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Abstract

Genes of the immune system are generally considered to evolve rapidly due to host–parasite coevolution. They are therefore

of great interest in evolutionary biology and molecular ecology. In this study, we manually annotated 144 avian immune

genes from the zebra finch (Taeniopygia guttata) genome and conducted evolutionary analyses of these by comparing them

with their orthologs in the chicken (Gallus gallus). Genes classified as immune receptors showed elevated dN/dS ratios

compared with other classes of immune genes. Immune genes in general also appear to be evolving more rapidly than other

genes, as inferred from a higher dN/dS ratio compared with the rest of the genome. Furthermore, ten genes (of 27) for which
sequence data were available from at least three bird species showed evidence of positive selection acting on specific

codons. From transcriptome data of eight different tissues, we found evidence for expression of 106 of the studied immune

genes, with primary expression of most of these in bursa, blood, and spleen. These immune-related genes showed a more

tissue-specific expression pattern than other genes in the zebra finch genome. Several of the avian immune genes

investigated here provide strong candidates for in-depth studies of molecular adaptation in birds.
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Introduction

Genes of the immune system have been found to show

signatures of positive selection in genome-wide scans

(Nielsen et al. 2005; Wang et al. 2006; Axelsson et al.

2008). The selection has generally been attributed to an

evolutionary arms race between parasites and hosts. How-

ever, the kind of selection observedwill often differ between
different classes of immune genes and within individual loci

(Mukherjee et al. 2009). Gene duplications that ultimately

result in large multigene families are also common in genes

involved in disease resistance, such as major histocompati-

bility (MHC) genes, toll-like receptors, and antimicrobial

peptides (Nei et al. 1997; Wong et al. 2007; Hughes and

Piontkivska 2008), again implying a significant role of selec-

tion in shaping immune genes. These genes have therefore
received considerable attention in evolutionary biology and

molecular ecology as candidates for local adaptation and for

studying functionally important polymorphism.

In recent years, the focus of molecular ecology and

conservation genetics has shifted from classical studies of

selectively neutral variation to studies of functionally

important genes (Sommer 2005; Piertney and Webster

2010). Many studies that have used such a candidate gene

approach to study these topics in vertebrates have investi-

gated variation in MHC genes and have especially focused

on the antigen peptide–binding exons of MHC class I and

class IIb genes (see e.g., Edwards et al. 2000; Sommer

et al. 2002; Aguilar et al. 2004; Kurtz et al. 2004; Ekblom

et al. 2007; Westerdahl 2007; Alcaide et al. 2008; Babik

et al. 2008; Burri et al. 2008; Hale et al. 2009). MHC genes

are important in vertebrate immune defense and have been

investigated in order to answer a range of ecologically

important questions. However, it has been argued that

focusing on only one or a few specific immune genes (like

the MHC) may not give a very complete picture of genetic

variation of the complex vertebrate immune system

(Acevedo-Whitehouse and Cunningham 2006). One of

the strategies suggested to change this picture is to survey

variation in a large number of immune candidate genes; for

example, in mosquitoes (Waterhouse et al. 2007), salmon

(Tonteri et al. 2010), and Drosophila (Obbard et al. 2009).

However, multicandidate gene studies have been unrealistic
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in birds due to the lack of comparative genomic information
(Edwards 2007); until recently the domestic chicken (Gallus
gallus) was the only bird with a characterized genome

(International Chicken Genome Sequencing Consortium

2004). Recently, the second bird genome, that of the zebra

finch (Taeniopygia guttata), was released (Warren et al.

2010), opening up this field for avian research (Ellegren

2007; Clayton et al. 2009). This resource, together with ad-

vances in sequencing technology (Hudson 2008; Morozova
and Marra 2008), now facilitates the multicandidate gene

approach for studying avian immune genes.

Complementary to the molecular evolution approach is

the idea of examining variation in gene expression between

tissues, individuals, populations, and even species. Tradition-

ally, gene expression studies were conducted using microar-

rays and were largely restricted to genetic model species

(see e.g., Nuzhdin et al. 2004; Rottscheidt and Harr
2007). The use of massively parallel pyrosequencing means

that it is now feasible to get data on both gene sequence

and gene expression from transcriptomes of nonmodel or-

ganisms very quickly and at a reasonable cost (Vera et al.

