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Abstract

Loss of function mutations of Kif7, the vertebrate orthologue of the Drosophila Hh pathway component Costal2, cause
defects in the limbs and neural tubes of mice, attributable to ectopic expression of Hh target genes. While this implies a
functional conservation of Cos2 and Kif7 between flies and vertebrates, the association of Kif7 with the primary cilium, an
organelle absent from most Drosophila cells, suggests their mechanisms of action may have diverged. Here, using mutant
alleles induced by Zinc Finger Nuclease-mediated targeted mutagenesis, we show that in zebrafish, Kif7 acts principally to
suppress the activity of the Gli1 transcription factor. Notably, we find that endogenous Kif7 protein accumulates not only in
the primary cilium, as previously observed in mammalian cells, but also in cytoplasmic puncta that disperse in response to
Hh pathway activation. Moreover, we show that Drosophila Costal2 can substitute for Kif7, suggesting a conserved mode of
action of the two proteins. We show that Kif7 interacts with both Gli1 and Gli2a and suggest that it functions to sequester
Gli proteins in the cytoplasm, in a manner analogous to the regulation of Ci by Cos2 in Drosophila. We also show that
zebrafish Kif7 potentiates Gli2a activity by promoting its dissociation from the Suppressor of Fused (Sufu) protein and
present evidence that it mediates a Smo dependent modification of the full length form of Gli2a. Surprisingly, the function
of Kif7 in the zebrafish embryo appears restricted principally to mesodermal derivatives, its inactivation having little effect
on neural tube patterning, even when Sufu protein levels are depleted. Remarkably, zebrafish lacking all Kif7 function are
viable, in contrast to the peri-natal lethality of mouse kif7 mutants but similar to some Acrocallosal or Joubert syndrome
patients who are homozygous for loss of function KIF7 alleles.
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Introduction

Hedgehog (Hh) proteins play a fundamental role in animal

development, controlling cell type specification, proliferation and

survival in a variety of contexts through a signaling pathway, the

core components of which are shared across species [reviewed in

1,2,3]. Hh signaling also functions post-embryonically, regulating

tissue homeostasis [4], metabolism [5] and physiological processes

[6], while aberrant pathway activity underlies the etiology of a

variety of cancers [7,8].

The kinesin family protein Costal2 (Cos2) is a central

component of the intracellular Hedgehog signaling complex in

Drosophila [9]. Cos2 physically interacts with the Gli family protein

Cubitus interruptus (Ci), restraining the transcriptional activating

activity of its full length form both by anchoring it in the cytoplasm

as well as by recruiting the serine-threonine kinases that prime it

for processing into a truncated transcriptional repressor

[10,11,12]. Consistent with these effects, loss of Cos2 activity

results in the ectopic activation of Hh target genes, both in

embryos and imaginal discs [13,14]. In addition to its negative

regulatory role, Cos2 has also been shown to potentiate Hh

pathway activity by promoting the dissociation of Ci from

Suppressor of Fused (Sufu) [15], another negative pathway

regulator that acts to inhibit nuclear import of Ci [10,16].

The closest vertebrate homologue of Cos2 is Kif7 [17], mouse

mutants of which similarly exhibit evidence both of gain and loss

of Hh pathway activity [18,19,20], implying a conservation of

Cos2/Kif7 function between insects and vertebrates. Like Cos2,

Kif7 promotes the processing of Gli transcription factors to their

repressor forms both in mouse and human cells [18,19,20,21] a

function that, in part, can explain the Hh gain of function

phenotypes in the limbs and in the neural tube of kif7 mutants.

One significant difference between Kif7 and Cos2 however, is the

association of the former with the Primary Cilium, an organelle

that is absent from most Drosophila cells but of central importance

for Hh signaling in vertebrates [22,23]. Tagged forms of Kif7 have
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been shown to localize to the primary cilium tip in response to Hh

pathway activation when expressed in cultured mammalian cells

[19,20]. Similarly, translocation of Gli proteins to the primary

cilium tip is also induced by Hh signaling [24], a process that is

proposed to be required for their activation through dissociation

from Suppressor of Fused (Sufu) [25,26]. Paradoxically, given its

role as a negative regulator of the pathway, loss of Kif7 function

abrogates the Hh induced translocation of Gli to the primary cilium

tip [19]. Whilst such an effect can be reconciled with the partial

attenuation of pathway activation observed in the neural tube of kif7

mutant embryos [18,19,20], how the localization of Kif7 to the

primary cilium relates to its repressive function remains unclear.

The first evidence of a conserved function for Kif7 in vertebrate

Hh signaling was based on morpholino mediated transient knock-

down experiments in zebrafish, [17]. Morphant kif7embryos exhibit

rather subtle defects in cell fate specification principally in the

myotome that contrasts with the more robust de-repression of the

Hh response seen in Drosophila cos2 mutants. While this could reflect

a divergence in Kif7 function between species, it might also be

attributable to the transient nature of the morpholino mediated

knock-down. To explore the role of zebrafish Kif7 further, we have

generated loss of function alleles by zinc finger nuclease (ZFN)

mediated targeted mutagenesis [27,28,29] and used these to dissect

the role of Kif7 in modulating the activity of the Gli transcription

factors. In addition, using an antibody raised against the zebrafish

protein, we have analyzed the levels and sub-cellular distribution of

endogenous Kif7 in the presence and absence of Hh pathway

activation. Our findings imply a previously unrecognized role for

Kif7 in sequestering Gli1 in the cytoplasm, a function analogous to

that of Drosophila Cos2, and suggest that Kif7 functions in the

primary cilium principally to potentiate Gli2 activity.

Results

Generation of mutant alleles of zebrafish kif7 using zinc
finger nucleases

To analyze the function of zebrafish Kif7, we generated stable

germ line transmissible mutant alleles of kif7 using zinc finger

nuclease (ZFN) mediated targeted mutagenesis [27,28]. A budding

yeast-based system identified sequences in the kif7coding region

that are potentially amenable to targeted mutagenesis. Targeting

this sequence in the 3rd coding exon had the potential to create

mutations in a region conserved with the mammalian Kif7 protein

at cds nt729–765 (A729TCCAAATTCCATTTTGTGGAC-

CTGGCAGGATCAGAG765) (Fig. 1A). Embryos injected with

capped RNA encoding a ZFN pair selected for recognition of this

sequence were found to carry a variety of deletions or insertions at

the target site (data not shown) confirming the efficacy of this

approach. Accordingly, we grew up adults from injected embryos

and screened their progeny for transmission of kif7 lesions. Three

individuals transmitting deletion mutations were recovered and

two alleles that cause frame-shifts resulting in premature termina-

tion codons (Table 1) predicted to yield proteins truncated in the

motor domain (Fig. 1B) were selected for further analysis.

Loss of zygotic kif7 function causes a mild Hh pathway
de-repression phenotype

Animals homozygous or trans-heterozygous for the kif7 mutant

alleles predicted to encode truncated proteins, completed embryo-

genesis and showed no defects in the specification of slow-twitch

muscle fibres, muscle pioneers (MPs) or medial fast fibres (MFFs)

as visualized by Prox1 and Eng2a expression respectively (data not

shown), sensitive read-outs of Hh activity in the zebrafish embryo

[30]; nor did they display any other manifestations of aberrant Hh

pathway activity at 24 hpf. By 2.5 dpf, however, some mutant

larvae exhibited ectopic expression of the eng2a:eGFP reporter gene

in the myotome (Fig. 1C,D). Nevertheless, the homozygous and

trans-heterozygous fish were fully viable and grew into phenotyp-

ically normal adults. This contrasts with the peri-natal lethality of

mice homozygous for kif7 loss of function alleles [18,19,20], but

mirrors the finding that some Joubert syndrome patients are

homozygous for mutated KIF7 alleles that cause severe truncation

of the protein ([31]; see Fig. 1B).

