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Sonic hedgehog-expressing cells in the developing
limb measure time by an intrinsic cell cycle clock

Kavitha Chinnaiya', Cheryll Tickle? & Matthew Towers'

How time is measured is an enduring issue in developmental biology. Classical models of
somitogenesis and limb development implicated intrinsic cell cycle clocks, but their existence
remains controversial. Here we show that an intrinsic cell cycle clock in polarizing region cells
of the chick limb bud times the duration of Sonic hedgehog (Shh) expression, which encodes
the morphogen specifying digit pattern across the antero-posterior axis (thumb to little
finger). Timing by this clock starts when polarizing region cells fall out of range of retinoic
acid signalling. We found that timing of Shh transcription by the cell cycle clock can be reset,
thus revealing an embryonic form of self-renewal. In contrast, antero-posterior positional
values cannot be reset, suggesting that this may be an important constraint on digit
regeneration. Our findings provide the first evidence for an intrinsic cell cycle timer controlling
duration and patterning activity of a major embryonic signalling centre.
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iming is suggested as a key mechanism for specifying

positional ~values in somitogenesis! and limb

development*. The long-standing progress zone model
for patterning the proximo-distal axis (humerus-digits) of the
limb is based on timing by an intrinsic cell cycle clock that runs in
response to extrinsic mitogenic signals from the overlying apical
ectodermal ridge*>. In this model, the first cells displaced from
the progress zone acquire proximal positional values (that is,
humerus), while those displaced later more distal positional
values (that is, digits). Flank-derived signals, including retinoic
acid, have recently been suggested to specify proximal
structures®8, and while it is known that retinoic acid
contributes to inducing Sonic hedgehog (Shh) expression’, it is
debated whether it is required for limb patterning or just involved
in limb initiation!®!!, Tt still remains unclear whether distal
positional values are specified by time®=812-14,

Timing is also proposed to be involved in specifying antero-
posterior (thumb-little finger) positional values in the limb. The
positional values for the three digits (1, 2 and 3—previous
nomenclature before 2011 was 2, 3 and 4; reviewed in ref. 15) of
the chick wing are specified by a paracrine morphogen gradient'®,
now known to be Shh produced by the polarizing region!”.
However, there is good evidence that the time that cells are
exposed to autocrine Shh signalling specifies the positional values
for the posterior digits 4 and 5 in the mouse limb that arise from
the polarizing region itself'8. To ensure a sufficient duration of
Shh signalling for digit specification, and to also maintain the
apical ectodermal ridge to permit outgrowth, it was suggested that
loss of extrinsic signals terminates Shh expression at the
appropriate time!®. In this model, growth of the limb bud leads
to Shh signalling being unable to maintain Gremlin expression
(encoding a BMP-antagonist), and this, in turn, allows de-
repressed BMPs to suppress FGFs in the apical ectodermal ridge
that maintain Shh transcription. However, while Gremlin over-
expression and application of FGF can maintain high-level Shh
expression in the chick wing-polarizing region, the total duration
of Shh expression is not extended for longer than usual.

Instead, we previously presented evidence for an intrinsic clock
in chick wing bud-polarizing region cells related to the cell cycle
from experiments in which we transiently inhibited cell cycle
progression using the histone deacetylase inhibitor trichostatin A
(TSA)?°. Following cell cycle arrest, Shh expression was extended
until a much later stage of wing development than usual,
suggesting that duration of Shh transcription is timed with cell
proliferation. We also previously showed that digit IV of the chick
leg arises from the polarizing region and that progenitor cells first
transit through digits I, II and III fates every 4h (ref. 21).
Therefore, an intrinsic cell cycle clock could provide a mechanism
that underlies the precise promotion of these positional values in
response to the duration of autocrine Shh signalling?!. In
addition, this clock could ensure the correct duration of Shh
signalling to maintain the apical ectodermal ridge and thus limb
bud outgrowth.

