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Wbp2 is required for normal glutamatergic
synapses in the cochlea and is crucial for hearing
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Abstract

WBP2 encodes the WW domain-binding protein 2 that acts as a
transcriptional coactivator for estrogen receptor a (ESR1) and
progesterone receptor (PGR). We reported that the loss of Wbp2
expression leads to progressive high-frequency hearing loss in
mouse, as well as in two deaf children, each carrying two different
variants in the WBP2 gene. The earliest abnormality we detect in
Wbp2-deficient mice is a primary defect at inner hair cell afferent
synapses. This study defines a new gene involved in the molecular
pathway linking hearing impairment to hormonal signalling and
provides new therapeutic targets.
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Introduction

Progressive hearing loss is very common in the human population,

but we know very little about its molecular basis and have no medi-

cal therapies. One subtype of cochlear pathology is thought to

involve primary degeneration of afferent neurons of the cochlea

(Schuknecht, 1993; Sergeyenko et al, 2013). In the auditory system,

sensory hair cells are responsible for transforming an acoustic,

mechanical stimulus into an electrical signal via the activation of

mechanically gated ion channels and the generation of a receptor

potential (Fettiplace & Kim, 2014). The inner hair cells (IHCs),

which are the primary receptors of the mammalian cochlea, relay

acoustic signals with remarkable acuity and temporal precision to

the brain through the release of glutamate to their afferent neurons

(Fuchs, 2005). IHCs have a specialised synapse with a pre-synaptic

ribbon thought to gather synaptic vesicles to facilitate rapid release

upon hair cell depolarisation. These ribbon synapses are innervated

by the unbranched dendrites of spiral ganglion neurons, with a

single ribbon synapse signalling to each afferent fibre, highlighting

the importance of accurate neurotransmission at these synapses

(Fuchs, 2005). The outer hair cells (OHCs) serve both as sensory

receptors and as biological amplifiers. Their sensory function is less

well understood because their afferent innervation has small

unmyelinated axons and constitutes only 5% of the cochlear nerve

(Thiers et al, 2008). The molecular pathways underlying hair cell

synaptic development and plasticity are still poorly understood.

Steroid hormones are known to be implicated in normal auditory

function (Hultcrantz et al, 2006; Charitidi et al, 2009, 2010). For

example, mutations of several genes involved in oestrogen signal-

ling lead to hearing impairment, such as Esr2, Esrrb and Esrrg in

mice and ESRRB in human deafness type DFNB35, and hearing

impairment is a feature of oestrogen deficiency in Turner syndrome

in humans (Chen & Nathans, 2007; Collin et al, 2008; Meltser et al,

2008; Hederstierna et al, 2009; Simonoska et al, 2009; Nolan et al,

2013). Furthermore, oestrogen signalling protects against noise-

induced hearing loss (Meltser et al, 2008). A key role for oestrogen-

dependent signalling has been demonstrated in other neural cells,

specifically affecting synapses (Singer et al, 1996; McEwen et al,

2001; Akama & McEwen, 2003; Liu et al, 2008; Baudry et al, 2013).

However, the wide range of other effects of oestrogen has meant

that oestrogen-based therapies are not generally considered for hear-

ing loss, and trials of generic hormone replacement therapies have

had mixed outcomes for hearing (Kim et al, 2002; Caruso et al,

2003; Kilicdag et al, 2004; Guimaraes et al, 2006). Clinical trials

may have a better chance of success if carried out on stratified

subsets of hearing-impaired people with an underlying pathology

that is likely to involve oestrogen signalling, so an improved
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understanding of the role of oestrogen in hearing will contribute to

stratification strategies. In addition, manipulation of oestrogen

signalling may be more effective as a treatment for hearing loss if

targeted to the auditory system, so understanding any oestrogen-

sensitive molecular networks specific to hearing may open up new

targets for therapies for hearing loss.