Loss of zygotic and maternally derived Kif7 activity
causes strong de-repression of Hh signaling in
mesodermal derivatives

We surmised that the lack of disruption of Hh pathway activity

in the absence of zygotic kif7 function could be due to maternally

derived kif7 mRNA present in newly fertilized eggs. To test this

inference, we crossed kif7 homozygous females to kif7 homozygous

males. The resulting maternal and zygotic (MZ) kif7 mutant

embryos were devoid of full length Kif7 protein detectable by

Western blot analysis (Fig. 2E) and exhibited a significant

expansion of eng2a:eGFP reporter gene expression in the myotome

at 30 hpf (Fig. 2A,B). Consistent with the de-repression of the Hh

pathway implied by this effect, a reporter gene for ptch2, a direct

target of the Hh pathway, was ectopically expressed throughout

the myotomal compartment of the somites (Fig. 2F–I). MZkif7

embryos also showed an increase in the number of Prox1+ve slow-

twitch muscle cells, the specification of which is Hh–dependent

(Fig. 2 C,D; see also Fig. 7I); however, the ectopic expression of

Eng, revealed both by the eng2a:GFP reporter (Fig. 2B) and by 4D9

mAb staining (Fig. 2D) was restricted to fast-twitch muscle fibers,

indicating that loss of Kif7 activity is not sufficient for the maximal

pathway activation required for MP induction [30]. Inhibition of

Smo activity in MZkif7 embryos (via mutation or treatment with

the Smo antagonist cyclopamine) had little effect on the ectopic

expression of ptch2 (data not shown) or Eng (Fig. 3C) consistent

with Kif7 acting downstream of Smo to suppress transcriptional

activation of Hh targets by the Gli transcription factors in the

Author Summary

Hedgehog (Hh) proteins activate one of a handful of
signaling pathways that orchestrate the development of
animal embryos, controlling cell type specification, prolif-
eration and survival in a variety of contexts. In Drosophila,
the Cos2 protein plays a key role in modulating the
response of cells to Hh signaling, while mutant forms of its
human counterpart KIF7 are associated with a class of
developmental defects known as ciliopathies. Studies in
mouse have implied that Kif7 functions principally in the
primary cilium, an organelle required for Hh signaling in
vertebrates but absent from most Drosophila cells,
suggesting a divergence in the mechanisms of action
between phyla. Here we describe the generation of kif7
mutations in the zebrafish as well as the first analysis of
endogenous Kif7 protein distribution in a vertebrate
embryo. We find that Kif7 acts principally to restrain Gli1
activity and suggest that it functions to sequester the Gli
transcription factors, similar to its Drosophila counterpart
Cos2, which we also show can partially substitute for Kif7
function in the zebrafish embryo. Consistent with this
model we show that Kif7 protein accumulates both in the
primary cilia and in cytoplasmic puncta from which it
disperses in response to Hh pathway activation.

Kif7 Function in Zebrafish
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myotome. In both instances, however, there was a loss of

MPs, indicating that removal of Kif7 is not sufficient for

maximal pathway activation in the absence of Smo (Fig. 3B,C).

Hh signaling is also required for definitive haematopoiesis in

the zebrafish embryo [32] and inhibition of Smo activity by

cyclopamine treatment blocks the formation of haematopoietic

stem cells (HSCs) as revealed by the loss of c-myb expression in

the dorsal aorta (Fig. 3E). Complete elimination of Kif7

activity reversed this effect (Fig. 3F) indicating that Kif7 also

acts in the non-myogenic mesoderm to modulate Hh pathway

activity.

Loss of Kif7 has previously been reported to disrupt left-right (L-

R) asymmetry reflecting a presumed role in ciliogensis in Kupfer’s

vesicle [33]. We analyzed the establishment of L-R asymmetry in

MZkif7 embryos using lefty2 expression [34] as an assay and found

no example of situs inversus (Fig. S1). We conclude that the reported

defect is likely an off-target effect of the morpholino.

Gli2a processing is delayed in the absence of Kif7
Cos2/Kif7 has been implicated in the control of Gli protein

processing both in flies and mammals; in the case of Drosophila, at

least, this is mediated through the recruitment of the kinases that

Figure 1. Targeted mutation of the zebrafish kif7 gene. (A) Schematic representation of the nucleotide sequence in exon 3 of the zebrafish kif7
gene targeted by the Zinc finger nucleases. (B) Schematic representation of the human and zebrafish Kif7 coding sequences showing conserved
exonic structure (dark shading) corresponding to different protein domains (drawn to scale). The black arrows indicate the approximate position of
homozygous viable mutations found in some human patients and of the induced lesions in the zebrafish gene. (C,D) Expression of eng2a:gfp reporter
gene in muscle fibers in the tail somites of wild-type (C) and kif7 homozygous (D) embryos at 2.5 dpf. Low level ectopic expression of the reporter is
detected in fibers surrounding the muscle pioneers in the kif7 mutants. Merged images showing fast twitch muscle fibers stained with mAb F310
(red) are shown in the right-hand panels. Scale bar: 50 mm.
doi:10.1371/journal.pgen.1003955.g001

Table 1. Alleles and translational products of zebrafish kif7 mutants generated with CompoZ ZFN.

Alleles Genotypes and encoded Kif7 proteins

Wild-type ATCCAAATTCCATTTTGTGGACCTGGCAGGATCAGAG

S244 K F H F V D L A G S E

kif7i271 (8 bp-del: D250RfsX7) ATCCAAATTCCATTTTGTCAGGATCAGAGCGCATCCTTAA

S244 K F H F V R I R A H P *

kif7i272 (7 bp-del: F248SfsX59) ATCCAAATTCCATTCCTGGCAGGATCAGAGCGCATCCTTAAAACCGGCAACACCGGCGAACGGCTCAAG

S244 K F H S W Q D Q S A S L K P A T P A N G S R

GAGAGCATTCAGATCAACAGTGGACTTCTTGTTCTTGGAAATGTCATTGGAGCGCTTGGGGACCCCAAA

R A F R S T V D F L F L E M S L E R L G T P K

AGAAAAGGCACCCATATCCCATACAGGGATTCAAAAATCACCAGGATCTTAA

E K A P I S H T G I Q K S P G S *

kif7i273 (3 bp-del: D250del) ATCCAAATTCCATTTTGTCCTGGCAGGATCAGAG

S244 K F H F V L A G S E

doi:10.1371/journal.pgen.1003955.t001

Kif7 Function in Zebrafish
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prime the Gli–family protein, Ci, for proteasomal cleavage [12].