In order to test whether an intrinsic timer or the extrinsic
signalling environment terminates Shh expression, we grafted
polarizing region cells into earlier and later stage chick limb buds.
We show that an intrinsic cell cycle clock in the polarizing region
of the chick limb does indeed control the duration of Shh
transcription and that timing by this clock is started and can also
be reset by changes in retinoic acid signalling from the flank of
the embryo.

Results
The polarizing region has an intrinsic timer. We carried out
experiments to test further the link between cell proliferation and

2

duration of Shh expression in the polarizing region of the chick
wing bud using the specific mitotic inhibitor colchicine. It is
possible that in our previous study?® the effects of TSA were due
to its properties as a histone deacetylase inhibitor rather than a
cell cycle inhibitor. As we previously found with TSA application,
implanting colchicine-soaked beads into HH19/20 wing buds
resulted in Shh expression being prolonged and also loss of
anterior digits (Supplementary Fig. 1). We also previously showed
that Shh could promote cell proliferation because inhibition of
Shh signalling with cyclopamine treatment increases the
proportion of cells in Gl phase in the posterior part of the
wing bud?’. To examine whether Shh promotes cell cycle
progression specifically in the polarizing region we applied
cyclopamine at HH20 and analysed the DNA content of
polarizing region cells at 6 and 20h by flow cytometry
(Supplementary Figs 2 and 3 and Supplementary Tables 1 and 2).
In both cases, cyclopamine treatment increased the proportion of
cells in G1, consistent with Shh having a role in promoting cell
cycle progression in the polarizing region. These data, taken
together, suggest a reciprocal interaction between Shh expression/
signalling and cell proliferation controls the duration of the
polarizing region. A similar reciprocal interaction between Shh
and apoptosis has previously been shown to regulate the size of
the chick wing-polarizing region®2.

Shh is expressed at high levels in the chick wing-polarizing
region for 36-42 h (from HH18-25), then at low levels for around
another 18h (until HH27/28; Supplementary Fig. 4, see methods
for staging). Previously, we reported that only the first 12h of Shh
expression is required for specifying the antero-posterior
positional values for the digits in the chick wing (16h in the
chick leg)?!, suggesting that Shh continues to be expressed in the
polarizing region in order to maintain the apical ectodermal
ridge. We investigated whether duration of Shh expression is an
intrinsic property by grafting green fluorescent protein (GFP)-
expressing polarizing regions from the posterior margin of HH20
wing and leg buds either in place of host polarizing regions or to
anterior margins of HH24 buds (Fig. 1a,h). After 32 h, the grafted
cells continued to express Shh robustly—consistent with their age
and not host age (Fig. 1b,e,i,l). Wings with posterior grafts had a
normal digit pattern (Fig. 1c,d), but consistent with the timed
programme of Shh expression, posterior and anterior leg
polarizing region grafts gave rise to a digit IV (Fig. 1jk,m,n).
However, although anterior grafts in both wing and leg buds
expressed high-level Shh, they induced only an additional digit 1
(Fig. 1f,g;m,n), because by HH24 host mesenchyme has lost the
competence to form a complete digit pattern??. These data show
that cells of the chick limb-polarizing region have an intrinsic
programme of Shh expression and specification of digit positional
values.