In order to investigate the functional link between hormonal

signalling and hearing impairment and identify new targets for

therapies, we used Wbp2-deficient mice as a genetic tool. WBP2

encodes the WW domain-binding protein 2, which is phosphory-

lated before translocating into the nucleus where it acts as a tran-

scriptional coactivator for the estrogen and progesterone receptors

ESR1 and PGR (Dhananjayan et al, 2006; Lim et al, 2011). It plays

a role in regulating the expression of target genes via hormone-

dependent interaction (Dhananjayan et al, 2006). We report here

our identification of a role for Wbp2 in hearing through our high-

throughput screen for hearing impairment using auditory brain-

stem responses (ABRs) of newly generated mouse mutants (White

et al, 2013). The loss of Wbp2 causes progressive high-frequency

hearing loss from as early as 4 weeks of age in mouse. We

demonstrate that this is associated with reduced expression of

Esr1, Esr2 and Pgr in the cochlea and disruption of expression of

key post-synaptic proteins. Moreover, we report the cases of a

5-year-old boy and a 9-year-old girl with severe to profound

prelingual deafness, each carrying two point variants in heterozy-

gosis in the WBP2 gene.

Results

Wbp2tm2a(EUCOMM)Wtsi-mutant mice were generated and maintained

on a C57BL/6N genetic background (Skarnes et al, 2011; White

et al, 2013) (Fig 1A). Western blot analysis showed the absence of

both Wbp2 isoforms in the brain of homozygous mutants at P28

(Fig 1B).

Quantitative real-time PCR showed the knockdown of transcrip-

tion to < 1% of normal mRNA levels both in the cochlea (0.5%)

and in the eye (0.8%) (Fig 1C). Despite reduced levels of Wbp2

mRNA in the cochlea of heterozygotes (44%), they did not show

any auditory phenotype (see below). X-Gal staining at post-natal

day (P) 14 showed the expression of Wbp2 in all major cochlear

structures and very strongly in the cell bodies of spiral ganglion

neurons (Fig 1D–F).

Wbp2-deficient mice show progressive high-frequency hearing
loss, but no other defects

Auditory function in Wbp2-mutant mice was investigated using

auditory brainstem responses (ABR), reflecting the activity of both

afferent and efferent neurons. At P14, ABR thresholds in mutants

were comparable to those in littermate controls (Fig 2A). Loss of

sensitivity to frequencies of 24 kHz and above was apparent by

4 weeks (Fig 2B), and even more evident at 14 and 28 weeks

(Fig 2C and D), spreading to lower frequencies by 44 weeks in

mutants (Fig 2E and F).

ABR waveforms were averaged for broadband clicks (Fig 2G)

and 12- and 24-kHz stimuli from 4-week-old mutants and wild-type

(wt) littermates in 5-dB steps and adjusted for sensation level (SL;

level above threshold). While the ABRs of mutants had a similar

shape compared to controls (Fig 2G), the amplitude was smaller.

We quantified this reduced amplitude for the summating potential

(SP) and ABR wave 1. The SP is a small positive voltage deflection

before wave 1 reflecting depolarisation of IHCs (Harvey & Steel,

1992; Sergeyenko et al, 2013) (Fig 2G). The mutant SP was reduced

compared to controls and grew at a reduced rate as stimulus level

A

B

D E

C

Figure 1. Wbp2 mutation and Wbp2 expression in the cochlea.

A Diagram showing the design of the mutated Wbp2 allele. A promoterless
cassette including LacZ and neo genes was inserted in the second intron
of the Wbp2 gene flanked by FRT sites (green triangles). LoxP sites (red
triangles) flank the critical exon (exon 2) of the Wbp2 gene (exons in
yellow).

B Western blot showing no detectable Wbp2 protein in 4-week-old mutant
brain compared to wt littermate controls; 5 lg of the protein lysate was
subjected to 10% SDS–PAGE. b-tubulin was used as a loading control.
Wbp2 l and Wbp2 s refer to the long and short isoforms, respectively.

C Quantitative real-time PCR showing severe knockdown of Wbp2
transcription in 4-week-old mutant (n = 3) inner ears and eyes,
compared to wt littermate controls (n = 3). Heterozygotes show
intermediate levels. Hprt was used as a control and levels are normalised
to wt levels. Data plotted as mean � SD. Two-tailed t-test: Wbp2 ear:
het *P = 0.03, hom ***P = 0.000000033; Wbp2 eye: het *P = 0.01, hom
***P = 5.35537E-13.