Previously we showed that Gli2a is processed in a Hh dependent

manner in zebrafish embryos, the ratio of full length (FL) to the

truncated repressor (R) form of Gli2a being markedly increased in

ptch1;ptch2 double mutant embryos and substantially decreased in

embryos treated with cyclopamine [35]. We investigated the role

of Kif7 in Gli2a processing using Western blot analysis to compare

the levels of FL and R forms in MZkif7 embryos with those in wild-

type embryos in which the Hh pathway was fully activated (by

injection of Shh mRNA) or fully repressed (by exposure to

cyclopamine). At 22 hpf, whereas the FL:R ratio was significantly

increased in the Shh mRNA injected embryos and reduced in

embryos exposed to cyclopamine, the ratio did not differ

significantly between MZkif7 and wild-type embryos, although

the levels of FL protein appeared less sensitive to cyclopamine

treatment in the MZkif7 embryos (Fig. 4A,B). In younger (18 hpf)

embryos, by contrast, we observed a consistent increase in the

FL:R ratio in MZkif7 embryos, though not as great as in Shh

mRNA injected embryos (Fig. 4A,C). At this stage, the FL form of

Gli2a appears as a doublet, the slower mobility form of which is

sensitive to cyclopamine treatment and therefore presumably Smo

dependent. Whereas in Shh mRNA injected embryos, it is this

putative Smo dependent form that accumulates at the expense of

the truncated R form, in MZkif7 it is the cyclopamine resistant

form that accumulates (see Fig. 4A). This suggests that Kif7 is

required for a Smo-dependent modification of full length Gli2a as

well as for its efficient cleavage to the R form. Notably, the

increased FL:R ratio in MZkif7 embryos is effectively suppressed

by cyclopamine treatment (Fig. 4A,C), suggesting that Kif7 may

potentiate Gli2a cleavage by opposing Smo activity.

Kif7 functions principally to restrain Gli1 activity
Previous studies have shown that Gli1 and Gli2a act redun-

dantly to mediate Hh activity in the myotome [30]; embryos

homozygous for loss of function alleles of gli1 (also known as detour

(dtr): [36]) or gli2a [37] show normal specification of Hh-dependent

muscle cell types, whereas in the absence of both genes, all Hh-

dependent muscle cell types fail to form [30,37]. By contrast,

simultaneous morpholino mediated knockdown of gli3 and of the

gli2a paralogue gli2b had no discernible effect on Eng expression

either in wild-type or gli1 mutant embryos (data not shown and

Fig. 4G). It follows that Gli1 and Gli2a are the principal mediators

of Hh signaling in the myotome and that either protein can

respond to Hh activity to elicit the full range of cellular responses

to the signal. To investigate the role of Kif7 in regulating Gli

activity, we generated MZkif7 embryos homozygous for either gli1

or gli2a loss of function mutations. MZkif7;gli2a double mutants

exhibited little modification of the ectopic Eng expression seen in

MZkif7 mutants alone, except for a slight reduction in the number

of MP cells in each somite (Fig. 4E). By contrast, in MZkif7; gli1

Figure 2. Absence of Kif7 protein and de-repression of Hh target genes in MZkif7 embryos. (A,B) Lateral images of 30 hpf wild-type (A)
and MZkif7 mutant (B) embryos expressing eng2a:eGFP (green); note dramatic expansion of eng2a:eGFP expression within the fast-twitch fibers
revealed by F310 staining (red) in the merged image (right panel). (C,D) Parasagittal optical sections of wild-type (C) and MZkif7 mutant (D) 30 hpf
embryos stained with anti-Prox1 (green) and mAb4D9 (red) (E) Western blot of wild-type (WT) and MZkif7 mutant (MZ) embryo extracts probed with
polyclonal rabbit anti-Kif7 antiserum showing complete loss of Kif7 protein (upper band) from MZkif7 embryos. Loading control: c-tubulin (c-tub). (F,I)
Parasagittal and (G,H) transverse optical sections of 30 hpf wild-type (F,G) and MZkif7 (H,I) embryos expressing a ptch2:eGFP transgene (green)
showing the expansion of the ptch2 expression domain in the myotome and neural tube in the absence of Kif7. Nuclei are revealed in left half (of
panels F,I) by DAPI staining (purple). The edge of the myotome is shown by mAbF9 (in G,H) marking the superficial slow-twitch muscle fibers. Scale
bar: 50 mm.
doi:10.1371/journal.pgen.1003955.g002

Kif7 Function in Zebrafish
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double mutants, Eng+ve cells were barely discernible in the

myotome (Fig. 4F). These findings imply that Kif7 acts principally

to restrain Gli1 activity.

Endogenous Kif7 interacts with Gli1 protein in the
developing embryo

The genetic data imply that Kif7 may physically interact with

Gli1. Since no antibody specific for zebrafish Gli1 is available, we

tested this inference by expressing a GFP tagged form of Gli1 in

wild-type embryos. Injection of mRNA encoding a similarly

modified form of Gli1 tagged with mCherry resulted in ectopic

activation of a ptch2:eGFP reporter gene (Fig. 5A,B), confirming

that the tag does not disrupt the function of the protein.

Immunoprecipitation of the eGFP-Gli1 from injected wild-type

embryos revealed an interaction with both Kif7 and the negative

Hh pathway regulator Sufu (Fig. 5C). The levels of Kif7 pulled

down with eGFP-Gli1 were increased in embryos treated with

cyclopamine (Fig. 5D), implying that the interaction is sensitive to

Smo activation. Consistent with this, co-injection of Shh mRNA

with the eGFP-Gli1 mRNA resulted in a decrease in the levels of

Kif7 relative to Gli1 (Fig. 5D). A similar trend was also seen for the

interaction between Sufu and Gli1 (Fig. 5E).

Kif7 potentiates Gli2a activity by promoting its
dissociation from Sufu

In Drosophila, Cos2 exerts a positive effect on Ci activity by

promoting its dissociation from Sufu [15] and in mammalian cells

dissociation of Gli3 from Sufu has been shown to be of key

importance for maximal pathway activation [25,26]. We immu-

noprecipitated Gli2a from wild-type and MZkif7 embryos and

used Western blotting to analyze its interaction with Sufu and

Kif7. As expected, both Sufu and Kif7 proteins co-precipitated

with Gli2a from wild-type embryos, whereas only Sufu could be

detected in the immunoprecipitates from MZkif7 embryos

(Fig. 6A). Notably, the levels of Sufu were increased approximately

2-fold relative to wild-type in the MZkif7 embryos, consistent with

a decrease in dissociation of the two proteins in the absence of Kif7

function. Similarly, the levels of Gli2a that co-immunoprecipitated

with Sufu from MZkif7 embryos were increased (2-fold) relative to

wild-type controls (Fig. 6B); by contrast, activation of the pathway

upstream of Kif7 through Shh mRNA injection, had no significant

effect on the levels of Gli2a pulled down with Sufu, whilst a modest

increase was seen in embryos treated with cyclopamine (Fig. 6B).

Dissociation of the Gli proteins from Sufu has been postulated

to occur at the tip of the primary cilium [26]; in line with our

findings, we found that the Gli2a-GFP fusion protein, which

localizes to the tip of the primary cilium in wild-type embryos in

response to Hh activity [38], was consistently located close to the

base of the axoneme of primary cilia of myotomal cells in MZkif7

mutant embryos (Fig. 6C,D,S2).