The polarizing region timer is linked with the cell cycle.
Intrinsic timers have been linked to the cell cycle!=>%42>,
therefore we performed flow cytometry with cells from wing-
and leg-polarizing regions. We found that between HH20
and HH30 there is a significant increase in G1 phase cells
and decrease in S phase cells, indicating progressively less
proliferation and/or longer cell cycling times (Fig. 1lo,p,
Supplementary Table 3). To test whether these cell cycle
parameters are linked with timing of Shh expression, HH20
wing and leg polarizing regions were again grafted in place of host
HH24-polarizing regions (Fig. 1q). After 24 h, 61 and 65% of cells
in grafted wing and leg polarizing regions were in G1 phase,
respectively, consistent with their age (HH24) and not host age
(HH27; Fig. 1r,s, Supplementary Table 4; also see Fig. 1o,p). Note
that G1 phase values of left and right buds deviate by <1% and
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Figure 1| The chick limb-polarizing region has an intrinsic cell cycle clock. (a-n) HH20 wing- (a) and leg-polarizing regions (h) grafted with pins to
posterior and anterior of HH24 wing- and leg-polarizing regions express Shh after 32 h (arrows—b,e,il, n=_8/8), endogenous Shh undetectable
(asterisks—b,e,i,l). Wings with posterior grafts normal (¢,d, n=2/2), wings with anterior grafts have an additional digit 1* (fg, n=2/2), legs with posterior
leg grafts gave rise to digit IV (j,k, n=3/3) and anterior leg grafts to digit IV* and induce a digit I* (m,n, n=2/2). (o-p) Cell cycle parameters of wing- (o)
and leg-polarizing regions (p)—bars indicate s.e.m. (gq-s) HH20-polarizing regions grafted in place of HH24 wing- and leg-polarizing regions (q). After
24 h, 61 and 65% of cells in grafted wing (n=10, r) and leg (n=11, s) polarizing regions, respectively in G1 compared with 79 and 76% of cells in equal
numbers of contralateral limb bud-polarizing regions. In both experiments there is a significant difference in G1 numbers between host and donor polarizing
regions (Pearson’s y2 test—P< 0.05) consistent with graft behaving intrinsically. All scale bars, 1mm.

are not significantly different (Supplementary Fig. 2 and
Supplementary Table 1). Thus polarizing region cells have an
intrinsic cell cycle clock that could time the duration of Shh
expression.

The polarizing region timer can be reset. Having shown that the
polarizing region has an intrinsic cell cycle clock, we tested
whether it could be reset by grafting late wing polarizing regions
(HH27—expressing low-levels of Shh in a small domain
(Supplementary Fig. 4) to early wing buds (HH20, Fig. 2a). At
32h, Shh expression had increased dramatically in the grafts and
was equivalent in size to the host-polarizing region (Fig. 2b.e).
Posterior grafts resulted in wings with normal patterns (Fig. 2¢,d),
while anterior grafts induced duplicate patterns (Fig. 2f,g).

A substantial increase in the level/extent of Shh expression in
grafts of HH27-polarizing regions to HH20 buds was already

apparent by 12h (Supplementary Figs 4 and 5), although the
domain is still somewhat smaller than the endogenous domain of
expression at the posterior margin of the host wing bud. This
suggests that there are polarizing region cells present at stage
HH27 that do not express detectable levels of Shh but can re-
express it again under appropriate conditions. However, it is
possible that increased proliferation at very early stages in the
grafts could also contribute to re-establishing Shh expression. By
24h, 62% of grafted cells were in G1 phase close to the 60% value
of the host age (Fig. 2h and Supplementary Table 4), rather than
the 89% value expected for the donor (Fig. 1o and Supplementary
Table 3), showing that re-setting of the cell cycle parameters had
occurred. Grafts from limbs older than HH27 made to HH20
buds failed to express Shh or reset cell cycle parameters
(Supplementary Fig. 6 and Supplementary Table 4).
Remarkably, resetting can occur more than once as shown
when HH24 grafts were made twice to HH20 buds (Fig. 2i).
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Figure 2 | The chick wing-polarizing region intrinsic timer can be reset. (a-h) HH27 wing-polarizing region grafted to posterior and anterior of HH20
wings (a) express Shh after 32 h (arrows, b,e, n=11/13). Wings with posterior grafts normal (¢,d, n=2/3—one lost digit 3), wings with anterior graft
duplicated* (fg, n=10/12). After 24 h, 62% of cells in G1 phase in grafted polarizing regions (n=10) compared with 60% in contralateral wings

