵ

we have

exp(Z(γ )/t) · Xr,γ (t)→ ξ(γ )

as t → 0 in the half-plane Hr .

(RH3) Polynomial growth at∞. For any class γ ∈ Ŵ and any non-active ray

r ⊂ C∗, there exists k > 0 such that

|t |−k < |Xr,γ (t)| < |t |k,

for t ∈ Hr with |t | ≫ 0.

To make sense of the condition (RH1) note that by Proposition 4.2 we

can find R > 0 such that the partially-defined automorphism S(
) is well-

defined on the open subset U
(R) ⊂ T. Observe that if an active class γ ∈ Ŵ

satisfies Z(γ ) ∈ 
 and we take t ∈ Hr1 ∩ Hr2 then the quantity Z(γ )/t has

strictly positive real part. Using the support property it follows (see the proof

of Lemma B.2) that for 0 < |t | ≪ 1

exp(−Z/t) · ξ ∈ U
(R).

Condition (RH2) then implies that Xri
(t) ∈ U
(R) whenever t ∈ Hr1 ∩ Hr2

with 0 < |t | ≪ 1, so that the relation (RH1) is indeed well-defined.

Remark 4.4 When the BPS structure (Ŵ, Z , �) is finite, integral and generic,

we can rewrite the condition (RH1) using Proposition 4.2. Given an active

ray ℓ, consider a small anticlockwise perturbation r−, and a small clockwise

perturbation r+, both rays being non-active. Then (RH1) is the condition that

Xr−,β(t) = Xr+,β(t) ·
∏

Z(γ )∈ℓ
(1− Xr±,γ (t))�(γ )〈β,γ 〉. (21)

Note that the generic assumption ensures there is no need to distinguish the

functions Xr±(t) inside the product, since for classes γ ∈ Ŵ satisfying Z(γ ) ∈
ℓ they are equal.
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It will be useful to consider the maps Yr : Hr → T+ defined by

exp(Z/t) · Xr (t) = Yr (t) · ξ.

Composing with the characters of T+ we can also encode the solution in the

system of maps

Yr,γ (t) = yγ (Yr (t)) = exp(Z(γ )/t) · Xr,γ (t) · ξ(γ )−1.

Of course the maps Xr and Yr are equivalent data: we use whichever is most

convenient.

Remark 4.5 It follows from the condition (RH1) that if two non-active rays

r1, r2 bound a convex sector containing no active rays, then the two functions

Xri
: Hri

→ T required in Problem 4.3 glue together to give a holomorphic

function on Hr1 ∪Hr2 . It follows that if a non-active ray r ⊂ C∗ is not a limit

of active rays, then the corresponding function Xr extends analytically to a

neighbourhood of the closure of Hr ⊂ C∗.

4.3 Remarks on the formulation

The Riemann–Hilbert problem of the last subsection is the main subject of this

paper. Unfortunately we have no general results giving existence or uniqueness

of its solutions. Moreover one could easily imagine various small perturbations

of the statement of Problem 4.3, and it will require further work to decide for

sure exactly what the correct conditions should be. We make a few remarks

on this here.

Remarks 4.6 (i) From a heuristic point-of-view it is useful to consider a

Riemann–Hilbert problem involving maps from C∗ into the group G of

Poisson automorphisms of the torus T. The above formulation is obtained

by evaluating a t-dependent automorphism of T at the chosen point ξ ∈ T.

If we replace the infinite-dimensional group G with the finite-dimensional

group GLn(C) the analogous Riemann–Hilbert problems are familiar in

the theory of linear differential equations with irregular singularities, and

play an important role in the theory of Frobenius manifolds [9, Lecture

4]. This connection between stability conditions and Stokes phenomena

goes back to [7], and will be revisited in [6].

(ii) In Sect. 3.1 we gave a simplified formulation of the Riemann–Hilbert

problem which considers a single function X : C∗ → T with prescribed

discontinuities along active rays. This becomes a little tricky to make

sense of when the active rays are dense in regions of C∗, so we prefer

the formulation given in Problem 4.3, which is modelled on the standard
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approach in the finite-dimensional case. We can obtain a solution to Prob-

lem 3.1 from a solution to Problem 4.3 by defining X (t) = XR>0·t (t);
Remark 4.5 shows that this defines a holomorphic function away from

the closure of the union of the active rays. Note that Problem 4.3 imposes

strictly stronger conditions on the resulting function X (t), because the

conditions (RH2) and (RH3) are assumed to hold in half-planes.

(iii) We can weaken the conditions in Problem 4.3 in various ways, and until

we have studied more examples in detail it is not possible to be sure

exactly what is the correct formulation. For example, we could allow the

functions Xr,γ (t) to have poles on the half-plane Hr , or we could replace

Hr by a smaller convex sector of some fixed angle. We can also consider a

variant of Problem 4.3 where we only assume that the map Xr is defined

and holomorphic on the intersection of Hr with some punctured disc

{t ∈ C∗ : |t | < r}, and drop condition (RH3) altogether. We shall refer to

this last version as the weak Riemann–Hilbert problem associated to the

BPS structure.

4.4 Symmetries of the problem

There are a couple of obvious symmetries of the Riemann–Hilbert problem

which deserve further comment. For the first, note that the twisted torus T

has a canonical involution σ : T → T which acts on twisted characters by

σ ∗(xγ ) = x−γ . The fixed point set is the finite subset

Tσ = {g : Ŵ→ {±1} : g(γ1 + γ2) = (−1)〈γ1,γ2〉g(γ1) · g(γ2)} ⊂ T, (22)

whose elements are quadratic refinements of the form 〈−,−〉.
The symmetry property �(−γ ) = �(γ ) of the BPS invariants implies that

S(−ℓ) ◦ σ = σ ◦ S(ℓ).

It follows that given a collection of functions X
ξ
r (t) solving the Riemann–

Hilbert problem for the constant term ξ , we can generate another solution, this

time for the constant term σ(ξ), by defining

Xσ(ξ)
r (t) = σ ◦ X

ξ
−r (−t).

In particular, if we had uniqueness of solutions, we could conclude that when-

ever ξ ∈ Tσ is a quadratic refinement of the form 〈−,−〉, any solution to the

Riemann–Hilbert problem satisfies

X ξ
r,γ (t) = X

ξ
−r,−γ (−t).
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For the second symmetry of the Riemann–Hilbert problem, note that given

a BPS structure (Ŵ, Z , �) we can obtain a new BPS structure (Ŵ, λZ , �) by

simply multiplying the central charges Z(γ ) ∈ C by a fixed scalar λ ∈ C∗.
It is then clear that if Xr (t) is a system of solutions to the Riemann–Hilbert

problem for the BPS structure (Ŵ, Z , �), then the functions Xλr (λt) will be a

system of solutions to the problem for (Ŵ, λZ , �) with the same constant term.

Again, if we had uniqueness of solutions, we could conclude that all solutions

to Problem 4.3 are invariant under simultaneous rescaling of Z and t .

4.5 Null vectors and uniqueness

Let (Z , Ŵ, �) be a BPS structure, and denote by T the corresponding twisted

torus.

Definition 4.7 An element γ ∈ Ŵ will be called null if it satisfies 〈α, γ 〉 = 0

for all active classes α ∈ Ŵ. A twisted character xγ : T→ C∗ corresonding to

a null element γ ∈ Ŵ will be called a coefficient.

Note that the definition of the wall-crossing automorphisms S(ℓ) shows that

they fix all coefficients: S(ℓ)∗(xγ ) = xγ . This leads to the following partial

uniqueness result.

Lemma 4.8 Let (Z , Ŵ, �) be a convergent BPS structure and γ ∈ Ŵ a null

element. Then for any solution to the Riemann–Hilbert problem, and any non-

active rays r ⊂ C∗, one has Yr,γ (t) = 1 for all t ∈ Hr .

Proof Since coefficients are unchanged by wall-crossing, condition (RH1)

shows that the functions Yr,γ (t) for different rays r ⊂ C∗ piece together to give

a single holomorphic function Yγ : C∗→ C∗. Since we can cover C∗ by half-

planes Hri
corresponding to finitely many non-active rays ri ⊂ C∗, condition

(RH2) shows that this function has a removable singularity at 0 ∈ C with value

Yγ (0) = 1, and condition (RH3) shows that it has at worst polynomial growth

at ∞. It follows that Yγ extends to a meromorphic function CP1 → CP1

which has neither zeroes nor poles on C. This implies that Yγ (t) is constant,

which proves the result. ⊓⊔

Recall the definition of an uncoupled BPS structure from Sect. 2.6.

Lemma 4.9 Let (Z , Ŵ, �) be a finite, uncoupled BPS structure. Then the asso-

ciated Riemann–Hilbert problem has at most one solution.