Together, these data suggest a role for Kif7 in promoting the

activation of full length Gli2a through its transport to the tip of

primary cilium and dissociation from the Sufu protein. To test this

inference, we used two previously characterized antisense

morpholino oligonucleotides [30,36] to reduce Sufu and Gli1

activity simultaneously in MZkif7 mutant embryos. Such embryos

showed an 80% reduction in Sufu protein levels (Fig. 6E) and a

significant restoration of the MZkif7 phenotype, with ectopic

eng2a:eGFP expression throughout the fast-twitch fibers (cf. Fig. 6I

Figure 3. Kif7 acts downstream of Smo to control Hh target genes. (A,B,C) Parasagittal optical sections of 30 hpf wild-type (A), smo mutant
(B) and smo;MZkif7 (C) double mutant embryos stained with mAb4D9 (green) and Prox1 (red). Scale bar 50 mm. (D,E,F) Lateral view at the level of the
yolk extension of 36 hpf wild-type (D), cyclopamine exposed (E) and MZkif7; cyclopamine (CycA) exposed (F) hybridized with a probe for c-myb RNA,
marking hematopoietic stem cells in the ventral floor of the dorsal aorta. Scale bar 50 mm (detail in insets; scale bar 10 mm).
doi:10.1371/journal.pgen.1003955.g003

Kif7 Function in Zebrafish
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& K). It follows that Kif7 not only potentiates Gli2a activity by

promoting its dissociation from Sufu but also restrains it in a

manner independent of its processing. Notably, knock-down of

Sufu in MZkif7 mutant embryos resulted in a substantial increase

in the number of slow twitch fibers and MP cells, implying a

greater degree of Hh pathway de-repression than occurs in

embryos lacking only Sufu or Kif7 (Fig. 7A–D,I). Consistent with

this phenotype, these embryos showed increased expansion of the

ptch2 expression domain (Fig. 7E–H). This implies that Sufu also

attenuates Gli1 activity and that Kif7 acts in concert with Sufu to

restrain Gli1 activity in the myotome.

Differing requirements for Kif7 in Hh pathway activity in
the neurectoderm and the mesoderm

Shh plays a major role in patterning the neural tube and the de-

repression of the pathway caused by ptch mutations results in the

ectopic expression of Hh target genes both in mouse [39,40] and

fish embryos [41,42](Fig. 8C,G,K). In mouse embryos homozy-

gous for loss of function kif7 alleles, there is a modest expansion of

the expression domains of ptch1 and of the ventral neural tube

markers nkx2.2 and olig2 [18,19,20] consistent with a partial de-

repression of Hh pathway activity. In zebrafish MZkif7 embryos,

by contrast, no changes in the neural tube expression domains of

fkd4, nkx2.2a or olig2 could be detected (Fig. 8B,F,J). Notably,

however, we found that olig2 expression could be partially

uncoupled from its dependence on Smo activity by complete

elimination of Kif7 activity (Fig. 8M,N). Taken together, these

findings imply that the role of Kif7 in regulating Hh pathway

activity is dispensable in the neural tube in zebrafish.

Given that Sufu knock down significantly enhances the MZkif7

phenotype in the myotome, we investigated whether Sufu activity

might account for the lack of pathway de-repression in the neural

tube in MZkif7 mutants. Surprisingly, knock down of Sufu

function in MZkif7 embryos had no effect on the expression

domains of either nkx2.2a or olig2 (Fig. 8H,L); however, ectopic

expression of fkd was consistently observed in the occasional cell

scattered throughout the neural tube (Fig. 8D).

Drosophila Cos2 can substitute for Kif7 in the zebrafish
embryo

Sequence comparison has revealed significant structural

conservation between Drosophila Cos2 and zebrafish Kif7

[17]. To investigate the extent to which function is also

conserved, we exploited the ability to produce pure populations

of MZkif7 embryos to assay the rescuing activity of in vitro

synthesized mRNA encoding eGFP tagged forms of Cos2 and

Kif7. Consistent with previous reports of mRNA mediated

rescue of the kif7 morphant phenotype [21], injection of

zebrafish kif7 mRNA into MZkif7 embryos resulted in

substantial suppression of the ectopic eng2a:eGFP expression

(Fig. 9A–D,G and data not shown). Remarkably, a significant

degree of rescue was also seen following injection of Drosophila

cos2 mRNA (Fig. 9E,F). Confocal imaging of injected embryos

revealed that the exogenous Kif7 protein localized to the tips of

primary cilia (Fig. 9H,J) as previously reported [35]. By

contrast, the tagged Cos2 protein was found exclusively in the

cytoplasm, with no evidence of localization to the primary cilia

(Fig. 9I,K). Immunoprecipitation of Gli2a from embryos

injected with Cos2 mRNA revealed an interaction between

the two proteins (Fig. 9L), consistent with the notion that Cos2

restrains the activity of Gli2a as well as Gli1 by retaining it in

the cytoplasm.

Figure 4. Regulation of Gli processing and activity by Kif7. (A) Western blot analysis showing Gli2a processing in wild-type (WT), MZkif7 (MZ)
and Shh mRNA injected (Shh) embryos at 18 hpf (left panel) and at 22 hpf (right panel) compared to the same set treated with cyclopamine (CycA).
Full-length (FL) and repressor (R) forms of Gli2a are indicated. The lower panels shows the same blot re-probed with Kif7 and c-tubulin (loading
control) antibodies (B,C) Quantification of the Gli2a FL:R ratio normalized to WT at 18 hpf (B) and 22 hpf (C). Bar graphs numbered 1–6 represent
lanes on the blots in (A) from left to right. Error bars represent standard deviation obtained from three independent Western blots including those
shown in (A). Single asterisk: P,0.02; double asterisk: P,0.001. (D–H) Parasagittal optical sections of 30 hpf embryos of different genotypes showing
expression of Eng-expressing muscle cells as revealed by mAb4D9 (green). The MZkif7 phenotype (D) is largely unaffected by removal of Gli2a (F),
other than the loss of the some MP cells (arrows); by contrast, Eng expression is nearly eliminated in the MZkif7;gli1 double mutant embryo (G),
despite Gli1 being dispensable for Eng expression in the presence of Kif7 function (E). Knockdown of gli2b and gli3 activity using morpholinos in gli1
mutants (H) has no effect on Eng expression in the myotome. Scale bar: 50 mm.
doi:10.1371/journal.pgen.1003955.g004
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The stability and subcellular localization of Kif7 is
regulated by Hh activity

Using a rabbit polyclonal antibody raised against the C-terminal

domain of zebrafish Kif7 (see Materials and Methods) we analyzed

the sub-cellular distribution of the endogenous protein in fixed

embryos. In wild-type embryos, Kif7 was found to accumulate in

large puncta within the cytoplasm of cells in the neural tube, otic

vesicle and somites; in addition, we found that it localized to the

primary cilia of some cells, especially in the otic vesicle

(Fig. 10A,D,G and data not shown). A similar distribution was

observed in smo mutant embryos (Fig. 10B,E,H). By contrast, we

found that the cytoplasmic puncta are completely absent in

ptch1;ptch2 double mutants, the protein localizing exclusively to the

tips of primary cilia (Fig. 10C,F,I). We used spot segmentation and

brightness measurement to quantify Kif7 protein levels in the otic

vesicles (see Materials & Methods); this revealed an approximately

two fold reduction in fluorescence intensity in ptch1;ptch2 double

mutants compared to smo mutants or wild-type siblings (Fig. 10J)

suggesting that Hh pathway activity may induce increased

turnover and/or dispersion of the Kif7 protein. Consistent with

the former possibility, Western blot analysis of total extracts from

embryos injected with Shh mRNA showed a similar two fold

reduction in Kif7 levels relative to wild-type, an effect that could

be reversed by exposure of the injected embryos to cyclopamine

(Fig. 10K,L).