2008). This high-throughput digital transcriptomics ap-

proach, known as RNA-Seq (Wang et al. 2009) has received

a lot of attention in recent years, and its application will

increase further with new technological advances in
sequencing chemistry and bioinformatics.

Immune genes differ extensively in their expression pat-

tern with certain genes, for example, MHC class II, being
expressed only in specialized immune tissues, whereas

others, such as MHC class I, have equal expression in most

tissues (Roitt 1997). Some genes are expressed at all times,

whereas others are only turned on or are upregulated fol-

lowing a specific infection (Wang et al. 2006). Variation
in expression of specific genes between individuals may

contribute substantially to resistance or susceptibility to

infection (Schadt et al. 2005; Dixon et al. 2007).

Here, we investigate molecular evolution on avian im-

mune genes by comparing chicken and zebra finch coding

sequences (CDSs). The rate of nonsynonymous (dN) and syn-

onymous (dS) nucleotide substitutions of immune genes is

contrasted against the genome-wide rate, and substitution
rates are also compared between different classes of im-

mune genes, to find out what categories of genes involved

in different parts of the immune response are most rapidly

evolving. There may be tendency for dN/dS ratios to become

unreliable over large evolutionary distances (such as our ze-

bra finch–chicken comparison) due to saturation of the dS
(Smith JM and Smith NH 1996). There is also a risk for dN/dS
to be underestimated for distant comparisons if rapidly
evolving genes are systematically excluded from the analy-

ses due to the difficulty of correctly aligning and annotating

them. However, such methods to infer signatures of selec-

tion have been widely used in the past (Ellegren 2008) and

have been shown to yield informative results (e.g., Künstner

et al. 2010). Furthermore, simulations have shown that like-
lihood tests (such as used here) to detect selection in deep

lineages of vertebrates are generally robust against this

problem (Studer et al. 2008). We also describe tissue-

specific expression patterns of zebra finch immune genes

using a next-generation digital transcriptomic approach;

RNA-Seq (Nagalakshmi et al. 2008; Wang et al. 2009).

These analyses are performed on a data set of 144 man-

ually annotated immune genes. Because the nomenclature
of immune genes can sometimes be particularly confusing

with several names being used for a single gene, we provide

an extensive list of alternative names of these genes in ad-

dition to the official symbol (supplementary Appendix 1,

SupplementaryMaterial online).Manual annotation is a slow

process, which is not feasible for a whole genome (Curwen

et al. 2004). Instead, genomes are primarily annotated via

automated systems, and the accuracy of these predictions
is important for downstream analysis (Altenhoff and

Dessimoz 2009). The incorrect alignment of genes increases

the risk of falsely detecting positive selection (Hughes and

Friedman 2008; Mallick et al. 2009; Schneider et al.

2010). Therefore, we also compare the results obtained

from the analysis of manually annotated genes with

data from the same genes generated by automated gene

predictions available in the Ensembl database.

Materials and Methods

Compiling a List of Avian Immune Genes

We made an extensive search of the scientific literature for
genes that have been described as being important to the

bird immune response and disease resistance. Most of these

studies have been performed on chicken, but a few have

also investigated immune genes in other species (for

references see supplementary Appendix 1, Supplementary

Material online), such as duck (Anas platyrhynchos) and

quail (Coturnix sp.). In addition, we also searched the

NCBI Entrez Gene database for chicken genes containing
gene ontology terms associated with immune response

(‘‘immune response,’’ ‘‘inflammatory,’’ ‘‘resistance,’’ ‘‘B cell,’’

and ‘‘T cell’’).

Search for Homologs of Chicken Immune Genes in
the Zebra Finch Genome

The zebra finch genome sequence (version 3.2.4) was

downloaded from the Washington University Genome

Sequencing Center web site (http://genome.wustl.edu/).

The nucleotide CDS and protein amino acid sequence for
each of the identified chicken immune genes were down-

loaded from the NCBI gene site (http://www.ncbi.nlm.nih

.gov/gene/). The zebra finch genome was searched for

homologues to these sequences using version 2.2.18 of

stand-alone BlastN and TBlastN (Altschul et al. 1997). For
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rapidly evolving multigene families (like MHC), we aligned
the CDS for several species of birds and mammals. Con-

served regions within each of the exons were then used

to search (TBlastN) for the orthologous regions of the zebra

finch genome.