Proof Note that uncoupled BPS structures are in particular generic, so

Remark 4.4 applies. Fix an arbitrary class β ∈ Ŵ. The uncoupled condition

implies that all classes γ ∈ Ŵ appearing in the product on the right-hand side
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of (21) are null. Lemma 4.8 shows that for these classes the corresponding

functions

Xr,γ (t) = exp(−Z(γ )/t) · ξ(γ )

are uniquely determined. It follows that if we have two systems of solutions

X
(i)
r,β(t) : Hr → C∗, i = 1, 2,

to the Riemann–Hilbert problem, then the ratios

qr,β(t) = X
(2)
r,β(t) · (X

(1)
r,β(t))−1 : Hr → C∗

piece together to give a single holomorphic function qβ : C∗ → C∗. Arguing

exactly as in Lemma 4.8 we can use conditions (RH2) and (RH3) to conclude

that qβ(t) = 1 for all t ∈ C∗ which proves the claim. ⊓⊔

Remark 4.10 Let (Ŵ, Z , �) be a convergent BPS structure, and consider the

doubled BPS structure (Ŵ ⊕ Ŵ∨, Z , �) of Sect. 2.8. For each class γ ∈ Ŵ the

corresponding element

γD = (γ, 〈−, γ 〉) ∈ Ŵ ⊕ Ŵ∨

is null, because it is orthogonal to any class of the form (α, 0) ∈ Ŵ ⊕ Ŵ∨

by the formula (11). Lemma 4.8 therefore implies that any solution to the

Riemann–Hilbert problem for the double satisfies YγD,r (t) = 1. This implies

that

Yr,(0,〈γ,−〉)(t) = Yr,(γ,0)(t),

for all t ∈ C∗ and all non-active rays r ⊂ C∗.
In this way one sees that if a BPS structure has a non-degenerate form

〈−,−〉, then solving the Riemann–Hilbert problem for the doubled BPS

structure is precisely equivalent to solving the problem for the original BPS

structure. However, when the form 〈−,−〉 is degenerate a solution to the

Riemann–Hilbert problem for the doubled BPS structure contains strictly more

information than a solution to the original problem. We will see an example

of this in Sect. 5.1 below.

4.6 Tau functions

Consider a framed, miniversal variation of BPS structures (Ŵ, Z p, �p) over a

complex manifold M . For the relevant definitions the reader can either consult
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the summary in Sect. 3.3, or the full treatment in “Appendix A”. There is a

holomorphic map

π : M → HomZ(Ŵ, C), p �→ Z p,

which we call the period map. The miniversal assumption ensures that the

derivative

(Dπ)p : Tp M → HomZ(Ŵ, C) (23)

at each point p ∈ M is an isomorphism. We can therefore identify the tangent

space Tp M with the vector space HomZ(Ŵ, C). The form 〈−,−〉 then induces

a Poisson structure on M .

More explicitly, we can choose a basis (γ1, . . . , γn) ⊂ Ŵ and use the func-

tions

zi (p) = Z p(γi ) : M → C

as co-ordinates on M . The dual of the map (23) identifies γi ∈ Ŵ with dzi ∈
T ∗p M , and the Poisson structure has the Darboux form

{zi , z j } = ǫi j , ǫi j = 〈γi , γ j 〉.

Let us consider a family of solutions

Yr = Yr (p, t) : M × C∗→ T+

to the Riemann–Hilbert problems associated to the BPS structures (Ŵ, Z p, �p).

For each ray r ⊂ C∗ we assume that Yr (p, t) is a piecewise holomorphic func-

tion, with discontinuities at points p ∈ M where the ray r ⊂ C∗ is active in the

BPS structure (Ŵ, Z p, �p). Differentiating with respect to t and translating to

the identity 1 ∈ T+ we get a map

Y−1
r ·

dYr

dt
: M × C∗→ HomZ(Ŵ, C).

Composing with the inverse of (23), this can be viewed as a vector field V (t)

on M depending on t ∈ C∗. A τ -function for the family of solutions Yr (p, t)

is a piecewise holomorphic function

τr = τr (p, t) : M → C∗,
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such that V (t) is the Hamiltonian vector field of the function (2π i) · log τr . In

terms of the co-ordinates zi = Z(γi ) described above, the condition is that

1

2π i
·
∂ log Yr,γ j

∂t
=
∑

j

ǫi j

∂ log τr

∂zi

. (24)

By the second symmetry property of Sect. 4.4 it is natural to also impose the

condition that τ is invariant under simultaneous rescaling of Z and t . In the

case when the form 〈−,−〉 is non-degenerate this is enough to determine the

τ function uniquely up to multiplication by an element of C∗.

5 Explicit solutions in the finite, uncoupled case

In this section we show how to solve the Riemann–Hilbert problem associated

to a finite, uncoupled, integral BPS structure, and compute the τ -function

associated to a variation of such structures. The situation considered here

corresponds to the case of ‘mutually local corrections’ in [14]. The inspiration

for our solution comes from a calculation of Gaiotto [13, Section 3].

5.1 Doubled A1 example

The following BPS structure arises from the A1 quiver, which consists of a

single vertex and no arrows. It depends on a parameter z ∈ C∗.
(i) The lattice Ŵ = Z · γ has rank one, and thus 〈−,−〉 = 0;

(ii) The central charge Z : Ŵ→ C is determined by Z(γ ) = z ∈ C∗;
(iii) The only non-vanishing BPS invariants are �(±γ ) = 1.

The Riemann–Hilbert problem associated to this BPS structure is trivial

since all elements of Ŵ are null. Let us instead consider the double of this BPS

structure

(ŴD, Z , �), ŴD = Ŵ ⊕ Ŵ∨.

Let γ ∨ ∈ Ŵ∨ be the unique generator satisfying γ ∨(γ ) = 1. Note that the

definition (11) shows that the skew-symmetric form 〈−,−〉 on ŴD satisfies

〈γ ∨, γ 〉 = 1.

To define the Riemann–Hilbert problem for the doubled BPS structure we

must first choose a constant term ξD ∈ TD , where TD is the twisted torus

corresponding to the lattice ŴD . For simplicity we take ξD(γ ∨) = 1, and write

ξ = ξD(γ ) ∈ C∗.
The only active rays are ℓ± = ±R>0 · z, and Lemma 4.8 shows that

Xr,γ (t) = exp(−z/t) · ξ
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for any non-active ray r ⊂ C∗. The non-trivial part of the Riemann–Hilbert

problem for the doubled BPS structure consists of the functions

Yr (t) = Yr,γ∨(t) : Hr → C∗.

It follows from Remark 4.5 that the functions Yr (t) for non-active rays

r ⊂ C∗ lying in the same component of C\R · z are analytic continuations of

each other. Thus we obtain just two holomorphic functions

Y±(t) : C∗\iℓ±→ C∗,

corresponding to non-active rays lying in the half-planes± Im(z/t) > 0. Using

Remark 4.4, the Riemann–Hilbert problem for the doubled BPS structure can

therefore be restated as follows.

Problem 5.1 Find holomorphic functions Y± : C∗\iℓ±→ C∗ such that:

(i) There are relations

Y−(t) =
{

Y+(t) ·
(

1− ξ+1 · e−z/t
)

if t ∈ Hℓ+,

Y+(t) ·
(

1− ξ−1 · e+z/t
)

if t ∈ Hℓ− .
(25)

(ii) As t → 0 in C∗\iℓ∓ we have Y±(t)→ 1.

(iii) There exists k > 0 such that

|t |−k < |Y±(t)| < |t |k

as t →∞ in C∗\iℓ∓.

To understand condition (i) note that if t ∈ Hℓ+ then t lies in the domains

of definition Hr of the functions Yr corresponding to sufficiently small defor-

mations of the ray ℓ+. Thus (21) applies to the ray ℓ+ and we obtain the first

of the relations (25). The second follows similarly from (21) applied to the

opposite ray ℓ−.

5.2 Solution in the doubled A1 case

The formula

�(w) = ew · Ŵ(w)
√

2π · ww− 1
2

(26)
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defines a meromorphic function of w ∈ C∗, which is multi-valued due to the

factor

ww− 1
2 = exp

((

w − 1

2

)

log w

)

.

Since Ŵ(w) is meromorphic on C with poles only at the non-positive integers,

it follows that �(w) is holomorphic on C∗\R<0. We specify it uniquely by

taking the principal branch of log.

The Stirling expansion [28, Section 12.33] gives an asymptotic expansion

log �(w) ∼
∞
∑

g=1

B2g

2g(2g − 1)
w1−2g, (27)

where B2g denotes the (2g)th Bernoulli number. This expansion is valid as

w → ∞ in the complement of a closed sector containing the ray R<0. It

implies in particular that �(w)→ 1.

Proposition 5.2 When ξ = 1, Problem 5.1 has a unique solution, namely

Y+(t) = �
( z

2π i t

)

, Y−(t) = �
( −z

2π i t

)−1
.

Proof Note that the function Y+(t) is indeed holomorphic on the domain

C∗\iℓ+ as required, because if we set w = z/2π i t then

t ∈ iℓ+ ⇐⇒ w ∈ R<0.

Similarly Y−(t) is holomorphic on C∗\iℓ−. The Euler reflection formula gives

Ŵ(w) · Ŵ(1− w) = π

sin(πw)
, w ∈ C\Z.

Since Ŵ(n) = (n−1)! for n ∈ Z>0, it follows that Ŵ(w) is nowhere vanishing.