Discussion

Through ZFN mediated targeted mutagenesis, we have

confirmed a role for Kif7 in Hh pathway regulation in the

zebrafish, previously inferred from transient knockdown experi-

ments using morpholino antisense oligonucleotides [17]. Notably,

we find that maternal expression of Kif7 is sufficient to support

normal Hh pathway activity during embryogenesis, underlining

the limitations of forward genetic screens for zygotic lethals in

identifying genes with developmental functions.

Previous studies in mouse have revealed a role for mammalian

Kif7 in promoting the processing of the Gli3 protein to its

repressor form [18,19,20], analogous to the role of Cos2 in

promoting cleavage of Ci in Drosophila. In cultured mammalian

cells, tagged forms of Kif7 were found to localize to the base of

primary cilia, translocating to their tips in response to Hh pathway

activation [19,20]. This led to the suggestion that Kif7 acts to

localize Gli proteins to the base of the cilium, a site enriched in

Figure 5. Functional tagged Gli1 associates with Kif7 and Sufu in a Hh dependent manner. (A,B) Lateral views of 20ss ptc2:eGFP embryos
uninjected (A) and injected with mCherry-Gli1 mRNA (B) showing the ectopic activation of ptch2:eGFP reporter. Scale bar: 150 mm. (C) Western blot
analysis of anti-GFP immune-precipitates from uninjected embryos or embryos injected with a combination of GFP-Gli1 and/or Shh mRNA and/or
exposed to cyclopamine (CycA); note the stabilization of GFP-Gli1 in the presence of ectopic Shh and a reduced association between Kif7 and Gli1
(see D for quantification); inhibition of Hh pathway activity by cyclopamine reverses this effect and further enhances the association. The inhibitory
association of Sufu and Gli1 is also reduced in response to pathway activation by Shh mRNA injection (see E for quantification). (D) The ratio of
Kif7:GFP-Gli1 from experiments described in panel (C); WT (1), Shh mRNA injected (2), CycA exposed and Shh mRNA injected (3), and CycA exposed
embryos; showing reduced Kif7-Gli1 association upon pathway activation and increased association when the pathway is inhibited. Error bars
represent standard deviation obtained from three independent biological replicates. (E) The ratio of Sufu:GFP-Gli1 from experiments described in
panel (C); WT (1), Shh mRNA injected (2), CycA exposed and Shh mRNA injected (3), and CycA exposed embryos; showing reduced Sufu-Gli1
association upon pathway activation and restoration of this association upon pathway inhibition. Error bars represent standard deviation obtained
from three independent biological replicates.
doi:10.1371/journal.pgen.1003955.g005
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proteasomes, thereby promoting their proteolytic cleavage [20]. In

this view, translocation of Kif7 to the cilia tips in response to Hh

would abrogate Gli processing, leading to the activation of Hh

target gene expression. Notably, however, we find that GFP

tagged Gli2a remains close to the base of the primary cilium in

MZkif7 mutants; moreover, the processing of endogenous Gli2a

appears to be delayed rather than disrupted in the absence of Kif7

function. Thus although at 18 hpf the levels of the R form in MZ

kif7 embryos are reduced compared to wild-type, by 22 hpf the

Gli2a FL:R ratio is similar to that in wild-type embryos. Moreover,

Figure 6. Kif7 modulates Gli2a localization and its association with Sufu. (A) Western blot analysis of anti-Gli2a immune-precipitates of WT
and MZkif7 (MZ) embryos, showing association of Kif7 with Gli2a in wild-type embryos and increased association of Sufu with Gli2a in MZkif7
embryos, as indicated by the ratio of the normalized intensities of the MZ to WT signals. (B) Western blot analysis of anti-Sufu immuno-precipitates of
WT, Shh RNA injected (Shh), cyclopamine (cycA) exposed and MZkif7 (MZ) embryos; the Gli2aFL:Sufu ratios normalized to wild-type are shown below
each lane. Error bars represent standard deviation obtained from three independent biological replicates. Note the increase in levels of Gli2aFL that
co-precipitates with Sufu in MZkif7 embryos. (C,D) Localization of a functional eGFP tagged Gli2a protein (green) to primary cilia in wild-type (C) and
MZkif7 (D) embryos. The axonemes of the primary cilia are marked by acetylated a-tubulin (red) and the basal bodies by c-tubulin (blue) staining. In
wild-type, Gli2a localizes to the tip of the cilia whereas in MZkif7, localization is restricted to the base of the cilia; the lower two panels in (D) are the
same images as in the upper panels but with the red channel removed to show the juxtaposed GFP-Gli2a and c-tubulin signals more clearly. Scale
bar: 5 mm. (E) Western blot of wild-type (WT) and sufu morpholino-injected (sufu MO) embryo extracts probed with anti-Sufu and anti c-tubulin,
showing significant depletion of Sufu levels in the morphants relative to wild-type (MO/WT). (F–K) Parasagittal optical sections of 30 hpf wild-type
(WT) or MZkif7 embryos showing the effect on eng2a:eGFP expression of morpholino mediated knockdown of gli1 (H,I) or gli1 and sufu (J,K). Depletion
of gli1 in WT embryos (H) has no discernible effect, whereas it causes a drastic suppression of the ectopic expression in MZkif7 (I). This suppression is
abrogated by simultaneous removal of Sufu and Gli1 from MZkif7 embryos (K). Scale bar: 50 mm.
doi:10.1371/journal.pgen.1003955.g006

Kif7 Function in Zebrafish

PLOS Genetics | www.plosgenetics.org 8 December 2013 | Volume 9 | Issue 12 | e1003955



our genetic data indicate that Gli2a activity is largely dispensable

for the ectopic activation of the Hh target genes in MZkif7 mutant

embryos, whereas loss of Gli1 activity effectively suppresses their

expression. This suggests that Gli1 is the major target of Kif7

repression; consistent with this, we find that GFP tagged Gli1

protein interacts with endogenous Kif7, an interaction that is

attenuated by the activation of the Hh pathway. These findings

contrast with the evidence from mouse studies implicating Gli2 as

the principal Kif7 target [20]; notably, however, the activity of

mammalian Gli1 expressed in transgenic Drosophila can be

suppressed by endogenous Cos2 function [43]. We note that

ectopic Gli1 activity has also been shown to underlie the Hh gain

of function phenotypes of the zebrafish igu and oval mutants

[44,45,46], in both of which the primary cilium is disrupted

[38,44,47]. How this relates to our proposed role for Kif7 requires

further investigation.

Although we found that endogenous Kif7 protein localizes to

the primary cilia in the developing zebrafish embryo, we also

detected significant accumulation of endogenous Kif7 protein

outside the primary cilium, in cytoplasmic puncta. These puncta

represent the major site of Kif7 accumulation in unstimulated

cells, but disappear upon pathway activation. We surmise that this

cytoplasmic pool of Kif7 plays a central role in the negative

regulation of Gli proteins, an interpretation supported by our

finding that Cos2, which functions independently of primary cilia

in Drosophila and does not localize to primary cilia when expressed

in zebrafish embryos, can nevertheless effect a substantial rescue of

the MZkif7 phenotype. In this view, the Hh mediated dispersal of

cytoplasmic Kif7 would facilitate pathway activation by releasing

Gli proteins from their cytoplasmic sequestration, similar to the

regulation of Cos2 by Hh in Drosophila [48]. Consistent with this,

we find the interaction between Gli1 and Kif7 to be abrogated by

Shh overexpression.