Aligning and Annotating Zebra Finch Immune
Genes

Regions of the zebra finch genome (usually 20 kbp sur-

rounding the location of the Blast hit) with significant Blast

hits (e value , 1 � 10�10) against chicken immune genes

were aligned to each exon of the chicken gene using Clus-
talW (Thompson et al. 1994). The alignments were then

carefully manually checked using BioEdit (Hall 1999), for ex-

ample, exon–intron boundaries were verified (and shifted

where appropriate) using the GT-AG rule (in the cases where

this criterion was fulfilled in the chicken equivalent); start

and stop codons were verified in the first and last exon; in-

dividual exons were removed if there was no clear match in

the zebra finch genome sequence; and frame shifting gaps
were corrected if possible and exons with frame shifting

gaps that could not be corrected were removed. The zebra

finch CDS was then constructed by combining the different

identified exons. This was Blasted back against the chicken

genome, and the principle of best reciprocal Blast hit was

used to determine if the two sequences were orthologs

(Overbeek et al. 1999). For each confirmed orthologous pair

of chicken and zebra finch genes, the CDSs were then
aligned using ClustalW and checked manually (in a few

cases, gaps were manually introduced or removed at this

stage to improve the alignment) before performing down-

stream analyses. In total, 144 zebra finch–chicken orthologs

were annotated in this study. For 25 of the genes, auto-

mated zebra finch gene predictions were downloaded di-

rectly from the NCBI gene database and used as

guidance (e.g., to locate exon–intron boundaries) in the an-
notation process (note that these genes were not used in the

analysis comparing manual annotation and Ensembl gene

prediction).

Evolutionary Analyses

The Codeml application in PAML4 (Yang 2007), run using

the IDEA interface (Egan et al. 2008), was used to perform

evolutionary analysis of immune genes. For pairwise analy-

ses (using only data from zebra finch and chicken), runmode

was set to �2 and NSsites to 0. The x values (dN/dS) were

then averaged over all identified immune genes and

compared with the genome-wide x value obtained by
downloading data on zebra finch–chicken orthologs genes

from Ensembl (version 57) BioMart (http://www.ensembl

.org/biomart/martview/). dN/dS data from 14,800 zebra

finch–chicken orthologs (the most similar zebra finch

ortholog for each chicken gene) were used for this compar-

ison. We also compared our x values with those obtained
in a whole-transcriptome analysis of zebra finch brain ex-

pressed sequence tags (ESTs) (Axelsson et al. 2008). Note

that the brain EST data set may be biased toward evolution-

ary conserved genes, if these are more likely to be expressed

in brain. Theremay also be a slight similar bias in the genome-

wide BioMart data set if conserved genes aremore likely to be

annotated in both chicken and zebra finch compared with

fast evolving genes.
For genes where we had sequence data from more than

two species of birds, we also performed Codeml analyses

using runmode 0 and NSsites models 1, 2, 7, and 8. NSsites

1 and 7 represent models of neutral evolution, whereas

models 2 and 8 allow for positive selection (x . 1) on parts

of the gene. To test for signs of positive selection, a likelihood

ratio test (LRT) was performed (using IDEA) betweenmodels

1 and 2 and between models 7 and 8. If evidence of positive
selection was found in a gene (model 2 or 8 better fitting the

data compared with model 1 or 7), sites within that gene

under selection (using the best model) were identified using

the Bayes empirical Bayes approach in PAML (Yang 2007). In

addition, sites evolving under positive selection were also

identified in genes with sequences from three or more

species using the random effects likelihood method imple-

mented in the HyPhy software (Pond et al. 2005), through
the Datamonkey web interface (Pond and Frost 2005).

Codon-wise x and posterior probabilities of positive selec-

tion across genes were inferred using omegaMap version

0.5 (Wilson and McVean 2006) and plotted using R 2.7.2

(R Development Core Team 2008). The analysis was run

twice for each gene for 75,000 generations. After discard-

ing the first 5,000 generations as ‘‘burn-in,’’ the two inde-

pendent runs of each locus were assessed manually for
convergence and then combined.