(h, n=10). (i-p) HH24 wing-polarizing region serially grafted (twice) to posterior and anterior of HH20 wings (i) express Shh after 32 h (arrows, j,m,
n=3/3). Wings with posterior grafts normal (kl, n=2/2), wings with anterior grafts duplicated* (n,0, n=2/3). After 24 h, 62% of cells in G1 phase in
grafted polarizing regions (n =10) compared with 59% in contralateral wings (p, n=10). (q-x) HH27 wing-polarizing region grafted to posterior or anterior
of HH24 wings (q), Shh not expressed after 16 h (arrows, ru, n=15/15). Wings with posterior graft normal (s,t, n=3/3), wings with anterior graft have
duplicated digit 1* (v,w, n=2/4—two not duplicated). After 24 h, 79% of cells in polarizing regions (n=12) in G1 phase compared with 78% in
contralateral wing bud-polarizing regions (x, n=12). In h,p and x there is a significant difference in G1 numbers between host values and expected values
for the stage of the donor polarizing region (Pearson’s 32 test—P < 0.05) consistent with cell cycle parameters of the graft being reset close to host levels
(see also Supplementary Table 3). Scale bars, 500 um (b,ejm), 750 um (ru), Tmm (c,d f.gklno0stvw).

Thus, after a total of 86 h, Shh was still expressed at high levels in
grafted polarizing regions (Fig. 2j,m); this is much longer than
the normal duration of high-level Shh expression (~36h;
Supplementary Fig. 4). Buds with posterior grafts were normal
(Fig. 2k, 1), while anterior grafts induced duplicated digit patterns
(Fig. 2n,0). Cell cycle parameters were also reset by 24 h (Fig. 2p
and Supplementary Table 4), raising the possibility that polarizing
region cells have the potential to proliferate and self-renew
indefinitely.

Resetting of Shh expression timing only occurs in grafts made
to early wing buds. When HH27 wing-polarizing regions were
grafted to HH24 wing buds (Fig. 2q), Shh expression was
undetectable in the grafts after 16h (Fig. 2r,u). Posterior grafts
resulted in normal wings (Fig. 2s,t), but anterior grafts still
induced a digit 1 (Fig. 2v,w) presumably because of residual Shh
in the graft. Unexpectedly, however, after 24 h, G1 phase values
appeared to have been reset and were almost identical in left
(78%) and right (79%) buds (Fig. 2x and Supplementary Table 4).
This suggests that polarizing region cells not expressing Shh have
a similar cell cycle profile to the endogenous polarizing region
that expresses low-levels of Shh at this late stage (Supplementary

Fig. 4). These data, taken together, show that timing of Shh
expression and the cell cycle clock can be reset in the chick
wing-polarizing region by extrinsic signals, although re-setting of
Shh expression requires an earlier environment.

Positional values cannot be reset in the polarizing region. To
understand whether the positional values of the digits are
intrinsically determined we turned to the chick leg in which the
polarizing region cells are promoted every 4h through digit
identities (I, IT and III) before giving rise to digit IV (ref. 21). As
in wings, Shh expression and cell cycle parameters can also be
reset in leg-polarizing region grafts (HH27 grafts to HH20 leg
buds; Fig. 3a, Supplementary Fig. 7 and Supplementary Table 4).
In addition, leg-polarizing region grafts gave rise to digit IV
(Fig.z_?ib,c), just as grafts of HH20 leg polarizing region to HH20
buds".

To test whether specification of the leg digit IV had been reset
in the early environment, or whether its fate irreversibly specified,
we grafted HH27 leg-polarizing regions either posteriorly
to HH18/19 leg, or anteriorly to HH21 leg and wing buds
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Figure 3 | Positional value of chick leg-polarizing region cells is irreversibly specified. (a-c) HH27 leg-polarizing region grafted to posterior of
HH20 host-polarizing region (a) give rise to digit IV (b,c, n=3/4; one case no digit from graft). (d-f) HH27 leg-polarizing region grafted to posterior
of HH18/19 leg-polarizing region treated with cyclopamine (d) gives rise to digit IV (e f n=3/4 one case limb truncated). (g-i) HH27 leg-polarizing
region grafted to anterior margin of HH21 leg treated with cyclopamine (g) give rise to digit IV *, a duplicate digit I* from host (h,i, n=2/3, one case no
duplicated host digits, note extra digit [V* (i) is out of plane with the other digits and appears posterior although it is an anterior digit. (j-1) HH27
leg-polarizing regions grafted to anterior margins of HH21 wing treated with cyclopamine (j) give rise to digit IV* (k1 n=2/2). All scale bars, 1Tmm.