D–F X-gal staining of Wbp2 hets at P14 showing Wbp2 expression (blue) in all
the main cochlear structures: the stria vascularis (black arrowhead in D),
spiral prominence (empty arrowhead in D), Reissner’s membrane (arrow
in D), strong expression in the spiral ganglion cells (arrowheads in E) and
in IHCs and OHCs in the organ of Corti (arrowheads in F). Scale bars: (D),
50 lm; (E, F), 20 lm. ihc: inner hair cells; ohc: outer hair cells. No X-gal
staining is observed in wt controls (not shown). The X-gal reaction is
always cytoplasmic.

Source data are available online for this figure.
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increased, although latency was no different to controls (Fig EV1A–C).

ABR wave 1 amplitudes also showed a significant reduction and a

longer latency in mutants (Fig EV1D–I).

Distortion product otoacustic emissions (DPOAEs) were recorded

and showed raised thresholds, similar to that seen in ABR measure-

ments (Fig 2H and I). In mice aged 4 weeks old, 2f1-f2 DPOAE

thresholds for 6- to 18-kHz f2 tones were comparable in mutants

and littermate controls, but were elevated for 24- and 30-kHz f2

tones. Impairment of DPOAEs was progressive. In 21-week-old

mutants, 2f1-f2 DPOAE thresholds for all test frequencies were

elevated, particularly at 18–30 kHz.

The increased ABR and DPOAE thresholds and reduced ABR

amplitudes were not due to endocochlear potential deficits because

these were normal in the mutants (Fig EV1J). Furthermore, the

gross structure of middle and inner ears was normal and there was

no obvious degeneration of hair cells or spiral ganglion neurons

even up to 30 weeks old in mutants (Figs EV2 and EV3A).

Wbp2 mutants were fertile and showed no other abnormalities in

a broad phenotypic screen, other than reduced circulating amylase

levels in females only, which likely has no biological significance

(White et al, 2013).

Compound heterozygous variants in WBP2 identified in
human deafness

Following the discovery of Wbp2 as a new gene involved in deaf-

ness in the mouse, the human WBP2 gene was included in a screen

of 8,087 deaf probands and 1,823 unaffected controls in China using

targeted next-generation sequencing. We found variants in the

WBP2 gene in two hearing-impaired children with no other reported

features. The first case was a 5-year-old boy with bilateral prelingual

deafness. He was a compound heterozygote for two missense

variants, c.671C>T; p.(Ala224Val) (exon 7) and c.478G>A:

p.(Ala160Thr) (exon 5). The second proband was a 9-year-old girl

with severe to profound bilateral hearing loss (Fig 3A). She was a

compound heterozygote for two missense variants, c.487A>C;

p.(Met163Leu) (exon 5) and c.478G>A:p.Ala160Thr (exon 5, in

common with the first case). While audiological data from the first

case were not available, data from pure tone audiometry for the

second proband are shown in Fig 3A. In both families, the parents

were not affected, and each parent was a heterozygous carrier for

one of the variants (Fig 3B). The results were confirmed by Sanger

sequencing (Fig 3B). The affected children did not carry pathogenic

A
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Figure 2. Auditory responses of Wbp2-deficient mice.

A–E Mean ABR thresholds (� SD) for clicks and tone pips are plotted for wt (green), het (blue) and hom (red) mice at ages (A) P14 (wt, n = 3; het, n = 8; hom, n = 6);
(B) 4 weeks (wt, n = 38; het, n = 26; hom, n = 37); (C) 14 weeks (wt, n = 10; hom, n = 14); (D) 28 weeks (wt, n = 15; het, n = 5; hom, n = 25); (E) 44 weeks
(wt, n = 9; het, n = 2; hom, n = 11). Grey symbols and lines indicate thresholds of individual mutants. In (B), open symbols represent thresholds under urethane
anaesthesia (see Materials and Methods), showing no difference compared with ketamine/xylazine used for all other thresholds.