The same is therefore true of �(w). The reflection formula also implies that

for w ∈ C\Z

�(w) ·�(−w) = 1

2π
· π

sin(πw)
· e−

((

w− 1
2

)

log(w)+
(

−w+ 1
2

)

log(−w)
)

,

where we used Ŵ(1 − w) = (−w) · Ŵ(−w). For the principal branch of log

we have

log(w) = log(−w)± π i when ± Im(w) > 0.
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Thus we conclude that

�(w) ·�(−w) = i · e−π i
(

w− 1
2

)

eπ iw − e−π iw
= (1− e2π iw)−1 (28)

when Im(w) > 0. Note that if w = z/2π i t then

t ∈ Hℓ− ⇐⇒ Im(w) > 0,

so we get the second of the relations (25). The other follows in the same way.

Property (ii) is immediate from the Stirling expansion (27). Property (iii) is a

simple consequence of the fact that Ŵ(w) has a simple pole at w = 0. Finally,

the uniqueness statement follows from Lemma 4.9. ⊓⊔

5.3 The finite uncoupled case

In the case of a finite, uncoupled, integral BPS structure we can construct a

unique solution to the Riemann–Hilbert problem by superposing the solutions

from the previous section.

Theorem 5.3 Let (Z , Ŵ, �) be a finite, uncoupled, integral BPS structure.

Suppose that ξ ∈ T satisfies ξ(γ ) = 1 for all active classes γ ∈ Ŵ. Then

the corresponding Riemann–Hilbert problem has a unique solution, which

associates to a non-active ray r the function

Yr,β(t) =
∏

Z(γ )∈iHr

�

(

Z(γ )

2π i t

)�(γ )〈β,γ 〉
(29)

where the product is taken over the finitely many active classes γ ∈ Ŵ for

which Z(γ ) ∈ iHr .

Proof Note first that the expression (29) is holomorphic and non-zero on Hr

because in each factor both Z(γ )/ i and t lie in Hr , so the argument of � does

not lie in R<0. The properties (RH2) and (RH3) then follow immediately as in

the proof of Proposition 5.2. Consider two non-active rays r− and r+ obtained

by small perturbations, anti-clockwise and clockwise respectively, of an active

ray ℓ. Then ℓ ⊂ iHr+ whereas −ℓ ⊂ iHr− . Assume that t ∈ Hr− ∩ Hr+ .

Then t ∈ Hℓ and hence −Z(γ )/2π i t lies in the upper half-plane whenever

Z(γ ) ∈ ℓ. Using (28) we therefore obtain

Xr+,β(t)

Xr−,β(t)
=

∏

Z(γ )∈ℓ

(

�

(

Z(γ )

2π i t

)

·�
(−Z(γ )

2π i t

))�(γ )〈β,γ 〉
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=
∏

Z(γ )∈ℓ
(1− e−Z(γ )/t )−�(γ )〈β,γ 〉

This is precisely the condition (21) since Lemma 4.8 and the assumption on ξ

implies that Xγ (t) = exp(−Z(γ )/t) whenever �(γ ) 
= 0. ⊓⊔
Using the Stirling expansion we obtain an asymptotic expansion

log Xr,β(t) ∼ −Z(β)

t
+ 2π iθ(β)+

∑

g≥1

∑

γ∈Ŵ

�(γ )〈β, γ 〉B2g

4g (2g − 1)

(

2π i t

Z(γ )

)2g−1

, (30)

valid as t → 0 in the half-plane Hr . We have set ξ(β) = exp(2π iθ(β)). The

extra factor of 2 in the denominator arises because in (29) we take a product

over half the classes in Ŵ. Note that this expansion is independent of the choice

of ray r ⊂ C∗.

5.4 Tau function in the uncoupled case

Consider the expression

ϒ(w) = e−ζ ′(−1) e
3
4 w2

G(w + 1)

(2π)
w
2 w

w2

2

,

where G is the Barnes G-function [2], [27, Appendix], and ζ(s) is the Riemann

zeta function. It defines a holomorphic and nowhere vanishing function on

C∗\R<0 which we specify uniquely by defining the factor ww2/2 using the

principal value of log. The asymptotic expansion of ϒ(w) is

log ϒ(w) ∼ − 1

12
log(w)+

∑

g≥2

B2g

2g(2g − 2)
w−(2g−2), (31)

valid as w → ∞ in the complement of any sector in C∗ containing the ray

R<0. This can be found for example in [2, Section 15] or [27, Appendix],

although note that Barnes uses a different indexing for the Bernoulli numbers,

and refers to the real number

A = e
1

12 · e−ζ ′(1)

as the Glaisher-Kinkelin constant.

Lemma 5.4 There is an identity

d

dw
log ϒ(w) = w

d

dw
log �(w).
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Proof Note that this is obvious at the level of the asymptotic expansions. For

the proof we use the identity

d

dw
log G(w + 1) = 1

2
log(2π)+ 1

2
− w + w

d

dw
log Ŵ(w)

which can be found in [2, Section 12] (see also [27, Formula (A.13)]) to get

d

dw
log ϒ(w) = 1

2
+ w

d

dw
log Ŵ(w)− w log w.

The result then follows from (26) by taking log and differentiating. ⊓⊔

In the case of variations of BPS structures satisfying the conditions of The-

orem 5.3 the following result gives a natural choice of τ -function.

Theorem 5.5 Let (Ŵ, Z p, �p) be a framed, miniversal variation of finite,

uncoupled, integral BPS structures over a complex manifold M. Given a ray

r ⊂ C∗, the function

τr (p; t) =
∏

Z p(γ )∈iHr

ϒ

(

Z(γ )

2π i t

)�(γ )

(32)

is a τ -function for the family of solutions of Theorem 5.3.

Proof The expression (32) is holomorphic and non-zero on Hr for the same

reason given in the proof of Theorem 5.3. It is also clearly invariant under

simultaneous rescaling of Z and t . Choosing a basis (γ1, . . . , γn) ⊂ Ŵ, and

using the local co-ordinates zi = Z(γi ) on M , we have

2π i ·
∑

i

ǫi j

∂ log τr

∂zi

=
∑

i

∑

Z p(γ )∈iHr

�(γ )
ǫi j mi (γ )

t

(

d

dw

∣

∣

∣

w= Z(γ )
2π i t

)

log ϒ(w),

where we wrote ǫi j = 〈γi , γ j 〉 and used the decomposition γ =
∑

i mi (γ )γi .

Using Lemma 5.4 this can be rewritten as

∑

Z p(γ )∈iHr

�(γ )
〈γ, γ j 〉

t

(

w
d

dw

∣

∣

∣

w= Z(γ )
2π i t

)

log �(w)

= − ∂

∂t

∑

Z p(γ )∈iHr

log �

(

Z(γ )

2π i t

)�(γ )〈γ,γ j 〉
=

∂ log Yr,γ j

∂t
,

which gives (24), and hence completes the proof that (32) defines a τ -function.

⊓⊔
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Applying (31) we get an asymptotic expansion

log τr (p; t) ∼ 1

24

∑

γ∈Ŵ
�(γ ) log

(

2π i t

Z(γ )

)

+
∑

g≥2

∑

γ∈Ŵ

�(γ ) · B2g

4g (2g − 2)

(

2π i t

Z(γ )

)2g−2

(33)

valid as t → 0 in the half-plane Hr . Once again this expansion is independent

of the ray r ⊂ C∗.

Remark 5.6 The function ϒ(w) is closely related to the function γh̄(x;�)

which plays an important role in Okounkov and Nekrasov’s work on super-

symmetric gauge theories [23, Appendix A]. More precisely, they consider a

function γh̄(x;�) which is uniquely defined up to a linear function in x by two

properties: a difference equation, and the existence of an asymptotic expan-

sion. Using the property G(w+ 1) = Ŵ(w) ·G(w) of the Barnes G-function,

and the expansion (31), it follows that we can take

eγt (z;1) = e−ζ ′(−1) · G
( z

t
+ 1
)

· t 1
2 ( z

t
)2− 1

12 · (2π)−
z
2t

= ϒ
( z

t

)

· t 1
12 · e

1

t2

(

1
2 z2 log(z)− 3

4 z2
)

.

The term appearing in the exponential on the right-hand side gives rise to the

prepotential of the gauge theory. We hope that a clearer understanding of the

definition of the τ -function will enable us to give a mathematical definition of

the prepotential.

6 Geometric case: Gromov–Witten invariants

In this section we consider a class of BPS structures related to closed topolog-

ical string theory on a compact Calabi–Yau threefold. In mathematical terms

they arise from stability conditions on the category of coherent sheaves sup-

ported in dimension ≤ 1. These BPS structures are uncoupled but not finite.