Translocation of Gli proteins to the tip of the primary cilium has

been implicated in their activation by dissociation from Sufu

[25,26] and in line with the block in Gli2a translocation seen in

MZkif7 embryos, we find a concomitant increase in the association

of Gli2a with Sufu, similar to that recently reported in

keratinocytes of mouse Kif7 mutants [49]. This suggests that the

principal role of Kif7 in the primary cilium is to mediate Gli

protein activation by promoting its dissociation from Sufu.

Consistent with this, ectopic Hh target gene activation is

significantly enhanced by depletion of Sufu protein in MZkif7

mutant embryos. Such a role mirrors the promotion of dissociation

of Sufu from Ci by Cos2 in Drosophila, an effect mediated by

hyperactivation of the Fused serine threonine kinase in response to

Cos2 dimerization [15]. In mouse, activity of the Fused orthologue

Stk36 has been shown to be dispensable for Hh signaling [50]

though in zebrafish, morpholino mediated knockdown experiment

suggest that its involvement in the pathway has been conserved

[30,33]. Whether or not Stk36 is mediates the positive regulatory

activity of Kif7 in zebrafish remains to be determined. Interest-

ingly, we also observed accumulation of a faster mobility form of

the FL Gli2a protein in MZkif7 embryos, similar to previous

observations of Gli2 in kif7 mutant mouse keratinocytes [49].

Moreover, this form accumulates at the expense of a slower

migrating form that we found to be cyclopamine sensitive,

suggesting that Kif7 is also required for a Smo-dependent

modification of the FL form, a modification that may contribute

to Gli2a activation.

It is remarkable that even in the total absence of Kif7 function,

zebrafish can complete embryogenesis and survive to become

fertile adults. This stands in contrast to the peri-natal lethality

caused by loss of function alleles of kif7 in the mouse [18,19,20]

Figure 7. Loss of Sufu further enhances Gli activity in MZkif7
mutants. (A–D) Parasagittal optical sections of 30 hpf WT (A,B) or
MZkif7(C,D) embryos stained with anti-Prox1 (red) and 4D9 (green)
antibodies; morpholino mediated knock-down of sufu results in
significant increase in Prox1 expressing slow twitch muscle cells in
WT (B, quantified in I) and a further increase in MZkif7(D) mutants; Scale
bar: 50 mm. (E–H) Lateral view of 30 hpf WT (A) or MZkif7(C) embryos
hybridized with an antisense probe for ptch2 mRNA; MZkif7 embryo
shows an expansion of ptch2 expression; embryos of similar stage and
genotype injected with sufu MO result in an enhancement of the levels
of ptch2 staining in WT (F) and in MZkif7 (H) embryos; Scale bar: 50 mm.
(I) Quantification of Prox1+ slow twitch muscle fiber nuclei per
hemisegment in WT, sufu MO injected, MZkif7 and MZkif7 injected
with sufu MO. Error bars represent standard deviation obtained from
16–20 hemisegments from .6 embryos. Note the significant increase in
MZkif7 compared to WT and a further enhancement in slow fibers by
removal of Sufu in MZkif7 mutants.
doi:10.1371/journal.pgen.1003955.g007
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but interestingly, mirrors the finding that some Acrocallosal and

Joubert syndrome patients are homozygous for loss of function

alleles of the human KIF7 gene [21,31]. A further notable

interspecies difference is the lack of requirement for Kif7 in the

patterning of the neural tube in zebrafish. Despite this apparent

dispensability, the Hh dependent regulation of Kif7 protein sub-

cellular localization occurs within the neural tube and evidence of

its activity can be detected in the absence of Smo function. We

surmised that Kif7 might function redundantly with Sufu to

repress Gli activity in the neural tube; however, despite causing a

significant enhancement of the myotomal phenotype in MZkif7

mutants, morpholino mediated depletion of Sufu protein caused

only sporadic ectopic expression of fkd4, a marker of floorplate,

that by contrast is expressed throughout the neural tube in the

absence of Ptch function. In these respects, the regulation of Gli

activity by Hh signaling seems to differ significantly between

mammals and zebrafish; in mouse the requirement for Sufu is

absolute, its elimination causing almost total de-repression of

pathway activity with consequent widespread defects in neural

tube patterning similar to those caused by lack of Ptch1 function

[51,52]. Although Sufu is effectively dispensable in Drosophila [53],

it seems surprising that Gli activity can be restrained in the

absence of both Sufu and Kif7 in the zebrafish neural tube; one

caveat to this conclusion, however, is that the morpholino

mediated depletion of Sufu is not complete. Nevertheless, it seems

clear that some other component(s) must be responsible for the

suppression of Gli activity. In the absence of Kif27 [17,33] or any

other close homologue of Kif7 from the zebrafish genome, the

identity of such components remains a mystery.

Materials and Methods

Ethics statement
The research described in this paper uses the zebrafish as an

alternative to mammalian experimental models. Adult zebrafish

were raised and maintained under internationally accepted

conditions. All experimental procedures were performed in

compliance with and approved by the A*STAR Biological

Resource Centre Institutional Animal Care and Use Committee

(IACUC Project #110638). Most experimentation and analysis

was restricted to the first five days post fertilization (dpf).

Homozygous mutant fish were regularly monitored and any

showing signs of distress were humanely euthanized following

accepted protocols.

Figure 8. Hh target gene regulation in the neural tube is largely independent of Kif7 and Sufu function. (A–L) Lateral view at the level of
yolk extension of 30 hpf WT (A,E,I), MZkif7 (B,F,J), ptch1;ptch2 double mutants (C,G,K) and sufu MO injected MZkif7 mutants (D,H,L) hybridized with
antisense probes for fkd4 (A–D), nkx2.2a (E–H) or olig2 (I–L); Note the ventrally restricted domains of fkd4, olig2 and nkx2.2a typical of WT embryos are
dramatically expanded in ptch1;ptch2 double mutant embryos (C,G,K) but are unaffected in the absence of Kif7 function. sufu MO injected MZkif7
embryos show wild-type patterns of nkx2.2a or olig2 but ectopically expression fkd4 in scattered cells. (M,N) expression of olig2 is completely lost
from the neural tube in smo mutant embryos (M) but is partially restored by removal of kif7 function (N). Scale bar: 50 mm.
doi:10.1371/journal.pgen.1003955.g008
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Figure 9. Drosophila Cos2 rescues Kif7 function and binds endogenous Gli2a. (A–F) Parasagittal optical sections of 30 hpf
MZkif7;eng2a:eGFP embryos showing slow twitch muscle fibers revealed by mAbF59 in red (A,C,E) and eng2a expression in green (B,D,F); control
(A,B) embryo exhibits the typical expansion of GFP expression which is suppressed in embryos injected with zebrafish kif7 mRNA (C,D) or Drosophila
cos2 mRNA (E,F). Scale bar: 50 mm. (G) Quantification of the eng2a:eGFP expression at 30 hpf in MZkif7 and in MZkif7 injected with mRNA encoding
zebrafish Kif7 or Drosophila Cos2. Individual fibers (MFFs) were counted at the level of the yolk extension in 33–36 hemisegments from .10 embryos
for each sample. Optical sections showing localization of zebrafish Kif7-eGFP (H,J) or Drosophila Cos2-GFP (I,K) in the otic vesicle (H,I) or neural tube
(J,K) of 20ss embryo injected with mRNA encoding the tagged proteins: eGFP (green), a-acetylated tubulin (red) and c-tubulin (red in H,J and blue in
I,K). Scale bar 10 mm. (L) Western blot analysis of anti-b-catenin or anti-Gli2a immune precipitates from 20ss embryos injected with Cos2-eGFP RNA
probed with anti-GFP revealing co-precipitation of the tagged Cos2 with endogenous Gli2a.
doi:10.1371/journal.pgen.1003955.g009
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Zebrafish strains and husbandry
Adult fish were maintained on a 14 hour light/10 hour dark