F Mean thresholds for mutants aged 2 weeks (yellow), 4 weeks (purple), 14 weeks (cyan), 28 weeks (grey) and 44 weeks (black).
G Averaged click-evoked ABR waveforms from 4-week-old wt (n = 23, green) and mutants (n = 34, red), at 50-dB sensation level (SL) (left panel). SP and ABR wave 1

(W1) are indicated by grey areas. Expanded averaged SP and ABR W1 waveform patterns for 10- to 60-dB SL in 10-dB increments are plotted in green (wt; middle
panel) and red (mutants; right panel), to illustrate the growth of SP and W1 with stimulus level.

H, I Mean 2f1-f2 DPOAE thresholds (� SD) are plotted for wt (green), heterozygote (blue) and homozygous (red) mice aged 4 weeks (H: wt, n = 5; hom, n = 5) or
21 weeks (I: het, n = 3; hom, n = 5), as a function of f2 frequency.
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Figure 3. Analysis of the human variants in WBP2.

A Pure tone audiogram recorded from one of the probands, showing severe to profound bilateral asymmetric hearing loss.
B Capillary sequence traces from fathers, mothers and probands, showing the heterozygosity of the parents for the two separate variants and the compound

heterozygosity for each proband.
C ConSeq (http://conseq.tau.ac.il/) analysis of the residues; the locations of the three human variants (p.Ala160Thr, p.Met163Leu and p.Ala224Val; boxed in black) are

average to highly conserved. “b” and “e” indicate buried and exposed residues (according to the neural network algorithm), and “f” and “s” indicate predicted
functional and predicted structural residues. The GRAM and WW binding domains (WW1 and WW2) are marked by blue and green boxes. The GRAM domain is
thought to be an intracellular protein- or lipid-binding signalling domain and may play an important role in membrane-associated processes.

D Alignment of the protein sequence from a range of vertebrates. The human variants are boxed in black.
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variants in any of the genes known to underlie non-syndromic

deafness.

We used six different predictors to assess the effects of the three

variants on protein function (Table 1). The results varied from

mostly tolerated to mostly damaging; none of the SNPs were univer-

sally predicted to be either tolerated or damaging. The p.Ala160Thr

variant is a known SNP, rs202022024, and is very rare; in the 1,088

genomes sampled in the 1000 Genomes project, only one had this

SNP. The p.Ala224Val and p.Met163Leu variants are novel. The

amino acids involved in the p.Ala224Val and p.Ala160Thr changes

are well conserved across species (Fig 3C and D), but the

p.Met163Leu variant has an average conservation score (Fig 3C).

There are 10 protein-coding splice variants of WBP2 (www.

ensembl.org, accessed July 2014). The Ala160 and Met163 residues

are in all but one (transcript 3), and the Ala224 residue is in seven

of the splice variants, but not in transcripts 9, 10 or 11 (Fig 4A).

The long isoform of Wbp2 is predominant in the organ of Corti

Two of the three human variants are in exon 5 (p.Met163Leu and

p.Ala160Thr), which is not present in one isoform of both the

human and the mouse gene. We next investigated whether, in the

mouse, the long isoform containing exon 5 is particularly abundant

in the inner ear. Only two Wbp2 isoforms are predicted to be

present in mouse (www.ensembl.org, accessed July 2015), with the

longer one containing exon 5 and the shorter one without exon 5.

We sequenced Wbp2 cDNA from wild-type brain and inner ear at

P28, adult organ of Corti and P4 organ of Corti and ran the cDNA on

a gel before sequencing (Fig 4B and C). We found two isoforms

present in the brain cDNA. Sequence traces typical of alternative

splicing were observed, one including exon 5 and one excluding it.

In the inner ear at P28, the long isoform could still be detected,

together with a very faint band from the shorter isoform (Fig 4B and C).