(Fig. 3d,g,j) and simultaneously treated with cyclopamine to
curtail Shh signalling. If resetting occurs and Shh signalling is
attenuated, the leg-polarizing region should give rise to a more
anterjor digit, because digit progenitor cells transit through digits
I, IT and III fates in response to Shh signalling?!. However, the
grafts still gave rise to digit IV, despite attenuated Shh signalling,
as shown by failure to specify digit III in adjacent host tissue
(Fig. 3efh,ikl—note application of cyclopamine after HH21
does not affect host digit pattern®!). Therefore, these data show
that Shh expression and signalling are dispensable for the
late-stage polarizing region to differentiate into a digit IV when
grafted into the early bud. Additionally, that the anterior to
posterior sequence of positional values that specify leg digit IV are
irreversible and cannot be reset by any extrinsic signals present in
either early wing or leg buds.

Retinoic acid depletion starts the polarizing region timer.
A candidate factor for the resetting of Shh expression is retinoic
acid that is present proximally in early wing buds?®%’. When we
grafted HH27 wing-polarizing regions anteriorly to HH20 wing
buds treated 4 h earlier with the retinoic acid receptor antagonist
BMS-493 (Fig. 4a) Shh expression levels in the grafts were
reduced at 16 h (Fig. 4b, compare with Fig. 2e and Supplementary
Fig. 5), although normal posterior expression of Shh was
unaffected (Fig. 4b). In addition, when HH27 wing-polarizing
regions were grafted anteriorly to HH24 wing buds treated 4h
earlier with retinoic acid (Fig. 4c), Shh was expressed robustly in
the grafts at 16h (Fig. 4d, compare with Fig. 2u). However,
application of retinoic acid to HH25 buds failed to prolong
endogenous Shh transcription, suggesting that resetting is only
possible in host buds that are HH24 or younger (Supplementary
Fig. 8). Although it is difficult to rule out other possibilities,
resetting of Shh could share parallels with initiation of Shh

expression and depend on other factors only present in the early
bud that act together with retinoic acid. These findings indicate
that retinoic acid is the endogenous proximal factor that resets
Shh expression and controls the duration of Shh expression.

To test this further we treated HH18 wing buds at the onset of
Shh expression with BMS-493 (Fig. 4e) to inhibit retinoic acid
signalling during the narrow time-window before it becomes
depleted and timing of Shh expression starts. This resulted in the
duration of Shh expression being shortened by ~4h (Fig. 4f), the
polarizing region having a higher proportion of G1 phase cells at
48h (71%) compared with control buds (67%; Fig. 4g and
Supplementary Table 4) and is consistent with the intrinsic
polarizing region timer being started earlier than normal. To
examine conversely whether retinoic acid treatment can delay the
onset of the polarizing region timer, we treated HH20 wing buds
with retinoic acid to maintain signalling during outgrowth
(Fig. 4h). Retinoic acid treatment did not affect Shh expression
in early buds but strikingly high-level Shh expression was
extended for ~10-12h in treated buds compared with control
buds (Fig. 4i). In addition, in buds in which retinoic acid beads
were implanted at HH20 and replaced with fresh beads 24 h later
at HH24, polarizing region cells maintained a G1 phase value of
62%, typical of early wings for at least 48h (embryos then at
HH27); the G1 phase value of polarizing region cells in the
contralateral HH27 wing bud is 74% (Fig. 4j,k, Supplementary
Table 4; also see Fig. 10).