We will show that formally applying the expression (33) in this case repro-

duces the genus 0 degenerate contributions to the Gromov–Witten generating

function. In [5] we give a more careful analysis for the special case of the

resolved conifold.
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6.1 Gopakumar–Vafa invariants

Let X be a smooth projective Calabi–Yau threefold. For the sake of nota-

tional simplicity we will assume that the group H2(X, Z) is torsion-free. The

Gromov–Witten potential of X is a formal series

F(x, λ) =
∑

g≥0

∑

β∈H2(X,Z)

GW(g, β) · xβ · λ2g−2, (34)

where GW(g, β) ∈ Q is the genus g Gromov–Witten invariant for stable maps

of class β ∈ H2(X, Z). Note that by definition these invariants are nonzero only

for effective curve classes β ≥ 0. The symbols xβ are formal variables living

in a suitable completion of the effective cone in the group ring of H2(X, Z),

and λ is a formal parameter corresponding to the string coupling.

We can split the series (34) into contributions from constant and non-

constant maps

F(x, λ) = F0(x, λ)+ F ′(x, λ).

The contribution from the constant maps [11, Theorem 4] is

F0(x, λ) = a0(x)λ−2 + a1(x)

+χ(X) ·
∑

g≥2

(−1)g−1 · B2g · B2g−2

4g · (2g − 2) · (2g − 2)!λ
2g−2, (35)

where the expressions a0(x) and a1(x) can be found for example in [24].

Although the precise form of these expressions will not be relevant here it is

worth noting that, unlike the higher genus terms, they involve the variables xβ .

Turning now to the contributions from non-constant maps, the Gopakumar–

Vafa conjecture [16,24] claims that there exist integers GV(g, β) ∈ Z, such

that

F ′(x, λ) =
∑

β>0

∑

g≥0

GV(g, β)
∑

k≥1

1

k

(

2 sin

(

kλ

2

))2g−2

xkβ .

We will be particularly interested in the expression

∑

β>0

GV(0, β)
∑

k≥1

1

k

(

2 sin

(

kλ

2

))−2

xkβ , (36)
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which gives the contribution from genus 0 Gopakumar–Vafa invariants. Note

that using the Laurent expansion

(2 sin(s/2))−2 = 1

s2
− 1

12
+
∑

g≥2

(−1)g−1 B2g

2g(2g − 2)! · s
2g−2,

we can write the coefficient of λ2g−2 in (36) as

∑

β>0

GV(0, β) · (−1)g−1 B2g

2g(2g − 2)! · Li3−2g(xβ), (37)

at least for g ≥ 2.

6.2 Torsion sheaf BPS invariants

Let A = Coh≤1(X) denote the abelian category of coherent sheaves on X

supported in dimension≤ 1. Any sheaf E ∈ A has a Chern character ch(E) ∈
H∗(X, Z), which via Poincaré duality we can view as an element

ch(E) = (β, n) ∈ Ŵ = H2(X, Z)⊕ Z.

We note that for any objects E1, E2 of A, the Riemann-Roch theorem tells us

that

χ(E1, E2) =
∑

i∈Z
(−1)i dimC Exti

X (E1, E2) =
∫

X

ch(E1)
∨ ch(F) td(X) = 0,

because the intersection number of any two curves on a threefold is zero. We

therefore take 〈−,−〉 to be the zero form on Ŵ. We define a central charge

Z : Ŵ→ C via the formula

Z(β, n) = 2π(β · ωC − n),

where ωC = B+ iω ∈ H2(X, C) is a complexified Kähler class. The assump-

tion that ω is Kähler ensures that for any nonzero object E ∈ A the complex

number Z(E) ∈ C lies in the semi-closed upper half-plane

H̄ = {z = r exp(iπφ) : r ∈ R>0 and 0 < φ ≤ 1} ⊂ C∗.

It follows that Z defines a stability condition on the abelian category A.

For each class γ ∈ Ŵ there is an associated BPS invariant �(γ ) ∈ Q

first constructed by Joyce and Song ([19], see particularly Sections 6.3–6.4).
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They are defined using moduli stacks of semistable objects in A, and should

not be confused with the ideal sheaf curve-counting invariants appearing in the

famous MNOP conjectures [22]. Joyce and Song prove that the numbers �(γ )

are independent of the complexified Kähler class ωC. This is to be expected,

since wall-crossing is trivial when the form 〈−,−〉 vanishes: see Remark A.4

below.

A direct calculation [19, Section 6.3] shows that

�(0, n) = −χ(X), n ∈ Z\{0}. (38)

It is expected [19, Conjecture 6.20] that when β > 0 is a positive curve class

�(±β, n) = GV(0, β), (39)

and, in particular, is independent of n. We shall assume this in what follows.

We emphasise that the higher genus Gopakumar–Vafa invariants are invisible

from the point-of-view of the torsion sheaf invariants �(γ ).

6.3 Formal computation of the τ -function

The discussion of the last subsection gives rise to a framed variation of BPS

structures over the complexified Kähler cone of X , in which the BPS invariants

�(γ ) are constant. Let us consider the family of double structures as defined

in Sect. 2.8. We can identify

Ŵ ⊕ Ŵ∨ = H∗(X, Z)

equipped with the standard intersection form, and the resulting BPS structures

are all uncoupled.

Remarks 6.1 (i) We can easily extend this to a miniversal variation if required,

by first introducing an extra factor q ∈ C∗ rescaling the central charge Z ,

and also adding a component Z∨ : Ŵ∨→ C as in Sect. 2.8. The resulting

central charge is

Z((β, n), λ) = 2πq(β · ωC − n)+ Z∨(λ).

Nothing interesting is gained by doing this however.

(ii) We view the doubled structures defined here as an approximation to the

correct BPS structures, which should also incorporate BPS invariants cor-

responding to objects of the full derived category Db Coh(X) supported

in all dimensions. To define these rigorously would involve constructing
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stability conditions on Db Coh(X), which for X a general compact Calabi–

Yau threefold is a well-known unsolved problem (see [3] and [25] for more

on this).

Although our BPS structures are not finite, we can nonetheless try to

solve the associated Riemann–Hilbert problem by superposing infinitely many

gamma functions. Let us formally apply (33) to compute for g ≥ 2 the coef-

ficient

∑

γ∈Ŵ

�(γ ) · B2g

4g(2g − 2)
· 1

Z(γ )2g−2

of (2π i t)2g−2 in the asymptotic expansion of the τ -function.1 The contribution

from zero-dimensional sheaves is

− χ(X)B2g

2g(2g − 2)(2π)2g−2
·
∑

k≥1

1

k2g−2
= χ(X)(−1)g−1 B2g B2g−2

4g(2g − 2)(2g − 2)! ,

which agrees with (35). The contribution from one-dimensional sheaves is

B2g

2g(2g − 2)(2π)2g−2

∑

β>0

∑

k∈Z

GV(0, β)

(vβ − k)2g−2
, (40)

where vβ = ωC · β. Using the identity

∑

k∈Z

1

(z − k)2g−2
= (2π i)2g−2

(2g − 3)! Li3−2g(e
2π i z),

valid for Im(z) > 0 and g ≥ 2, we can rewrite (40) as

(−1)g−1 B2g

2g(2g − 2)!
∑

β>0

GV(0, β) · Li3−2g(e
2π ivβ ), (41)

which then agrees with (37). We conclude that under the variable change

λ = 2π i t, xβ = exp(2π ivβ),

the log of the τ -function reproduces the genus 0 degenerate contributions to

the Gromov–Witten generating function (34), at least for positive powers of

λ.

1 This calculation was worked out jointly with K. Iwaki.
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Remark 6.2 In the paper [5] we give a rigorous solution to the Riemann–

Hilbert problem in the case when X is the resolved conifold. This involves

writing down a non-perturbative function which has the above asymptotic

expansion.

7 Quadratic differentials and exact WKB analysis

The only examples of CY3 categories where the full stability space is under-

stood come from quivers with potential associated to triangulated surfaces. The

associated stability spaces can be identified with moduli spaces of meromor-

phic quadratic differentials on Riemann surfaces [8], and the associated BPS

invariants then count finite-length trajectories of these differentials. It turns

out that the corresponding Riemann–Hilbert problems are closely related to

the exact WKB analysis of time-independent Schrödinger equations. We give

a brief and sketchy treatment of this connection here; we hope to return to this

subject in future papers.

7.1 Quadratic differentials

For more details on the contents of this section see [8]. Let us start by fixing

data

g ≥ 0, m = {m1, . . . , mk}, k ≥ 1, mi ≥ 2,

and consider the space Quad(g, m) consisting of equivalence classes of pairs

(S, q), where S is a compact Riemann surface of genus g and q a meromorphic

quadratic differential on S with simple zeroes, and poles of multiplicities mi .

It is a complex orbifold of dimension

n = 6g − 6+
∑

i

(mi + 1).

Associated to a point (S, q) is a double cover π : Ŝ → S branched at the

zeroes and odd-order poles of q. We denote by Ŝ◦ ⊂ Ŝ the complement of the

inverse image of the poles of q, and define the hat-homology group

Ŵ = H1(Ŝ◦;Z)−,

where the superscript denotes the−1 eigenspace under the action of the cover-

ing involution of π : Ŝ→ S. The intersection form defines a skew-symmetric
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form

〈−,−〉: Ŵ × Ŵ→ Z.

The groups Ŵ form a local system over Quad(g, m).