Functional Categories of Immune Genes

To compare signatures of selection and expression between

different categories of immune genes, our manually anno-

tated genes were classified according to their specific func-

tion. Information on functional categories was extracted
from the IRIS database (Kelley et al. 2005). This database

places each immune gene into one or more of the following

22 functional categories: Functions in innate immunity, in-

flammation, coagulation, complement, phagocytosis, in-

nate killing (including natural killer [NK] cell function),

chemotaxis/cell adhesion, cytokine/chemokine, adaptive

immunity, cellular immunity (including immune-related ap-

optosis), humoral immunity (including antibody-related
genes and B cell function), antigen processing, pathways

or signaling that result in expression of immune molecules,

development of immune system (including receptor forma-

tion), hematopoiesis (and maturation/selection), induced by

immunomodulator, expressed primarily in immune tissues,
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involved in immunodeficiency, involved in autoimmunity, as-
sociatedwith other disease, immune receptor, and other pu-

tative immune function. Testing for differences of x
between genes in the various categories were performed

using a linear regression model (lm function in R), with

ranked pairwise x as response variable and fitting presence

or absence in each of the functional categories for all genes

as separate effects.

Expression Profiling of Zebra Finch Immune Genes

Expression levels of the manually annotated zebra finch im-

mune genes were analyzed using a digital transcriptomics

approach (RNA-Seq;Wang et al. 2009). Roche 454 sequenc-

ing data from cDNA libraries of eight different tissues

(blood, bursa, embryo, liver, muscle, skin, spleen, and testes)

were trimmed and assembled using NGen 2.0 (DNASTAR,
Inc.). In total, 2,020,514 sequence reads were entered

into the assembly. The cDNA came from pools of six differ-

ent adult zebra finch individuals form the captive population

at the University of Sheffield (Stapley et al. 2008), except for

the blood which was derived from only one individual and

the bursa which came from a pool of four 18-day-old chicks.

For details about library construction and sequence assem-

bly, see Ekblom et al. (2010). The sequence reads entered
into the assembly are available from the NCBI trace archive

(http://www.ncbi.nlm.nih.gov/Traces/home/).

The nucleotide CDSs for each of the manually annotated

zebra finch immune genes were Blasted (BlastN) against all

contigs (n 5 49,606) and singletons (n 5 1,298,597) from

the 454 sequence assembly. The best hit (with an e value

smaller than 1 � 10�10) for each contig and singleton were

kept as immune gene candidates and Blasted back (recipro-
cal BlastN) against the full data set of zebra finch gene pre-

dictions (ftp://ftp.ncbi.nih.gov). Ninety-four contigs and

1,182 singletons gave significant (e , 1 � 10�10) best

reciprocal Blast hits against one of the immune genes

examined here, representing a total of 106 different genes.

For each gene, the numbers of reads from contigs and

singletons were counted for each tissue separately. Expres-

sion of each gene in every tissue, calibrated for transcript
length was defined as the number of reads per million

per kilobase (RPKM), according to the method in Mortazavi

et al. (2008). The index of tissue specificity of expression (s)
(Yanai et al. 2005) was calculated according to Mank et al.

(2008). Theoretically, s ranges from 0 to 1 with low numbers

indicating even expression over the sampled tissues and

high numbers being obtained for genes expressed in only

one tissue. The s index for immune genes was contrasted
against s calculated from all zebra finch genes, from Ekblom

et al. (2010). Only expression data from the six tissues inves-

tigated by Ekblom et al. (2010) were used in this compari-

son. The tissue of maximal expression was defined as the

tissue with the highest RPKM for the gene in question.

Comparison of Manual Annotation and Ensembl
Data

To evaluate the automatic gene annotation in Ensembl, the

x values for zebra finch–chicken comparisons of immune
genes were compared with our manually calculated omega

values for the same genes. For the zebra finch immune

genes that were annotated without using a priori informa-

tion from automated zebra finch gene predictions, we

downloaded dN and dS values from the Ensembl database

(release 54) using the BioMart web interface (http://

www.ensembl.org/biomart/martview). For genes with more

than one zebra finch ortholog on Ensembl, the pair with
least sequence difference (minimum dN þ dS) was selected.

Statistical Analyses

Because the dN/dS ratios of genes were generally not

normally distributed, nonparametric statistics were used
in tests including this parameter. Statistical analyses and the

handling of large data files were performed using R 2.7.2

(R Development Core Team 2008).