Discussion

This study has given new insights into a little understood but
important area of developmental biology—how time is measured
during pattern specification. Our data suggest the duration of Shh
expression in polarizing region cells is determined by an intrinsic
cell cycle clock and this clock could provide a mechanism for
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Figure 4 | Retinoic acid influences the chick wing-polarizing region timer. (a,b) HH27 wing-polarizing region grafted to anterior margin of BMS-493
bead-treated HH20 wings (a) have reduced (or undetectable) Shh expression after 16 h (arrow, b, n =10/16—compare with untreated wings; Fig. 2e and
Supplementary Fig. 5). (c,d) HH27 wing-polarizing region grafted to anterior margin of retinoic acid (RA) bead-treated HH24 wings (¢) express Shh after
16 h (arrow, d, n =3/3—compare with untreated wings; Fig. 2u). (e-g) HH18 wing buds treated with BMS-493 terminate Shh expression 4 h earlier (arrows,
f n=>5/7) than in untreated wings (asterisks, f). After 48 h, 71% of polarizing region cells in treated wing buds (n =11) compared with 67% in untreated
buds (n=11, g). (h-k) HH20 wings treated with retinoic acid beads (h) express Shh at high levels 10-12 h longer (arrows, i) than untreated wings
(asterisks, i, n>5 for each time-point). After 24 h (§j) 62% of polarizing region cells in G1 phase in treated wing buds (n=12) compared with 64% in
untreated buds (n=12) and after 48 h (k) 62% of polarizing region cells in treated wing buds (n=12) compared with 74% in untreated buds (n=12).
(I-m) Shh-expressing limb bud cells measure time by an intrinsic cell cycle clock. In early buds (I) retinoic acid promotes limb initiation'®1" and is suggested
to specify proximal structures (that is, humerus)’”8 and be required for Shh transcription in the polarizing region (oval, I)®'7. Shh then contributes to
clearing retinoic acid from the early bud?® and our data suggest that this starts an intrinsic cell cycle clock (red circle, m) that times Shh duration.
Graded paracrine Shh signalling specifies digits 1, 2 and 3 (ref. 21) while autocrine Shh signalling specifies digit 4 in the chick leg?! (also digit 5 in the
mouse limb'8, m). The cell cycle clock enables polarizing region cells to measure time of Shh expression and thus irreversibly acquire antero-posterior
positional values. For gj and k, Pearson’s 12 tests reveal a significant difference (P-value<0.05) in G1 phase cell numbers between treated and
untreated buds. Scale bars, 500 um (b,i; left panels), 750 um (dfi; right panels).

providing the polarizing region cells with positional information
based on the time they are exposed to autocrine Shh signalling
and also could ensure the appropriate timing of bud outgrowth
(Fig. 4L,m). The clock is reminiscent of the intrinsic cell cycle
clock previously described in cultured oligodendrocytes?>.
However, in showing that a similar clock operates in vivo, and
also controls the duration of a key embryonic signalling centre,

our findings are unprecedented. We have also shown that
following the onset of Shh expression in the early bud, the
intrinsic cell cycle clock starts once polarizing region cells fall out
of range of retinoic acid signalling by the flank and this times the
remaining duration of Shh expression (Fig. 4, m). In this respect,
there is another parallel with the oligodendrocyte intrinsic clock
that is set by extrinsic hydrophobic signals such as thyroid
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hormone or retinoic acid®®>. One possibility is that retinoic acid
has a general role in controlling the activity of embryonic timers,
including those that time cell differentiation as in cultured
oligodendrocytes and those like the one operating in the
polarizing region that we have described here that time the
duration of cell-cell signalling. We also have shown that retinoic
acid treatment can stop the clock in the polarizing region cells
and allow it to be reset. The programmes of Shh expression and
cell cycle can be then be recapitulated, possibly indefinitely. In
this respect, Shh-expressing cells are behaving like self-renewing
stem cell populations. In contrast, our experiments show that
positional values in the polarizing cells are not reset and this
could be one of the factors that act to constrain regenerative
ability as the chick limb bud develops.