Only the long isoform, which includes exon 5, was present in the P4

and adult organ of Corti. Although an extremely faint small band

could still be observed on the gel (Fig 4B), we could not get any

sequencing trace representing the short isoform in the organ of Corti

at any stage (Fig 4C). We also carried out Western blots on lysate

from wild-type brain and cochlea at P28 and again found evidence

of two isoforms in the brain, with higher expression of the shorter

isoform (see Fig 1B). In accordance with the sequencing data, in the

cochlea at P28 the long isoform looks by far the most abundant,

with a very faint band for the short isoform that can only be

observed when high quantities of protein lysate are analysed on the

gel (Fig 4D). These results suggested that the organ of Corti predom-

inantly uses the long isoform of Wbp2 containing exon 5 and indi-

cated that this isoform could be crucial for the function of WBP2 in

hearing.

Wbp2 is not required for IHC function

As we found no evidence of hair cell degeneration in the mouse

Wbp2 mutants, we next investigated the biophysical properties of

IHCs in isolated organ of Corti preparations from young adult mouse

mutants and littermate controls. Resting membrane potentials and

size of K+ currents recorded from high-frequency adult mutant IHCs

(P25-P33) were similar to those in littermate controls (Table EV1).

Displacement of the IHC stereociliary bundle (Corns et al, 2014) of

Wbp2 mutants elicited a large mechanoelectrical transducer current

(1,282 � 93pA, n = 5) similar to that of littermate controls

(1,315 � 54pA, n = 11) (Fig EV2B and C). The fraction of the

mechanoelectrical transducer current activated in the resting,

unstimulated bundle was also not significantly different between the

two genotypes (control: 4.0 � 0.7%, n = 11; mutant: 2.7 � 0.5%,

n = 5; values at �121 mV).

We then investigated the pre-synaptic function of IHCs in the

mutant mice by measuring the increase in cell membrane capaci-

tance (DCm), normally interpreted as a sign of exocytosis or neuro-

transmitter release. Exocytosis in high-frequency IHCs from young

adult mice (P19–P33) was elicited by depolarising voltage steps

from the holding potential of �81 mV. The maximal size of the

Ca2+ current (ICa) and the corresponding DCm were similar in

mutants and controls (Fig EV2D and E). The rate of neurotransmit-

ter release was studied by measuring DCm in response to depolaris-

ing voltage steps from �81 mV to �11 mV of varying duration

(2 ms to 2 s), which allowed us to investigate the emptying of dif-

ferent synaptic vesicle pool populations (Fig EV2F and G). While

relatively short stimuli (up to 50 ms) reveal the number of vesicles

docked at the active zones (readily releasable pool, RRP: Fig EV2F),

longer steps induce the release of vesicles from a secondarily relea-

sable pool (SRP: Fig EV2G) that is located further away from the

Ca2+ channels (Johnson et al, 2008, 2010). The sizes of the RRP

and SRP were similar between control (Fig EV2F) and mutant

(Fig EV2G) IHCs. These findings indicated that Wbp2 is not required

for normal pre-synaptic IHC function in young adults.

Wbp2-deficient mice show swelling of afferent terminals and
abnormal expression of AMPA receptor subunits at
post-synaptic densities

To look for structural correlates of hearing impairment in the Wbp2-

deficient cochlea, we next performed confocal imaging of the mouse

sensory epithelium using antibodies to CtBP2 to label pre-synaptic

ribbons (Kujawa & Liberman, 2009), to GluR2/GluR3 AMPA subu-

nits to label post-synaptic densities (PSDs) (Collingridge et al, 2009)

and to neurofilament to label unmyelinated nerve fibres (Kujawa &

Table 1. The different predictions of the effects of the three human
variants on WBP2 protein by six mutation predictors.

p.Ala224Val p.Ala160Thr p.Met163Leu

Fathmm Tolerated Tolerated Tolerated

Mutation Assessor Medium impact Low impact Low impact

Mutation Taster Disease causing Disease
causing

Disease
causing

SIFT (manual) Affect protein
function

Tolerated Tolerated

SIFT (automated) Tolerated Tolerated Tolerated

SIFT (ensembl) Deleterious Tolerated Tolerated

PolyPhen2 Possibly
damaging

Benign Benign

PhD-SNP Neutral Neutral Neutral

The text in the table has been bolded to clearly distinguish predictions that
the mutation would be deleterious (bold) from predictions that it would be
tolerated (normal text).
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Liberman, 2009). We examined the complete length of the cochlea,

but focused our quantification on the regions most sensitive to 6

and 24 kHz, corresponding to frequencies with normal and raised

ABR thresholds, respectively.