The meromorphic abelian differential
√

q is well-defined on the double

cover Ŝ, and holomorphic on Ŝ◦. It defines a de Rham cohomology class in

H1(Ŝ◦;C)− and can be viewed as a group homomorphism Z : Ŵ→ C

Z(γ ) =
∫

γ

√
q.

It was proved in [8] that the period map

π : Quad(g, m)→ HomZ(Ŵ, C) ∼= Cn.

is a local analytic isomorphism.

By a trajectory of a differential (S, q) we mean a path in S along which
√

q

has constant phase θ . A finite-length trajectory is of one of two types:

(a) a saddle connection connects two zeroes of the differential (not necessarily

distinct);

(b) a closed trajectory: any such moves in an annulus of trajectories called a

ring domain.

Any finite-length trajectory can be lifted to a closed cycle in Ŝ which defines

an associated class γ ∈ Ŵ. All trajectories in a ring domain have the same

class, so we can also talk about the class associated to the ring domain.

Let us assume that our quadratic differential is generic in the sense that if

γ1, γ2 are two finite-length trajectories of the same phase, then their classes

are proportional in Ŵ. We then define the BPS invariants of q by

�(γ ) = #
{

saddle connections of class γ
}

− 2 · #
{

ring domains of class γ
}

.

The reason for the coefficient−2 is that a ring domain leads to a moduli space

of stable objects isomorphic to P1. See [8, Theorem 1.4]. In physical terms

saddle connections represent hypermultiplets, whereas ring domains represent

vector multiplets.

Claim 7.1 The data (Ŵ, Z , �) described above defines a miniversal variation

of convergent BPS structures over the orbifold Quad(g, m).

Sketch proof To check the wall-crossing formula one can use the results of [8]

to view Quad(g, m) as an open subset of a space of stability conditions on a
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CY3 triangulated category defined by a quiver with potential, and then apply

the theory of wall-crossing for generalised DT invariants [19,21].

The fact that the BPS structures are convergent should follow from the results

of [8, Section 5]. The basic point is that the only non-finiteness in the BPS

spectrum arises from finitely many ring domains. Each of these contributes

an infinite collection of saddle connections with classes of the form γ + nα,

where α is the class of the ring domain. But for sufficiently large R > 0 these

saddle connections give a finite contribution to the sum (9). ⊓⊔

7.2 Voros symbols

The weak Riemann–Hilbert problem (see Remark 4.6(iii)) defined by the above

BPS structures can be solved using exact WKB analysis of an associated

Schrödinger equation. This was essentially proved by Iwaki and Nakanishi

[18] following Gaiottoc et al. [15].

Suppose given a quadratic differential (S, q) as above. Let us also choose

a projective structure on the Riemann surface S.2 We can then invariantly

consider the holomorphic Schrödinger equation

h̄2 d2

dz2
y(z, h̄) = q(z) · y(z, h̄),

where z is a co-ordinate in the chosen projective structure. The WKB method

involves substituting

y(z1, h̄) = exp

(∫ z1

z0

T (z) dz

)

, T (z) =
∑

k≥0

Tk(z) · h̄k−1,

and then solving for T j (z) order by order. This gives rise to a recursion

dTk−1

dz
+
∑

i+ j=k

Ti (z)T j (z) = 0, k > 0,

together with the initial condition T0(z)
2 = q(z). Depending on the choice of

square-root taken to define T0(z) one then obtains two systems of solutions

T±k (z). The differences

ωk(z) =
1

2

(

T+k (z)− T−k (z)
)

dz

2 If the quadratic differential q has a double pole at a point p ∈ S one should assume that this

projective structure (represented in [18] by the term Q2(z)) also has a pole of a particular form

[18, Assumption 2.5].
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are single-valued meromorphic one-forms on the spectral cover Ŝ, which van-

ish unless k is even. One has ω0 =
√

q(z) dz.

The formal cycle Voros symbol associated to a class γ ∈ Ŵ is the formal

sum

exp(Vγ ) = exp

(

1

h̄

∫

γ

ω0

)

· exp

⎛

⎝

∑

g≥1

h̄2g−1

∫

γ

ω2g

⎞

⎠ . (42)

Iwaki and Nakanishi, relying on analytic results of [20], show that if r ⊂ C∗

is a non-active ray for the BPS structure defined by (S, q), then the sum over

g ≥ 1 in the above formal expressions can be Borel summed in the direction

r . This results in Voros symbols which are holomorphic functions of t = h̄

defined in a neighbourhood of 0 in the half-plane Hr . They also compute

the wall-crossing behaviour for these Borel sums as one varies the active ray

r ⊂ C∗.

Claim 7.2 Given a quadratic differential (S, q) as above, the Borel sums of

the cycle Voros symbols give a solution to the corresponding weak Riemann–

Hilbert problem with t = h̄.

Sketch proof For the definition of the weak Riemann–Hilbert problem see

Remark 4.6(iii). The claim should follow from the work of Iwaki and Nakanishi

[18], although a careful proof would require additional continuity arguments

to take care of differentials with multiple saddle connections. See particularly

Theorem 2.18, Theorem 3.4 and formula (2.21). ⊓⊔
It is interesting to ask whether given a suitable choice of base projective

structure, the Voros symbols in fact give solutions to the full Riemann–Hilbert

problem as stated in Sect. 4.2. Another interesting topic for further research is

the connection with topological recursion [10], which is known to be closely

related to exact WKB analysis. In particular, it is interesting to ask whether the

τ -function computed by topological recursion gives a τ -function in the sense

of this paper.
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Appendix A. Variations of BPS structure

For BPS structures satisfying the conditions of Proposition 4.2, the BPS auto-

morphisms S(ℓ) can be realised as birational automorphisms of the twisted

torus T. In general however, even for BPS structures coming from quivers

with potential, this is not the case. Thus we need some other approach to

defining a variation of BPS structures. If we want to avoid making unneces-

sary assumptions, the only way to proceed is via formal completions of the ring

C[T]. In this section we give a rigorous definition along these lines following

Kontsevich and Soibelman [21, Section 2].

A.1 Introductory remarks

Before starting formal definitions in the next subsection we consider here a

slightly simplified situation which should help to make the general picture

clearer. Let (Ŵ, Z , �) be a BPS structure. Given a basis (γ1, . . . , γn) ⊂ Ŵ

there is a corresponding cone

Ŵ⊕ =
{

γ =
∑

diγi with di ∈ Z≥0

}

⊂ Ŵ,

whose elements we call positive. We call a class γ ∈ Ŵ negative if −γ is

positive.

Let us assume that we can find a basis such that every active class is

either positive or negative, and further that all positive classes γ ∈ Ŵ sat-

isfy Im Z(γ ) > 0. These assumptions are always satisfied for BPS structures

arising from stability conditions on quivers. Let us also temporarily ignore the

difference between the tori T±.

The co-ordinate ring C[T] can be identified with the algebra of Laurent

polynomials

C[T] = C

[

y±1
1 , · · · , y±n

n

]

,

and a regular automorphism of T corresponds to an automorphism of this

algebra. The element DT(ℓ) corresponding to an active ray ℓ ⊂ C∗ does not

in general define an element of C[T] however, since it could an infinite sum

of characters. If a ray ℓ ⊂ C∗ lies in the upper half-plane, the series DT(ℓ)

defines an element of the power series ring

C[[T]] = C[[y1, · · · , yn]],
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which is a Poisson algebra in the same way as C[T]. We can then define an

algebra automorphism

S(ℓ) = exp{DT(ℓ),−} ∈ Aut C[[T]],

and interpret the wall-crossing formula (15) in the group of automorphisms of

C[[T]], at least for sectors 
 ⊂ C∗ contained in the upper half-plane.

In what follows we will modify this procedure in two ways. Firstly, to

avoid the assumption on active classes we will work with completions of

C[T] defined by more general cones in Ŵ. Secondly, note that if the form

〈−,−〉 = 0 is trivial, the automorphisms S(ℓ) as defined above will all be

identity maps, and the wall-crossing formula will become vacuous. One way

to avoid this problem would be to force the form 〈−,−〉 to be non-degenerate

by passing to the double BPS structure as in Section 2.8. Instead, we will

formulate the wall-crossing formula in a group defined abstractly by using

the Baker–Campbell–Hausdorff formula to formally exponentiate elements of

C[[T]].

A.2 Formal completions

Let (Ŵ, Z , �) be a BPS structure. To an acute sector 
 ⊂ C∗ we associate a

Poisson subalgebra

C
[T] =
⊕

Z(γ )∈
⊔{0}
C · xγ ⊂ C[T]. (43)

We will now introduce a natural completion of this algebra.

Define the height of an element a =
∑

γ aγ · xγ to be

H(a) = inf{|Z(γ )| : γ ∈ Ŵ such that aγ 
= 0}.

Note that since 
 is acute, we have

|Z(γ1 + γ2)| ≥ min(|Z(γ1)|, |Z(γ2)|),

whenever γi ∈ Ŵ satisfy Z(γi ) ∈ 
. It follows that

H(a · b) ≥ max(H(a), H(b)), H({a, b}) ≥ max(H(a), H(b)).