Methods

Chick husbandry and polarizing region grafts. Hamilton Hamburger stages
(HH) are used throughout. HH18 occurs at ~3.25 days of incubation, HH20-day
3.5, HH23-day 4, HH24-day 4.5, HH26-day 5, HH27-day 5.5, HH28/29-day 6,
HH29/30-day 6.5 and HH30-day 7. Fertilized Brown Leghorn chicken eggs were
incubated at 38 °C for 3 days (HH17) and windowed using blunt forceps to make a
small opening in the side of the shell, which was then covered with clear tape. The
eggs were re-incubated and left until the desired stage of development (see above).
GFP-expressing embryos were dissected in DMEM (Gibco) and limb bud-
polarizing regions removed using sharpened tungsten needles, grafted to
equivalently sized holes cut into the anterior or posterior margins of the limb
buds of host embryos and held in place with 25 um platinum pins (Goodfellow
Metals).

Chemical treatment. Cyclopamine (5 pl; Sigma) dissolved in control carrier (45%
2-hydroxypropyl-B-cyclodextrin in PBS; Sigma) to a concentration of 1 pgpl~!
was pipetted directly into the egg after removal of vitelline membranes using fine
forceps. Retinoic acid (Sigma) and BMS-493 (Sigma and a gift from M. Torres) and
colchicine (Sigma) were dissolved in DMSO (Sigma) to 5 g ul’l (retinoic acid
and BMS-493) or 0.05ug ul_l (colchicine). Formate-derivatized AG1-X2-beads
(Sigma-150 pm diameter—sieved using nylon mesh to exclude smaller beads) were
soaked in these compounds for 30 min, washed twice in DMEM and implanted
into chick wing buds. For 48 h retinoic acid treatment, beads were replaced after
24h with freshly prepared ones.

Skeletal preparations. Embryos were fixed in 90% ethanol for 2 days then
transferred to 0.05% alcian blue in 80% ethanol/20% acetic acid for 1 day. Embryos
were then rehydrated through an ethanol series before being cleared in 1% KOH.

Whole mount in situ hybridization. Embryos were removed from eggs, vitelline
membranes removed using fine forceps and then fixed overnight in 4% PFA at
4°C. Embryos were dehydrated and rehydrated through a methanol series, washed
in PBS, then treated with proteinase K for 20 mins (10 pgml ~!). Embryos were
washed twice for 5min in PBS, fixed for 30 min in 4% PFA and then pre-
hybridized at 65°C for 2h (50% formamide/50% 2 x SSC). Antisense mRNA
probe (1 ng) for Shh was added to 1 ml of hybridization buffer (50% formamide/
50% 2 x SSC) at 65 °C overnight. Embryos were washed in hybridization buffer,
and then in maleic acid buffer (MAB) buffer, before being transferred to blocking
buffer (2% blocking reagent 20% lamb serum in MAB buffer) for 2h at room
temperature. Embryos were transferred to blocking buffer containing anti-digox-
igenin antibody (1/2,000; Roche) at 4 °C overnight, washed in MAB buffer and
transferred to NTM buffer containing nitroblue tetrazolium chloride/5-bromo-4-
chloro-3-indolyl-phosphate and Shh expression visualized.

Cell cycle analyses by flow cytometry. Normal and GFP-expressing limb bud-
polarizing regions were dissected in PBS under a LeicaMZ16F UV microscope
using fine surgical scissors, pooled from replicate experiments (between 10 and 12),
and digested into single-cell suspensions with trypsin (0.5%, Gibco) for 30 min at
room temperature. Cells were washed twice in PBS, fixed in 70% ethanol overnight,
washed twice in PBS and re-suspended in PBS containing 0.1% Triton X-100,

50 pgml~ ! of propidium iodide and 50 pgml ~! of RNase A (Sigma). After
incubation at room temperature for 20 min, cells were analysed for cell cycle dis-
tribution with a FACSCalibur flow cytometer and FlowJo software (Tree star Inc).
Cells with a DNA content between 2N and 4N were designated as being in the G1,
S, or G2/M phase and expressed as a percentage of the total number of cells present
(6,000-10,000). Statistical significance of cell cycle phase values was determined by
Pearson’s y tests to obtain two-tailed P-values (significantly different being a
P-value of <0.05).
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