Results

Evolutionary Analyses of Zebra Finch Immune
Genes

A total of 144 chicken–zebra finch immune genes orthologs
were found using our manual annotation (Appendix 1 and

2). Pairwise dN/dS (x) values varied from 0.0001 to 1.5, with

a median value of 0.134. This was significantly higher than

the x obtained for all genes in the genome (median 5

0.105, Mann–Whitney U (MWU) test, W 5 93,6134, P 5

0.01, fig. 1). Thex values of immune genes were also higher

than the whole-genome values calculated from zebra finch

brain ESTs (Axelsson et al. 2008) (median 5 0.061, MWU
test,W5 24,7158, P, 0.0001, fig. 1). The median dS value
for all immune genes was 0.52 with the third quartile also

below one suggesting that substitution saturation between

chicken and zebra finch is probably not a big problem for

analyses of most of the genes studied here.

For 27 immune genes, sequence information was avail-

able from three or more bird species. In these cases, we also

tested for positive selection acting on one or more codons in
each gene. Six of these genes (21%) showed evidence for

selection in the PAML analysis (LRT, P , 0.05, table 1), with

the number of codons under selection varying from 1 to 10.

In the HyPhy analysis, an additional four genes were

identified as having sites under positive selection with the

number of identified codons ranging between 2 and 16

(table 1). For plots of codon-wise x and posterior probability

of positive selection across the length of these genes, see
supplementary Additional figures 1–10 (Supplementary

Material online).
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Analysis of Functional Categories of Immune
Genes

There was information on the functional category available

in the IRIS database for 103 immune genes identified in the

zebra finch. Genes in the category ‘‘immune receptor’’ had

significantly higher dN/dS ratios than other immune genes
included in this study (Table 2). There was also a tendency

for genes in the category ‘‘expressed primarily in immune

tissues’’ to have higher dN/dS ratios, whereas genes in the

categories ‘‘cytokines and chemokines’’ and ‘‘transcription

factor’’ tended to have lower than average dN/dS ratios
(Table 2).

Expression Profiling of Immune Genes

Expression levels of immune genes were estimated using

RNA-Seq data from eight different tissues. The average con-
tig length was only 150 bp but still about 65% of the zebra

finch transcriptome was covered (Ekblom et al. 2010). We

found evidence for expression of 106 of the 144 genes re-

lated to the immune system investigated in this study. Im-

mune genes were expressed in a more tissue-specific

manner (mean s 5 0.54) than other genes (mean s 5

0.49) in the genome (t 5 2.35, degrees of freedom [df] 5

60.2, P 5 0.022). Most immune genes were mainly
expressed in bursa, blood, and spleen, whereas only

a few immune genes had primary expression in muscle, em-

bryo, and skin (Table 3). The index of tissue specificity of

gene expression (s) was negatively correlated with (log) total

expression level (rP 5 �0.541, df 5 67, P , 0.0001, fig. 2).

Thus, genes with high tissue specificity in expression (indi-

cating a more specific function) generally appeared to be

expressed at a lower level than genes with more even ex-
pression levels across the sampled tissues (indicating a more

general function).

Comparison between Manual Annotation and
Ensembl Automatic Annotation

A total of 119 zebra finch–chicken orthologs for immune

genes were identified without using any a priori information

from automated zebra finch gene predictions. For 95 of

these zebra finch–chicken orthologs, gene pairs had also

been identified by the automated Ensembl gene prediction
pipeline. We found a very strong positive correlation be-

tween x values obtained from the manual annotation

Table 1

Genes with Data from At Least Three Bird Species that Were Identified as Targets of Positive Selection

Gene Symbol

Number

of Bird

Species v2 P value

Number (and identity)

of Positively Selected

Sites, from PAML

Number (and identity)

of Positively Selected

Sites, from HyPhy

BLB2 (MHCIIB) 9 118.605 ,0.0001 10 (34–37, 81, 91, 94, 95, 97, 101) 7 (36, 38, 39, 64, 83, 97, 104)

BF2 (MHCI) 7 37.888 ,0.0001 6 (66, 79, 86, 124, 126, 165) 4 (81, 103, 184, 366)

B-NK 4 16.576 0.0003 3 (5, 6, 60) 6 (83, 84, 85, 86, 98, 156)

IL1B 8 16.666 0.0002 2 (47, 192) 7 (50, 53, 60, 76, 77, 224, 255)

MX1 6 12.291 0.0021 3 (212, 388, 436) 16 (20, 130, 230, 241, 265, 318, 345, 357, 406, 454, 486,

506, 537, 538, 539, 585)

IFNG 6 6.974 0.0306 1 (111) 2 (111, 159)

CD9 8 5.534 0.0629 0 8 (39, 92, 152, 169, 174, 179, 186)

B2M 3 3.950 0.139 0 3 (37, 73, 113)

CD44 3 1.187 0.552 0 11 (127, 184, 242, 245, 268, 277, 282, 285, 292, 299, 393)

PIK3AP1 3 0.804 0.669 0 8 (55, 62, 81, 166, 508, 664, 752, 760)

Codons with a posterior probability greater than 95% for being under positive selection (calculated in PAML and HyPhy) are indicated. For plots of codon-wise x and posterior

probability of positive selection across the length of these genes, see Additional figs. 1–10.