cycle at 28uC in the AVA (Singapore) certificated IMCB Zebrafish

Facility. Previously described zebrafish strains used were:

ptch1hu1602, ptch2tj222 [41]; iguts294 [46]; Tg(eng2a:eGFP)i233 [54];

gli1 (dtrts269) [55]; gli2a (yotty119) [56] gli2ai276 [37]; smob641 [57].

DNA expression constructs and zebrafish transgenic lines
Ptch2:HAeGFP: Homologous recombination in bacteria [58]

was used to insert eGFP-FRT-AMP-FRT in frame after the first

codon of ptch2 in BAC CH211-226H23. An HA tag was inserted

in frame at the N-terminus of eGFP, while amplifying the targeting

cassette. The FRT-Amp-FRT was excised using arabinose

induction and a fragment containing 8 kb upstream of the

insertion along with eGFP was cloned into pMiniTol2 using

homologous recombination for gap repair [58]. The targeting

cassettes and plasmids used have been described previously [54].

More than 10 stable transgenic lines were generated with this

construct and one of the brightest of these (allele designation i271)

selected for further experiments.

pCS2-mCherry-Gli1, pCS2-eGFP-Gli1: A Vn-Gli1-pCS2+
plasmid [54] was digested with SmaI and AgeI (to release the

Vn fragment); eGFP and mCherry were amplified with oligos

containing the SmaI and AgeI and cloned into the same site of Vn-

Gli1-pCS2+ plasmid.

pCS2-Kif7-eGFP, pCS2-Cos2-eGFP: Zebrafish Kif7 and Dro-

sophila Cos2 [10] were amplified using BamHI and SmaI adaptors

and cloned into the same sites of a eGFP-pCS2+ plasmid (eGFP

cloned between SmaI, XbaI sites)

Generation, selection and genotyping of kif7 mutant
alleles

Plasmids encoding Zinc-finger nucleases (ZFN) specific for the

zebrafish kif7 (set 3) gene were purchased from Sigma (see

accompanying data sheet). Capped polyadenylated RNA from

each plasmid was produced by in vitro transcription and a range of

doses was injected into one-cell stage zebrafish embryos. Embryos

injected with approximately 600 pg had around 30% rate of

deformity at 24 hpf (hours post-fertilization). Genomic DNA

prepared from non-deformed 24 hpf embryos injected with this

dose was used as a PCR template to analyze potential somatic

mutations. Roche Titanium 454 amplicon sequencing showed that

2.5% (6.5% is by 8 of 127 colony PCR and sequencing) of the

amplicon molecules had insertions or deletions at the target site.

G0 adults derived from embryos injected with ZFN capped RNA

were in-crossed and their progenies (G1) individually genotyped by

Figure 10. Kif7 protein localization is modulated by Hh pathway activity. (A–C) Parasagittal optical sections of the neural tube in 20ss
embryos, showing the distribution of the endogenous Kif7 protein. In wild-type (A) and smo (B) embryos, Kif7 accumulates in puncta throughout the
cytoplasm as well as in the primary cilium. In ptch1; ptch2 double mutant embryos (C) by contrast, the cytoplasmic puncta are completely absent with
Kif7 remaining only at the tips of the cilia. Scale bar: 10 mm. (D–I) similar distributions of Kif7 are seen in the otic vesicle (D–F) and the myotome (G–I)
of wild-type and mutant embryos. Insets show a magnified view of a part of each image; note that Kif7 accumulates at the tips of some primary cilia
in wild-type (D,G), smo mutant (E,H) but at elevated levels in all cilia in ptch1;ptch2 double mutant (F,I) embryos. Scale bars: 10 mm; Inset scale bar:
1 mm. (J) Quantification of fluorescence intensity of Kif7 from the otic vesicle at 20ss from wild-type (WT), smo mutants and ptch1;2 double mutants,
revealing a decrease in Kif7 levels detected by immunofluorescence. Error bars represent standard deviation in spot intensity in pre-processed
confocal stacks. (K) Western blot analysis of endogenous Gli2a and Kif7 protein from wild-type (WT), cyclopamine exposed wild-type (WT), Shh RNA
injected (Shh) and cyclopamine treated Shh RNA injected (Shh CycA) wild-type embryos exposed to cyclopamine. Note the increase in full-length
Gli2a levels following Shh overexpression. Relative levels of Kif7 protein normalized to wild-type are indicated in (L).
doi:10.1371/journal.pgen.1003955.g010
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PCR using the forward primer (Kif7 exF2: 59CGAGGTGCT-

GAGTCTCTTAGAGT) and reverse primer (Kif7 exR1:

59TGAATCCCTGTATGGGATATGGGT) followed by Sanger

sequencing.

Founders transmitting two different alleles (kif7D8, an 8-bp del:

GGACCTGG kif7D7, a 7-bp del: TTGTGGA) were selected and

used to establish stable mutant lines. The full nucleic acid

sequences of mutated alleles together with their allele designations

are shown in Table 1).

In situ hybridization and immunofluorescence
Standard in situ hybridization (ISH) was performed with anti-

DIG alkaline phosphatase and chromogenic substrate NBT/BCIP

as previously described [59]. RNA probes were prepared from

templates as previously described: nkx2.2 [60], olig2 [61], ptch2

(formerly ptc1) [62], prdm1a [63].

Whole-mount antibody staining was performed as previously

described [35,64] at the following dilutions: mAb 4D9 (anti-

Engrailed; DHSB) at 1:50–1:200; mAb F310 (1:50; DHSB); mAb

F59 (1:50; DHSB); rabbit anti-Prox1 (1:2000); rabbit anti-c-

tubulin (1:500; Sigma); mouse anti-c-tubulin (1:500; Sigma);

mouse anti-acetylated a-tubulin (1:800; Sigma); rabbit anti-Kif7

(1:500); chick anti-GFP (1:400; Abcam); rabbit anti-GFP-488

(1:750; Invitrogen); rabbit anti-DSred (1:200; Clontech). The

secondary antibodies were: Alexa488-conjugated goat anti-mouse

or rabbit, Alexa546-conjugated goat anti-mouse and Alexa568-

conjugated goat anti-rabbit, Alexa633-conjugated goat anti-

secondary antibodies (1:1000, Invitrogen). Bright field microscopy

images were acquired with an AxioCam HRc mounted on a Zeiss

AXIO Imager M2, Olympus DP70 on MVX10 or Leica DFC300

FX mounted on MZ16FA. Fluorescent specimens were imaged

using the 606 or 1006 oil immersion objective on an Olympus

Fluoview 1000 confocal microscope. Images were acquired using

Olympus FV10-ASW software.