In particular, for any N > 0, the subspace

C
[T]≥N ⊂ C
[T]
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consisting of elements of height ≥ N is a Poisson ideal. We can therefore

consider the inverse limit of the quotient Poisson algebras as N →∞:

C
[[T]] = lim←−
N

C
[T]<N , C
[T]<N = C
[T]/C
[T]≥N .

The resulting completion C
[[T]] can be identified with the set of formal

sums

∑

Z(γ )∈

aγ · xγ , (44)

such that for any N > 0 there are only finitely many terms with |Z(γ )| < N .

We define the height of such an element to be the minimum value of |Z(γ )|
occurring.

A.3 Lie algebra and associated group

Continue with the notation from the last subsection. For each N > 0, the

Poisson bracket induces the structure of a nilpotent Lie algebra on the Poisson

ideal

g
,≤N ⊂ C
[T]≤N

consisting of elements of positive height. The Baker–Campbell–Hausdorff

formula then gives rise to a unipotent algebraic group G
,≤N with a bijective

exponential map

exp : g
,≤N → G
,≤N .

Taking the limit as N → ∞ we obtain a pro-nilpotent Lie algebra and a

pro-unipotent group related by a bijective exponential map

exp : ĝ
→ Ĝ
.

More concretely, the Lie algebra ĝ
 consists of formal sums (44) of positive

height, viewed as a Lie algebra via the Poisson bracket. The group

Ĝ
 = {exp(x) : x ∈ ĝ
},
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consists of formal symbols exp(x) for elements x of the Lie algebra. The group

structure is defined using the Baker–Campbell–Hausdorff formula:

exp(x) · exp(y) = exp
(

(x + y)+ 1

2
[x, y] + · · ·

)

.

Note that if 
1 ⊂ 
2 are nested acute sectors then there is an obvious embed-

ding of Lie algebras g
1 ⊂ g
2 , which induces an injective homomorphism

Ĝ
1 →֒ Ĝ
2 of the corresponding groups. We happily confuse elements of

Ĝ
1 with the corresponding elements of Ĝ
1 .

Remark A.1 The Lie algebra ĝ
 acts on the algebra C
[[T]] via Poisson

derivations:

x · y = {x, y}, x ∈ ĝ
, y ∈ C
[[T]].

This exponentiates to give an action of Ĝ
 by Poisson automorphisms:

exp(x) · y = exp{x,−}(y), x ∈ ĝ
, y ∈ C
[[T]]. (45)

On the left-hand side of (45) the symbol exp is purely formal as discussed

above, whereas on the right-hand side it denotes the exponential of the Poisson

derivation {x,−}, viewed as an endomorphism of the vector space C
[[T]].

A.4 Products over rays

Let (Ŵ, Z , �) be a BPS structure. Recall the notion of the height of a ray from

Sect. 2.5. Let us now also fix an acute sector 
 ⊂ C. The support property

ensures that for any ray ℓ ⊂ 
 the expression

DT(ℓ) =
∑

γ∈Ŵ:Z(γ )∈ℓ
DT(γ ) · xγ ∈ C
[[T]]

defines an element of the Lie algebra ĝ
. By definition, its height is equal to

H(ℓ). We denote the corresponding group element by

S(ℓ) = exp DT(ℓ) ∈ Ĝ
.

Given N > 0, we can consider the truncation

S(ℓ)<N = exp DT(ℓ)<N ∈ Ĝ
,<N .
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This element is non-trivial only for the finitely many rays of height < N .

Therefore, we can form the finite product

S(
)<N =
∏

ℓ⊂


S(ℓ)<N ∈ Ĝ
,<N . (46)

Taking the limit N →∞ then gives a well-defined element

S(
) =
∏

ℓ⊂


S(ℓ) ∈ Ĝ
. (47)

The product on the right hand side will usually be infinite.

A.5 Deforming the central charge

There is one more detail we have to deal with before we can give the definition

of a variation of BPS structure. The problem is that the groups Ĝ
 and Ĝ
,<N

which we defined above depend on the central charge of the BPS structure in

a highly discontinuous way. This problem arises already in the definition (43):

the subalgebra C
(T) will change whenever the central charge Z(γ ) of any

class γ ∈ Ŵ crosses a boundary ray of 
, and since this will happen on a dense

subset of the set of possible central charges Z : Ŵ → C this leads to a highly

discontinuous family of algebras.

To solve this problem, let us fix C > 0 and consider the subset Ŵ(
, C) ⊂ Ŵ

consisting of all non-negative integral combinations of elements γ ∈ Ŵ which

satisfy

Z(γ ) ∈ 
, |Z(γ )| > C · ‖γ ‖. (48)

By definition this is a submonoid of Ŵ under addition, so there is a Poisson

subalgebra

C(
,C)[T] =
⊕

γ∈Ŵ(
,C)

C · xγ ⊂ C
[T].

We can then define Lie algebras and associated groups exactly as above. More-

over, if we take C smaller than the constant in the support property for the BPS

structure (Ŵ, Z , �) then all the identities of the last subsection will take place

in these groups, since we will then have

�(γ ) 
= 0 �⇒ γ ∈ Ŵ(
, C).
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Consider now the quotient algebra C(
,C)[T]<N defined as before. This

depends only on the set of γ ∈ Ŵ(
, C) for which |Z(γ )| < N , and hence

only on the finite subset

{

γ ∈ Ŵ : Z(γ ) ∈ 
 and C‖γ ‖ < |Z(γ )| < N
}

⊂ {γ ∈ Ŵ : ‖γ ‖ < N/C} ⊂ Ŵ. (49)

Moreover, as Z varies, it remains constant in the complement of the finite

system of hypersurfaces. Clearly the same remarks apply to the corresponding

group Ĝ(
,C),<N .

A.6 Variations of BPS structure

We can now give a rigorous definition of a variation of BPS structures. The

conditions are explained more fully below.

Definition A.2 A variation of BPS structure consists of a complex manifold

M , together with BPS structures (Ŵp, Z p, �p) indexed by the points p ∈ M ,

such that

(V1) Local system of charge lattices The charge lattices Ŵp form a local

system of abelian groups, and the intersection form is covariantly

constant.

(V2) Holomorphic variation of central charge Given a covariantly con-

stant family of elements γp ∈ Ŵp, the central charges Z p(γp) ∈ C

are holomorphic functions of p ∈ M .

(V3) Uniform support property Fix a covariantly constant family of

norms

‖ · ‖p : Ŵp ⊗Z R→ R>0.

Then for any compact subset F ⊂ M there is a C > 0 such that

�p(γp) 
= 0 for some p ∈ F �⇒ |Z p(γp)| > C · ‖γ ‖p.

(V4) Wall-crossing formula Suppose given a contractible open subset

U ⊂ M , a constant N > 0, and a convex sector 
 ⊂ C∗. We can

trivialise the local system Ŵp over U and hence identify Ŵp with a

fixed lattice Ŵ. Take C > 0 as in (V3) and assume that the subset (49)

is constant for the BPS structures corresponding to points p ∈ U .

Then the elements

Sp(
)<N =
∏

ℓ⊂


Sp(ℓ)<N ∈ Ĝ(
,C),<N ,
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defined as in (46) are constant as p ∈ U varies.

We say that the variation is framed if the local system of lattices Ŵp over M

is trivial. The lattices Ŵp can then all be identified with a fixed lattice Ŵ, and

we write the variation as (Ŵ, Z p, �p). We can always reduce to the case of a

framed variation by passing to a cover of M , or by restricting to a contractible

open subset U ⊂ M . A framed variation of BPS structures (Ŵ, Z p, �p) over

a manifold M gives rise to a holomorphic map

π : M → HomZ(Ŵ, C) ∼= Cn, p �→ Z p, (50)

which we call the period map. The variation will be called miniversal if this

map is a local isomorphism. A general variation will be called miniversal if

the framed variations obtained by restricting to small open subsets of M are

miniversal.

A.7 Behaviour of BPS invariants

Condition (V4) in Definition A.2 completely describes the variation of the

BPS (or equivalently DT) invariants: if one knows the �p(γ ) at some point

p ∈ M then they are uniquely determined at all other points p ∈ M . This

statement follows immediately from the following result.

Lemma A.3 Given a BPS structure (Ŵ, Z , �), the element

S(
) =
∏

ℓ⊂


S(ℓ) ∈ Ĝ


determines the invariants �(γ ) for all classes γ ∈ Ŵ satisfying Z(γ ) ∈ 
.

Proof Suppose that 
 is the disjoint union of two subsectors 
 = 
+ ⊔
−
where we make the convention that 
+ lies in the anti-clockwise direction.

There is an obvious decomposition

ĝ
 = ĝ
+ ⊕ ĝ
− .

It follows from this that each element g ∈ Ĝ
 decomposes uniquely as a

product g = g+ · g− with g± ∈ Ĝ
± . But the obvious relation

S(
) = S(
+) · S(
−),

gives an example of such a decomposition, so by uniqueness it follows that

S(
) determines the elements S(
±).
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The product (46) can be thought of as corresponding to a decomposition of 


into a finite number of subsectors, each containing a single ray of height < N .