All Immune ESTs

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5 ** ***

FIG. 1.—Box-and-whisker plot of dN/dS (x) values between zebra

finch and chicken orthologs for immune genes and whole-genome

comparison (All genes). Whole-brain transcriptome comparisons (EST)

between chicken and zebra finch (Axelsson et al. 2008) are also

included as reference.
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and those from automated gene prediction (rS5 0.811, df5

93, P , 0.0001, fig. 3). However, x values calculated from

manually annotated gene pairs (median5 0.137) tended to

be lower than the corresponding values downloaded from

the Ensembl database (median5 0.160, Wilcoxon’s test for

matched pairs, T 5 1805, df 5 94, P 5 0.08). In only a few

cases were there conspicuous differences between the two
different annotations (fig. 3). In particular, the gene coding

for ‘‘integrin-associated protein (IAP, CD47)’’ showed higher

x for the manually annotated transcript, whereas the gene

coding for ‘‘interleukin 2 receptor, gamma’’ had a much

higher x value as calculated from the Ensembl gene predic-

tion. In both these cases, the discrepancy arises from the

fact that a large part of the CDS was left out in the manual

annotation compared with the automated ENSEMBL
annotation.

Discussion

We found higher values of x (dN/dS) between the chicken

and the zebra finch immune genes than for the rest of

the genome. This suggests that these genes are in general

rapidly evolving and that host–parasite interaction is an im-

portant selective force on avian genomes. Positive selection

is often evoked to explain such high x values; note, how-

ever, that relaxed evolutionary constraints may have the

Table 2

Regression Model of x Values for the Different Functional Categories of Immune Genes

Category Median x N Model Estimate Model Standard error t P

Intercept 35.3924 7.5845 4.666 1.18 � 10�5***

Receptor 0.260 23 19.5739 8.198 2.388 0.0193*

Antigen processing 0.236 12 10.7259 11.3136 0.948 0.3459

Humoral response 0.219 8 13.4626 13.8312 0.973 0.3332

Development of immune system 0.219 6 7.3719 13.4588 0.548 0.5854

Involved in autoimmunity 0.210 3 4.402 18.3264 0.24 0.8108

Innate NK killing 0.200 7 �6.1044 15.3811 �0.397 0.6925

Expressed primarily in immune tissues 0.200 25 12.2644 7.3473 1.669 0.0989�

Inflammation 0.190 20 17.8269 11.6274 1.533 0.1291

Innate immunity 0.189 46 6.8735 8.7715 0.784 0.4355

Adaptive immunity 0.178 26 �5.0489 10.6001 �0.476 0.6351

Related to disease 0.177 24 0.6073 7.2483 0.084 0.9334

Immune pathway or signaling 0.174 47 10.2255 6.2947 1.624 0.1081

Involved in immunodeficiencies 0.165 10 5.6751 10.546 0.538 0.5919

Chemotaxis 0.157 16 2.9733 10.3082 0.288 0.7737

Induced by immunomodulator 0.149 21 3.8621 7.8428 0.492 0.6237

Coagulation 0.149 6 �17.9895 15.0288 �1.197 0.2348

Phagocytosis 0.142 3 �13.6846 19.0216 �0.719 0.4739

Cellular response 0.138 12 20.7341 12.8684 1.611 0.111

Cytokines and chemokines 0.122 38 �12.4645 6.8252 �1.826 0.0715�

Transcription factor 0.080 6 �24.2605 13.1965 �1.838 0.0696�

***P , 0.001; *P , 0.05; �P , 0.10.

Table 3

Numbers of Immune Genes with Primary Expression in Each of the

Studied Tissues

Tissue Number of Genes Mean v Mean t

Bursa 28 0.28 0.63

Blood 28 0.17 0.60

Spleen 19 0.26 0.63

Testes 11 0.09 0.48

Liver 8 0.26 0.61

Skin 6 0.22 0.46

Embryo 5 0.22 0.53

Muscle 1 0.13 —

Mean values of v (dN/dS ratio) and s (index of expression specificity) for genes

with primary expression in each of the tissues are also reported.
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FIG. 2.—Relationship between total expression levels and tissue