Just after the onset of hearing (P14), we observed swollen

afferent terminals on IHCs in the 24-kHz region of mutants

compared to controls (Fig 5A). At 4 weeks, the changes were

more evident (Fig 5A); in controls, the nerve terminals contacting

IHCs are thin and filamentous and are aligned with ribbons, but

in mutants, swelling of afferent terminals was observed under all

IHCs and some unaligned ribbons were observed (Fig 5A). OHC

afferent terminals were also swollen in the 24-kHz region at

4 weeks old (empty arrowheads in Fig 5A). The swelling of

afferent terminals was also observed by transmission electron

microscopy (TEM) of the organ of Corti in mutants at P28

(Fig 5C). At 8 weeks, IHC innervation was even more severely

affected in mutants (arrow in Fig 5D). The apical turn showed

swollen terminals below IHCs at 4 and 8 weeks (Fig 5A and D);

however, the swelling looks more pronounced in the 24-kHz

region compared to 9-kHz region, fitting with the high-frequency

hearing loss. Swelling of nerve terminals has been reported as a

sign of glutamate excitotoxicity (Mayer & Westbrook, 1987) and

described in various cochlear conditions such as ischaemia, neural

presbycusis, noise-induced hearing loss and certain forms of

sudden deafness or peripheral tinnitus (Puel et al, 1994, 1998;

Kujawa & Liberman, 2009).

The number of ribbons per IHC in mutants was similar to that of

controls at both frequency positions and at both 4 and 8 weeks of

A B

C D

Figure 4. Analysis of the Wbp2 mouse isoforms in the brain and in the cochlea.

A Splice forms of WBP2, numbered according to the Ensembl numbering scheme. The GRAM domain is marked in blue, the WW domains in green and the locations of
the variants in black (the p.Ala160Thr and p.Met163Leu variants are too close to show separately in this view).

B Agarose gel trace of cDNA obtained from mouse wt P28 inner ear (IE), P28 brain, adult and P4 organ of Corti (OC). Results show the expression of two Wbp2 isoforms
in the brain at P28 and very faint band for the short isoform together with a strong band for the long isoform in the inner ear at P28. If we look at just the organ of
Corti (adult and P4), we observe a strong band for the long isoform in the P4 OC and an almost undetectable band for the short isoform, which was not even picked
up by sequencing (see C). Wbp2 l: long isoform (550 bp); Wbp2 s: short isoform (480 bp).

C Cartoon illustrating the results from the sequencing of mouse wt cDNA performed at P4 and P28. While in the brain we detect both Wbp2 isoforms and in the organ
of Corti only the long isoform, in the whole inner ear sample we detect the presence of the long isoform with a small band for the short one.

D Western blot showing the predominant presence of the Wbp2 long isoform in the cochlea at P28, with a weak trace of the short isoform showing up only when a
higher concentration of protein lysate (20 lg) is loaded. Both isoforms are absent in the Wbp2-deficient mouse. Gapdh was used as a loading control. Wbp2 l: long
isoform; Wbp2 s: short isoform.

Source data are available online for this figure.
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Figure 5. Afferent innervation in Wbp2-deficient mice.

A At P14, afferent terminals below IHCs are slightly swollen in the mutants (neurofilament labelling in green, arrowheads to compare; CtBP2 labels ribbons and IHC
nuclei in red). Scale bars, 10 lm. At P28, neurofilament/CtBP2 labelling in the organ of Corti of 4-week-old Wbp2-deficient mice and littermate controls shows severe
swelling of IHC afferent terminals in the mutants, especially in the 24-kHz region (yellow arrowheads). The pre-synaptic ribbons do not look as well aligned to the
terminals in the mutants (white arrows). At this stage, we also observe swelling of OHC afferent terminals in the 24-kHz region (empty arrowheads). Scale bars, 5 lm.
ihc: IHC nucleus; p: pillar side; m: modiolar side.