Applying the first part repeatedly therefore shows that S(
)<N determines

each element S(ℓ)<N for rays ℓ ⊂ 
. Since this holds for arbitrarily large

N it follows that S(
) determines the elements S(ℓ) for all such rays. But

the elements S(ℓ) faithfully encode the invariants DT(γ ) for classes γ ∈ Ŵ

satisfying Z(γ ) ∈ ℓ, so the result follows. ⊓⊔

Remark A.4 Suppose given a framed variation of BPS structures (Ŵ, Z p, �p)

over a manifold M such that at some point (and hence at all points) p ∈ M the

form 〈−,−〉 = 0 vanishes. Then the Lie algebras ĝ
 are abelian, and hence

so too are the associated groups Ĝ
. It follows that the wall-crossing formula

is satisfied if all elements Sp(ℓ) are taken to be constant as p ∈ M varies. It

follows from Lemma A.3 that the BPS invariants �p(γ ) = �(γ ) are constant.

One can also easily see the following statement: suppose given a framed

variation of BPS structures (Ŵ, Z p, �p) over a manifold M . Then for any

fixed class γ ∈ Ŵ there is a locally-finite collection of codimension one real

submanifolds Wi ⊂ M such that the invariant �(γ ) is constant on the open

complement

M\
⋃

Wi . (51)

The submanifolds Wi are called walls for the class γ , and the connected

components of the complement (51) are called chambers.

Appendix B. Convergent BPS structures

The aim of this section is to prove the claims made in Sect. 4.1 that enable

one to view the BPS automorphisms of a convergent BPS structure as being

partially-defined automorphisms of the twisted torus.

B.1 Convergent BPS structures

Recall from Sect. 2.6 that a BPS structure (Ŵ, Z , �) is called convergent if

there exists R > 0 such that

∑

γ∈Ŵ
|�(γ )| · e−R|Z(γ )| <∞. (52)

Let us fix an arbitrary norm ‖·‖ on the finite-dimensional vector space Ŵ⊗ZR.

Then we can find k1 < k2 such that for any active class γ ∈ Ŵ there are
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inequalities

k1 · ‖γ ‖ < |Z(γ )| < k2 · ‖γ ‖. (53)

The first inequality is the support property and requires the assumption that

γ ∈ Ŵ is active, whereas the second is just the fact that the linear map Z : Ŵ⊗Z

R→ C has bounded norm. It follows that in expressions such as (52), which

are sums over active classes, we can equally well use ‖γ ‖ or |Z(γ )| in the

exponential factor.

Lemma B.1 Let (Ŵ, Z , �) be a convergent BPS structure and choose a norm

‖ · ‖ as above. Then for any ǫ > 0 there is an R > 0 such that

∑

γ∈Ŵ
‖γ ‖p · |DT(γ )| · e−R‖γ ‖ < ǫ, (54)

for each integer p ∈ {0, 1, 2}.

Proof Clearly it is enough to prove the result for each p ∈ {0, 1, 2} separately,

so we can consider p fixed. For x ≫ 0 there is an inequality

x p

e2x − 1
< e−x .

By the discussion above, we can take S > 0 so that the inequality (52) holds

with R = S and |Z(γ )| replaced with ‖γ ‖ in the exponential factor. The

numbers ‖γ ‖ are bounded below so increasing S if necessary we can assume

that

S p‖γ ‖p ·
(

e2S‖γ ‖ − 1
)−1

< e−S‖γ ‖ < 1,

for all classes γ ∈ Ŵ. Taking R = 2S and using the definition of DT invariants

(2) gives

∑

γ∈Ŵ
‖γ ‖p · |DT(γ )| · e−R‖γ ‖ =

∑

γ∈Ŵ

∑

n≥1

1

n2
· ‖nγ ‖p · |�(γ )| · e−2nS‖γ ‖

≤
∑

γ∈Ŵ
‖γ ‖p · |�(γ )| · e−2S‖γ ‖

1− e−2S‖γ ‖ < S−p ·
∑

γ∈Ŵ
|�(γ )| · e−S‖γ ‖ <∞.

Since the numbers ‖γ ‖ appearing in the exponential factor are bounded below,

by increasing R we can ensure that this sum is smaller than any given ǫ > 0.

⊓⊔
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B.2 Partially defined automorphisms

Let (Ŵ, Z , �) be a BPS structure, and fix a convex sector 
 ⊂ C∗. As above,

we also fix a norm ‖ · ‖ on the vector space Ŵ⊗Z R. In the next subsection we

will be interested in controlling Hamiltonian flows of functions on the twisted

torus T of the form DT(γ ) · xγ , for those classes γ ∈ Ŵ satisfying Z(γ ) ∈ 
.

Thus it makes sense to define, for each real number R > 0, a subset

V
(R) =
{

ξ ∈ T : γ ∈ Ŵ active with Z(γ ) ∈ 
 �⇒ |xγ (ξ)| < exp(−R‖γ ‖)
}

.

It is not clear that the subset V
(R) ⊂ T is open in general, so we define

U
(R) to be its interior. We note the obvious implications

R2 ≥ R1 �⇒ U
(R2) ⊆ U
(R1), 
2 ⊇ 
1 �⇒ U
2(R) ⊆ U
1(R).

We think of the open subsets U
(R) ⊂ T as forming a system of neighbour-

hoods of the boundary in some fictitious partial compactification of T.

Lemma B.2 The open subset U
(R) = int V
(R) ⊂ T is non-empty.

Proof Take an element z ∈ 
. Since 
 is acute we can find a constant k > 0

such that

Z(γ ) ∈ 
 �⇒ Re
(

Z(γ )/z
)

> k · |Z(γ )|.

Take a point ξ ∈ T. Using the support property, we conclude that for any active

class γ ∈ Ŵ with Z(γ ) ∈ 
, and all real numbers S > 0, there are inequalities

|e−SZ(γ )/z · ξ(γ )| = e−S Re(Z(γ )/z) · |ξ(γ )| < e−kS|Z(γ )| · |ξ(γ )|
< e−cS‖γ ‖ · |ξ(γ )|,

for some universal constant c > 0. Since the numbers ‖γ ‖ are bounded below,

it follows that the element e−SZ/z · ξ ∈ T lies in the subset V
(R) for suffi-

ciently large S > 0. The argument applies uniformly to all elements ξ lying in

a compact subset of T, so we conclude that V
(R) has non-empty interior. ⊓⊔
Let us define a 
-map germ to be an equivalence class of holomorphic

maps of the form f : U
(R)→ T, where two such maps fi : U
(Ri )→ T are

considered to be equivalent if they agree on the intersection U
(max(R1, R2))

of their domains. Thus a 
-map germ gives a partially-defined holomorphic

map f : T ��� T which is well-defined on the open subset U
(R) ⊂ T for all

sufficiently large R > 0. A 
-map germ f will be called bounded if for any

ǫ > 0 one has

f (U
(R + ǫ)) ⊂ U
(R) (55)
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for all sufficiently large R > 0.

It is clear from (55) that composition of such maps is well-defined and

hence gives the set of bounded 
-map germs the structure of a monoid. We

write Aut
(T) for the group of invertible elements in this monoid, and call the

elements of this group invertible bounded 
-map germs. Elements of Aut
(T)

give partially-defined holomorphic maps f : T ��� T with partially-defined

inverses, and hence give a precise meaning to the idea of a partially-defined

automorphism of T.

B.3 BPS automorphisms

Let (Ŵ, Z , �) be a convergent BPS structure and fix a convex sector 
 ⊂ C∗.
Recall the definition of the formal series DT(ℓ) associated to a ray ℓ ⊂ C∗

from Sect. 2.5. In this section we show that this series is absolutely convergent

on suitable open subsets of T and that the Hamiltonian flow of the result-

ing holomorphic function gives a partially-defined automorphism of T in the

precise sense described in the last subsection.

Proposition B.3 For all sufficiently large R > 0 the following statements

hold. For each ray ℓ ⊂ 
, the power series DT(ℓ) is absolutely convergent on

U
(R), and hence defines a holomorphic function

DT(ℓ) : U
(R)→ C.

Moreover the time 1 Hamiltonian flow of this function gives a holomorphic

map

S(ℓ) : U
(R)→ T

which defines an invertible, bounded 
-map germ.

Proof Take assumptions as in the statement and choose ǫ > 0. For convenience

we choose the norm ‖·‖ on ŴZ⊗R so that for all β, γ ∈ Ŵ there is an inequality

|〈β, γ 〉| < ‖β‖ · ‖γ ‖. (56)

Take R > 0 satisfying the conclusion of Lemma B.1. Thus for each ray ℓ ⊂ 


we can choose M(ℓ) > 0 such that

∑

Z(γ )∈ℓ
‖γ ‖p · |DT(γ )| · e−R‖γ ‖ < M(ℓ), (57)
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for each p ∈ {0, 1, 2}, and such that

∑

ℓ⊂


M(ℓ) < ǫ. (58)

Since the ‖γ ‖ are bounded below, the p = 0 case of (57) immediately

implies that for each point ξ ∈ U
(R)

∑

Z(γ )∈ℓ
|DT(γ )| · |xγ (ξ)| <

∑

Z(γ )∈ℓ
|DT(γ )| · e−R‖γ ‖ <∞, (59)

which proves that DT(ℓ) is absolutely convergent.