specificity in expression (s) for zebra finch immune genes.
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same effect and these two mechanisms cannot be distin-

guished with our data. In particular, immune receptors

had higher x values compared with other categories of im-

mune genes. Because many such gene products might be

involved directly in antigen recognition, it seems reasonable

that these should be the primary target for host–pathogen
coevolution (Borghans et al. 2004). This category includes

several toll-like receptors and interleukin receptors as well

as genes linked to the MHC region. MHC genes in particular

are well known to be affected by balancing selection from

previous studies (Sommer 2005; Westerdahl 2007). There

was also a tendency for genes expressed primarily in im-

mune tissues to have high x values. Genes that have a more

specific immune function may therefore be less constrained
than genes with a more general expression. This pattern has

also been observed in genome-wide tests of selection in

a wide array of organisms (Axelsson et al. 2008; Larracuente

et al. 2008; Ekblom et al. 2010) and is thus not restricted to

genes of the immune system.

We identified ten of 27 tested immune genes (for which

sequence information was available from at least three bird

species) that showed evidence of being under positive selec-
tion in birds. It is likely that further sequencing in other bird

species (enabling this kind of analysis for a larger number of

genes) in the future will reveal more immune genes that are

evolving under positive selection. In a study of 136 immunity
genes in multiple Drosophila species Obbard et al. (2009)

concluded that the rate of adaptive evolution were higher

(and more variable) in these compared with nonimmune

genes. In particular, genes belonging to certain immunolog-

ical pathways were found to be very rapidly evolving.

Similarly, in mosquitoes, different classes of immune genes

are evolving at different rates (Waterhouse et al. 2007). In

atlantic salmon (Salmo salar), microsatellites linked to im-
mune genes were showing signs of adaptive evolution more

often than other microsatellites (Tonteri et al. 2010). These

results together with the conclusions from our study indi-

cate that parasites may be an important factor driving mo-

lecular evolution in many different systems. And that a large

number of immune-related genes may be influenced by

adaptive evolution.

Of the ten loci where specific amino acid residues were
identified as candidates for being under positive selection,

MHC class I and IIB genes have already been under detailed

investigation elsewhere. The general pattern is that selec-

tion seems to favor polymorphism in residues that deal spe-

cifically with antigen binding (Edwards and Hedrick 1998).

The codons identified as evolving under positive selection in

our analysis of avian MHC class IIB genes overlap consider-

ably with regions that have previously been identified as im-
portant to antigen binding (Brown et al. 1993; Tong et al.

2006), especially in the beginning (codons 34–39) and mid-

dle (codons 82–115) of the second exon of this gene. Sim-

ilarly, a large region around codon number 100 of the MHC

class I gene was identified as having a high x value in our

sliding window analysis. This region, situated in exon 2

has previously been shown to contain many codons directly

involved in antigen binding (Westerdahl et al. 1999).
However, our analyses failed to identify the peptide-binding

regions of exon 3 as evolving under positive selection.

The B-NK gene (also known as Blec2 or natural killer like

receptor) is also linked to the MHC region in chicken, but

seems to be located on the Z chromosome in zebra finch

(Balakrishnan et al. 2010). The exact function of this gene

in birds is not known but receptors on NK cells are generally

involved in MHC class I recognition and cell-mediated cyto-
toxicity (Lanier 1998). Interleukin 1b (IL1B) is an important

cytokine (a small secreted protein that carries signals be-

tween immune cells) produced by macrophages and in-

volved in the inflammatory response. Some sequence

variation exists in mammalian IL1B genes, and this has been

shown to be related to particular disease (Bird et al. 2002).