B Counts of pre-synaptic ribbons per IHC in the 8-, 18- and 24-kHz regions, showing no difference between mutants and controls at P28.
C TEM of the organ of Corti performed at P28 showing swollen afferent terminals below inner and outer hair cells (arrowheads for comparisons between mutants and

controls). Scale bars, 5 lm.
D Neurofilament/CtBP2 labelling shows swollen and retracting terminals (white arrows), especially in the 24-kHz regions in the mutants at 8 weeks (arrows). Scale bars,

10 lm.
E Counts of pre-synaptic ribbons in the 8-, 18- and 24-kHz regions, showing no difference in their number per IHC in the mutants compared to littermate controls at

8 weeks.

Data information: All data are shown as mean � SD and statistically analysed by two-tailed Student’s t-test. n = 35 hair cells. Synaptic count at 4 weeks: wild type: 24
kHz 16.9 � 2.4, 16 kHz 13.67 � 2, 9 kHz 13.0 � 1.8; mutants: 24 kHz 18.17 � 1.18 (P = 0.27), 16 kHz 15.89 � 1.8 (P = 0.26), 9 kHz 15 � 2 (P = 0.07). Synaptic count at
8 weeks: wild type: 24 kHz: 15.35 � 3.75, 18 kHz 17.73 � 1.79, 8 kHz: 11.25 � 0.92; mutants: 24 kHz: 15.78 � 3.46 (P = 0.9), 18 kHz 15.78 � 0.17 (P = 0.26), 8 kHz:
12.3 � 2.26 (P = 0.6)

Source data are available online for this figure.
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age (Fig 5B and E), indicating that the ABR threshold shifts are not

due to the loss of pre-synaptic ribbons.

At 4 weeks, GluR2/3 and CtBP2 double labelling showed reduced

GluR2/3 expression and reduced overlap between ribbons and this

post-synaptic density (PSD) marker in mutant IHCs compared to

controls, suggesting a post-synaptic defect (Fig 6A). TEM analysis

performed in the same cochlear region showed an array of different

synaptic phenotypes in the mutant IHCs as shown in Fig 6B–G. We

observed differentially shaped/sized ribbons, orphan PSDs and

orphan ribbons, ribbons with attached synaptic membranes floating

in the swollen afferent terminals, as well as close-to-normal looking

synapses.

Wbp2 controls the expression of the post-synaptic scaffolding
proteins Psd-95 and Shank3 via transcriptional regulation of
Esr1, Esr2 and Pgr

We used our measured expression levels of key genes in the cochlea

combined with published data to build a pathway to understand the

mechanistic link between the loss of Wbp2 and progressive hearing

loss (Fig 7A). Wbp2 acts as a transcriptional regulator of Esr1 and

Pgr (Dhananjayan et al, 2006; Lim et al, 2011). Esr2 expression is

linked with Esr1 and Pgr expression (Lindberg et al, 2003; Aguirre

et al, 2010). The estrogen receptor ERa (encoded by Esr1) binds to

the Shank3 promoter (Kwon et al, 2007), and signalling through the

estrogen receptor ERb (encoded by Esr2) increases the levels of Psd-

95 and the AMPA receptor component GluR1 (Liu et al, 2008). Once

activated by the hormone, estrogen receptors, which are expressed

at PSDs (Adams & Morrison, 2003), are able to translocate into the

nucleus and bind to DNA to regulate the activity of a number of

post-synaptic genes (McEwen et al, 2001).

qRT–PCR showed a significant down-regulation of Esr1, Esr2 and

Pgr in 4-week-old Wbp2-mutant cochlea compared to littermate

controls (Fig 7B), validating these regulatory links of Wbp2 in vivo

in the auditory system. As predicted by the pathway analysis, we

observed a decreased expression of GluR2/3 AMPA subunits in

4-week-old mutant cochlea (Figs 7A and 6A). We then tested the

mRNA levels of Shank3 and Dlg4 (encoding Psd-95). Shank3 and

Psd-95 are scaffolding proteins of AMPA and NMDA receptor subu-

nits at the post-synaptic density of glutamatergic synapses, where

they also play an important role in synaptogenesis and synaptic

function (Migaud et al, 1998; Tu et al, 1999; Peca et al, 2011).