The Hamiltonian flow of DT(ℓ) is defined by the differential equation

dxβ

dt
= {DT(ℓ), xβ} = xβ ·

∑

Z(γ )∈ℓ
DT(γ ) · 〈γ, β〉 · xγ . (60)

Using (56) it follows that providing the flow stays in U
(R) it satisfies

∣

∣

∣

d

dt
log xβ

∣

∣

∣
≤
∑

Z(γ )∈ℓ
|DT(γ )| · ‖β‖ · ‖γ ‖ · e−R‖γ ‖ < M(ℓ) · ‖β‖. (61)

Let us consider an integral curve φ(t) for this flow which starts at some point

φ(0) ∈ U
(R + ǫ). We claim that this curve extends to all times t ∈ [0, 1]
and remains in U
(R). It follows from this that the time 1 Hamiltonian flow

S(ℓ) exists, and defines a holomorphic map

S(ℓ) : U
(R + ǫ)→ U
(R).

Since we can make ǫ > 0 arbitrarily small by increasing R > 0, the resulting


-map germ is bounded. Considering the opposite flow then shows that the

map is invertible, which completes the proof of Proposition B.3.

To prove the claim, let us define t0 ∈ [0, 1] to be the supremum of s ∈ [0, 1]
such that the integral curve φ(t) can be extended to a map φ : [0, s] → U
(R).

We obtain an integral curve φ : [0, t0)→ U
(R). Equation (61) implies that

e−M(ℓ)·‖β‖ · |xβ(φ(0))| ≤ |xβ(φ(t))| ≤ eM(ℓ)·‖β‖ · |xβ(φ(0))| (62)

for 0 ≤ t < t0. Thus the flow stays in the compact subset of T defined by these

inequalities, and hence extends to a flow φ : [0, t0] → T. Applying (62) to the

active classes β ∈ Ŵ then shows that φ(t0) ∈ U
(R). But now local existence

of solutions to (60) shows that we can extend the flow a little further, which

contradicts the definition of t0 unless t0 = 1. This proves the claim. ⊓⊔
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B.4 Compositions of BPS automorphisms

Let (Ŵ, Z , �) be a convergent BPS structure and fix a convex sector 
 ⊂ C∗.
Fix ǫ > 0 and take R > 0 as in Lemma B.1. Recall the notion of the height of

a ray from Sect. 2.5. For each ray ℓ ⊂ 
 define M(ℓ) > 0 as in the proof of

Proposition B.3 so that (57) and (58) hold. Note that if a ray has height > H

then by the second inequality in (53) we have ‖γ ‖ > H/k2 for all nonzero

terms in the sum (57). It follows that by increasing R we can assume that for

all H > 0

∑

H(ℓ)>H

M(ℓ) < ǫ · e−H . (63)

The proof of Proposition B.3 shows that for each S > R and each ray ℓ ⊂ 


the map S(ℓ) gives a well-defined embedding U
(S + M(ℓ))→ U
(S). For

each H > 0, the composition in clockwise order of the 
-map germs S(ℓ)

corresponding to the finitely many rays ℓ ⊂ 
 of height≤ H therefore gives a

well-defined map U
(R + ǫ)→ U
(R), and hence a bounded 
-map germ

S(
)≤H =
∏

H(ℓ)≤H

S(ℓ) ∈ Aut
(T).

The remaining task is to make sense of the limit of this map germ as H →∞.

Suppose that a 
-map germ f is well-defined on the open subset U
(R) ⊂
T. We define the R-norm of f to be the infimum of the real numbers K > 0

such that for all β ∈ Ŵ and all ξ ∈ U
(R)

e−K ·‖β‖ |xβ(ξ)| ≤ |xβ( f (ξ))| ≤ eK ·‖β‖ |xβ(ξ)|.

The proof of Proposition B.3 shows that the 
-bounded map germ S(ℓ) is

well-defined on U
(R + ǫ) and has norm < M(ℓ) there.

Lemma B.4 Suppose given a sequence of invertible 
-bounded map germs

fn ∈ G
(T), all defined on a fixed U
(R), and such that the R-norm d(m, n)of

the composite f −1
n ◦ fm goes to zero as min(m, n)→∞. Then the holomorphic

maps fn have a uniform limit, which is itself an invertible 
-bounded map

germ, and hence defines a limiting element f∞ ∈ G
(T).

Proof By definition, for any ξ ∈ U
(R) we have

e−d·‖β‖ |xβ( fm(ξ))| ≤ |xβ( fn(ξ))| ≤ ed·‖β‖ |xβ( fm(ξ))|,

where d = d(m, n). Thus the xβ( fn(ξ)) converge uniformly on compact

subsets. ⊓⊔
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Proposition B.5 The 
-map germs S(
)≤H have a well-defined limit

S(
) = lim
H→∞

S(
)≤H ∈ Aut
(T).

Proof Let us consider two finite compositions P1 and P2 of the maps S(ℓ)

with ℓ ⊂ 
 as above, which differ by the insertion of one extra term. Thus the

two products can be written in the form P1 = AC and P2 = ABC with

A =
∏

i

S(ℓi ), B = S(ℓ j ), C =
∏

k

S(ℓk).

The composite map germ X = P2 P−1
1 is well-defined on U
(R + 2ǫ). We

claim that it has norm < 2M(ℓ j ) there. Given heights H2 > H1 > 0 we can

apply the claim repeatedly and use (63) to deduce that

S(
)≤H2 = S(
)≤H1 ◦ X (H1, H2),

where X (H1, H2) has norm at most 2ǫ · e−H1 . The result then follows from

Lemma B.4.

To prove the claim, note first that X = AB A−1 is also the time 1 flow

of a vector field on T, namely the Hamiltonian vector field of the function

DT(ℓ j )◦ A−1 pushed forward by the map A. We can therefore apply the same

argument as in Proposition B.3 provided we can bound the norm of this vector

field as in (61). To do this it is enough to bound the norm of the difference

between the derivative of the map A and the identity at points of U
(R). This

in turn is achieved by the same argument as Proposition B.3 using the p = 2

case of inequality (57). We leave the details to the reader. ⊓⊔

B.5 Birational transformations

The following example was first observed by Kontsevich and Soibelman [21,

Section 2.5]. Suppose that a ray ℓ contains a single active class γ , and that

moreover �(γ ) = 1. The series DT(ℓ) is then the dilogarithm

DT(ℓ) =
∑

n≥1

xnγ

n2
=
∑

n≥1

xn
γ

n2
.

This converges absolutely for |xγ | < 1 and hence defines a holomorphic

function on the open subset

U (R) =
{

f ∈ T : | f (γ )| < e−R
}

⊂ T,
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for any R > 0. The argument of Proposition B.3 shows that the associated

time 1 Hamiltonian flow S(ℓ) is well-defined on U (R), and indeed we can

directly compute

S(ℓ)∗(xβ) = exp

⎧

⎨

⎩

∑

n≥1

xn
γ

n2
,−

⎫

⎬

⎭

(xβ) = xβ · exp

⎛

⎝

∑

n≥1

xn
γ

n2
· 〈nγ, β〉

⎞

⎠

= xβ · exp
(

〈β, γ 〉 log(1− xγ )
)

= xβ · (1− xγ )〈β,γ 〉.

Thus the map S(ℓ) extends holomorphically to the Zariski open subset of T

which is the complement of the divisor xγ = 1. It therefore defines a birational

automorphism of T.

Proposition B.6 Suppose that (Ŵ, Z , �) is a generic, integral and ray-finite

BPS structure. Then for any ray ℓ ⊂ C∗ the BPS automorphism S(ℓ) extends

to a birational automorphism of T, whose action on twisted characters is given

by

S(ℓ)∗(xβ) = xβ ·
∏

Z(γ )∈ℓ
(1− xγ )�(γ )·〈β,γ 〉. (64)

Proof The argument of Proposition B.3 shows that the automorphism S(ℓ) is

well-defined on a suitable open subset of T. Under the generic assumption the

Hamiltonian flows of the characters appearing in the function DT(ℓ) commute,

so we can compute as before

S(ℓ)∗(xβ) = exp

⎧

⎨

⎩

∑

Z(γ )∈ℓ

∑

n≥1

�(γ ) ·
xn
γ

n2
,−

⎫

⎬

⎭

(xβ)

= xβ · exp

⎛

⎝

∑

n≥1

∑

Z(γ )∈ℓ
�(γ ) ·

xn
γ

n2
· 〈nγ, β〉

⎞

⎠

= xβ · exp

⎛

⎝

∑

Z(γ )∈ℓ
〈β, γ 〉�(γ ) log(1− xγ )

⎞

⎠

= xβ ·
∏

Z(γ )∈ℓ
(1− xγ )�(γ )·〈β,γ 〉.

When the invariants �(γ ) are integers this is clearly a birational automorphism

of T. ⊓⊔
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