Interestingly, many of the aligned bird sequences seem to

have gaps extending over traditionally conserved amino acid
residues, involved in receptor binding such as the histidine at

position 141 (146 in the human protein) and valine at po-

sition 250 (the last position of the IL-1 family signature). The

MX1 gene has been extensively studied in birds due to its

function in protection against avian flu. There are several
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FIG. 3.—Correlation between dN/dS (x) ratios of automated and

manually annotated genes. Automated dN/dS ratios were downloaded

from Ensembl BioMart, whereas the manually annotated ratios were

calculated in PAML4. The line represents x 5 y. The outlier to the right

(with Manual x5 1.51 and Ensembl x5 0.83) is the gene for ‘‘integrin-

associated protein (IAP, CD47)’’ and the outlier to the left (with Manual

x 5 0.08 and Ensembl x 5 0.64) is the gene for interleukin 2 receptor,

gamma.

Evolution of Zebra Finch Immune Genes GBE

Genome Biol. Evol. 2:781–790. doi:10.1093/gbe/evq061 Advance Access publication September 30, 2010 787



polymorphisms in the avian MX1 genes and in particular
a transition from aspargine to serine at amino acid position

631 (position 563 in our incomplete alignment) seem to me-

diate antiviral activities (Li et al. 2006). Our analyses revealed

several codons with a signature of positive selection and

a peak of x in the region just upstream from this position.

An avian-specific region in the beginning of the MX1 gene

has also been found to be rich in codons affected by positive

selection (Berlin, Qu, Li, et al. 2008). Unfortunately, we were
not able to identify this part of the coding region in our man-

ual annotation of the zebra finch MX1 homolog. The CD9
gene is immunologically important for platelet activation

and aggregation but has mainly been studied because of

its role in gamete fusion during fertilization in animals (Clark

et al. 2006). Our results on this gene are similar to other

studies showing a hotspot of positively selected sites around

codons 150–186 (Swanson et al. 2003; Berlin, Qu, and
Ellegren 2008).

In general, zebra finch immune genes were found to have

amore tissue-specific expression pattern than other genes in

the zebra finch genome. A majority of the immune-related

genes were primarily expressed in bursa, blood, and spleen.

Similar patterns of immune gene expression have also been

reported in other organisms (Kocabas et al. 2002; Chan

et al. 2009). As has previously been reported from
whole-genome analyses (Axelsson et al. 2008; Ekblom

et al. 2010), the index of specificity of genes (s) was

negatively correlated with overall expression. Thus, genes

with a highly specific function seem to have low expression

levels compared with genes with more general functions.

Another implication of this is that genes that are involved

in adaptive evolution may be the ones that are hardest

to study as these are less universally expressed. Great care
is thus needed at the planning stage of a study to ensure

sampling of RNA from the right tissue and at the right time

if the objective is to identify such genes (Chintapalli et al.

2007).

Our study also provides evidence that dN/dS ratios calcu-
lated from automated gene annotation are similar to those

calculated from manually annotated genes. This result is

useful, as the large amount of data available following a ge-
nome sequencing project makes it unrealistic to manually

annotate all genes, and it is important to know that the data

generated in this automated way are reliable (Smedley et al.

2009). Note, however, that mis-assemblies or sequencing

errors, even at a very low rate, may lead to false positive

signals of positive selection (Mallick et al. 2009). This analysis

assumes that the chicken predictions are annotated

correctly as the annotated chicken genome was used as
a reference in the manual annotations of the zebra finch.

Generally, there is a risk of stepwise deterioration in the

quality of genome annotation as an annotation error

made in one organism will be carried forward to another

(Artamonova et al. 2005).

The immune genes studied here will provide a good start-
ing point as a list of candidate genes for further studies of

avian immunogenetics and molecular ecology. Several of

these loci appear to evolve under positive selection and

many are also likely to exhibit functionally important poly-

morphism and local adaptation. This study therefore pro-

vides a significant step away from the hitherto dominant

strategy of using only one or a few genes (mainly MHC)

when investigating host–parasite coevolution in vertebrates.
The nomenclature of genes can be rather messy with several

different names for the same gene, and this is especially ob-

vious for immune-related genes. To facilitate future studies,

we therefore provide both the official gene symbols as well

as common alternative gene names for many of the genes in

Appendix 1. With CDSs now being available for at least two

very divergent bird taxa (chicken and zebra finch), it is also

likely that conserved regions that are suitable for primer de-
sign in these genes will be identifiable, something that will

enable studying these loci in novel bird species.

Supplementary Material

Supplementary Additional figs. 1–10 and Appendix 1 and 2

are available at Genome Biology and Evolution online

(http://www.oxfordjournals.org/our_journals/gbe/).
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