Synthetic RNA, DNA and morpholino for injection
Capped synthetic mRNAs for the following genes was

synthesized using the SP6 mMessage mMachine Kit (Ambion),

the plasmids were linearized with restriction enzymes as indicated:

pCS2-GFP-Kif7 (NotI) [17]; pCS2-Cos2-GFP (NotI) [65]; pCS2-

KIF7-GFP (NotI). BAC Gli2a-GFP was used as previously

described [38]. Morpholino oligonucleotides were obtained from

Gene Tools (USA) and injected into newly fertilized embryos. The

sequences of those targeting Gli2a and Sufu antisense were as

described [30]. The sequence of the Gli1 morpholino was as

described by [36].

Cyclopamine treatment of embryos
Cyclopamine treatment followed a standard method with

immersion in 40 mM cyclopamine (Toronto Research Chemicals)

from 50% epiboly as previously described [30].

Generation of antibodies
Sufu: The full-length zebrafish Sufu coding sequence [30] was

cloned into the BamHI-EcoR1 sites of pGEX-6p-1 (Amersham).

The resulting GST-zSufu fusion protein was expressed in E.coli

strain BL21 and purified by SDS-PAGE and electro-elution. After

dialysis in PBS, the antigen was injected into mice. Splenocytes

were extracted from immunoreactive animals and fused with

melanoma cells to generate hybridomas. Of 904 hybridoma clones

screened, 50 were positive by ELISA and one of these, 2A10,

tested positive by western blot of zebrafish embryo extracts.

Polyclonal rabbit anti-zebrafish Sufu antibody was generated by

Absea Biotechnology Ltd. (China) using the same pGEX-zSufu

expression construct.

Kif7: Polyclonal rabbit anti-zKif7 antibody was generated by

Strategic Diagnostics Inc. (USA) using a peptide corresponding to

residues 1231–1330 of the zebrafish Kif7 protein sequence [17].

Fluorescence image analysis
(1) Image pre-processing. Acquired image stacks were

reconstructed and the voxel size normalized using linear interpo-

lation such that the scales of voxels were isotropic, i.e. each voxel is

0.260.260.2 mm. The images were smoothened by a Gaussian

kernel to reduce noise and enhanced based on the histogram. A

Laplacian kernel was applied to enhance the boundaries between

them.

(2) Spot segmentation and brightness measurement. To

formalize the spot segmentation problem, the pre-processed image

stacks at each time point were defined on a subset of three-

dimensional space V5 . We used f x,y,zð Þ : V? to represent

the image intensity of the spots after the pre-processing. The

intensity function of the image stack was normalized such that

f (x,y,z)[½0,1�. The local maximum in f (x,y,z) was detected as

spot centers, denoted by seeds. The spots were then segmented by

Evolving Generalized Voronoi Diagrams approach [66,67]. The

segmented regions of f represent spot segments, represented by vi

for i~1,2,:::L, where L is the number of detected spots. Each vi

forms connected regions in V. A simple statement defines the

connected region:

Connected region: A set of points p( form a

connected region if V(x1,y1,z1)[p and V(x2,y2,z2)[p, A a

path C( connecting (x1,y1,z1) and (x2,y2,z2) such that

C(p.

The average brightness of each spot is then calculated based on

Eq. (1),

bi~

Ð

vi

f (x,y,z)dv

Ð

vi

dv
ð1Þ

where the denominator is the volume of spots.

Western blot analysis
Embryos were de-chorionated, de-yolked, and homogenized

manually in ice cold PBS without Ca2+ and Mg2+ in the presence

of complete protease inhibitor cocktail (Roche). The embryo pellet

was lysed in RIPA buffer (50 mM Tris.HCl, pH 8.0/150 mM

NaCl/1%NP-40/0.5% Na.Deoxycholate/0.1%SDS/protease in-

hibitor cocktail/1 mM PMSF). Samples were microcentrifuged for

10 min at 4uC, loading buffer (62.6 mM Tris HCl, pH 6.8; 2%

SDS; 0.01% bromophenol blue; 10% glycerol; 100 mM DTT)

was added to the supernatant and the equivalent of 30 embryos

run on each lane of a 7.5% acrylamide denaturing gel at 30 mA

for 120 mins, and electroblotted onto Immobilon-P polyvinylidene

fluoride (PVDF) membrane (Millipore). PVDF strips were blocked

in 5% milk powder PBS 0.1%Tween20 for 1 hr, and incubated

with rabbit anti-zebrafish Gli2a (1:5000) [54], rabbit anti-zebrafish

Kif7 (1:5000), mouse anti-Sufu (1:100) for 1 hr at room

temperature. After washing, primary antibody was detected with

ECL HRP-conjugated anti-rabbit lgG (1:50,000) and anti-mouse

IgG (1:50,000). Chemiluminescent Substrate was SuperSignal

West Femto (Pierce). The loading amount of protein extract
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among specimens was evaluated by gamma-Tubulin level with

either rabbit or mouse anti-gamma Tubulin (1:5000; Sigma).

Signal quantification was performed using Adobe Photoshop or

Image J software.

Immunoprecipitation
Embryos were de-chorionated using pronase (2 mg/ml, Sigma)

and rinsed with egg water and then PBS with 26 protease

inhibitor (PI; Roche). Embryos were de-yolked by yellow tip on ice

and rinsed in ice-cold PBS/26PI. The embryos were centrifuged

at 2006g for 5 mins. The pellet was stored at 280C degree. For

10006embryos, 1 ml of triton buffer (20 mM Tris-HCl, pH 8.0/

137 mM NaCl/10% Glycerol/1%Triton X100/2 mM EDTA)/

26PI/10 mM PMSF is added to extract the proteins. Tubes were

left horizontally on ice for 30 mins or longer. The lysates were

spun at 10,0006g for 15 mins. The suspension was transferred

into a new 2 ml eppendorf. Forty ml of lysate was taken out as the

input control. In 1 ml of lysate, 150 ml of magnetic Dyna-bead

(Invitrogen) was added to pre-clear for 3 hours at 4uC degree.

After removing the pre-clear beads, 10 mg of rabbit primary Ab

was added into lysate. For eGFP immunoprecipitations we added

the lysate to 20 ml of GFP-Trap beads (Chromotek) and other steps

remained unchanged. The binding between rAb and the specific

protein was facilitated by shaking at 4uC overnight. The 120 ml of

dynabead protein A was added in 1 ml of lysate and incubated at

4uC degree for no more than 1 hour to pull down the complex of

rAb-target protein. The beads were washed with 1.5 ml of lysis

buffer/26PI per tube 4 to 6 times. During the last time of

washing, the beads were transferred to a new tube. Elution was

performed by adding 40 ml of 26 SDS NuPage LDS/100 mM

DTT (Invitrogen) per tube and by heating at 95uC for 5 mins.

Supporting Information

Figure S1 Complete loss of Kif7 does not result in left-right

patterning defects. Dorsal view of five 22ss MZkif7 embryos

stained with an antisense probe for lefty2 showing correct

positioning of the heart tube. Up to 30 MZkif7 embryos were

analyzed for lefty2 expression, all of which displayed the correct L-

R patterning.

(TIF)

Figure S2 Localization of Gli2a-GFP in the primary cilia of

wild-type (WT) and MZkif7 embryos. The graph shows the

frequency of localization of Gli2a-GFP to different regions of the

primary cilia in transient transgenic embryos.

(TIF)
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