Unexpectedly, we detected a significant increase in mRNA levels for

both genes in the 4-week-old mutant cochlea (Fig 7B).

We assessed the level of Psd-95 protein by confocal imaging of

sensory epithelia labelled with a Psd-95 antibody (Fig 7C). The up-

regulation of Psd-95 mRNA in the organ of Corti of Wbp2-deficient

mice (Fig 7B) was reflected in the protein level (Fig 7C and D).

Discussion

We describe here for the first time a key role for Wbp2 in auditory

function in humans and mouse and investigate the molecular mech-

anisms involved. Wbp2 is expressed widely in the cochlea with

strong labelling of spiral ganglion neurons. Wbp2-deficient mice

show progressive high-frequency hearing loss with little sign of hair

cell degeneration and normal numbers of CtBP2-labelled ribbons.

A

B C

D
E

F G

Figure 6. GluR2/3 expression and synaptic defects in Wbp2-deficient
mice.

A We arrayed synapse images aligned by ascending size of the post-
synaptic site after GluR2/3 and CtBP2 labelling. This is a composite image
made of several synapses taken from a single IHC from a single wt and a
single hom, representing double labelling experiments performed on 3
mutants and 3 controls. Synapses in the mutants show abnormal
morphology and smaller green patches, suggesting reduced expression of
the GluR2/3 AMPA receptor subunits. Scale bar (shown on the bottom
right), 1 lm.

B–G TEM images of IHC ribbon synapses of wt (B, arrowheads for synaptic
vesicles) and homs (C–G) at 4 weeks of age, showing a representative
array of synaptic phenotypes in the 24-kHz cochlear region of mutants.
While in (C) and (D) the ribbons look slightly abnormal in size with
misplaced synaptic vesicles (arrowheads in C), we also observe orphan
post-synaptic densities surrounded by floating synaptic vesicles
(arrowheads in E); ribbons with synaptic membranes (arrow in F) that
have detached from the IHC membrane (the arrowhead labels the
original position of the synapse before detachment) and are floating in
the swollen nerve terminal (F); ribbons (arrow in G) that are detached
from their densities (arrowhead in G). Scale bars: (B–E), 200 nm; (F, G),
500 nm. nt: nerve terminal; psd: post-synaptic density; snt: swollen nerve
terminal.

Source data are available online for this figure.
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Single IHCs show normal mechanoelectrical transducer current and

capacitance changes upon depolarisation, suggesting normal neuro-

transmitter release. However, afferent nerve endings below IHCs are

swollen and ribbon synapses show abnormal ultrastructural

morphology associated with the disorganisation of the glutamate

receptor complex at PSDs. PSDs labelled for GluR2/3 (Tu et al,

1999) appear reduced and show poor overlap with pre-synaptic

ribbons, while the transcription of Shank3 and Dlg4 (encoding

Psd-95) is increased. These changes can be explained by changes in

oestrogen signalling, because Esr1 and Pgr expression is reduced in

the mutant cochlea and Wbp2 is known to act as a transcriptional

coactivator of these genes. Estrogen and progesterone receptors are

known to play a role in post-synaptic maintenance (Liu et al, 2008;

Baudry et al, 2013) and neuroprotection (Meltser et al, 2008;

Simonoska et al, 2009).

Wbp2-deficient mice exhibit progressive hearing loss due to a
synaptic defect leading to cochlear excitotoxicity

Hearing thresholds develop normally in Wbp2-mutant mice, but by

4 weeks of age, ABR thresholds are raised at high frequencies

progressing with age to higher thresholds and lower frequencies.

ABR waveforms of mutants showed reduced growth of wave 1

amplitudes with increasing stimulus level, compared with controls,

suggesting a reduced auditory nerve activity. Our finding of reduced

ABR amplitudes and abnormal IHC synapses in Wbp2-deficient mice

A

B

C

D

Figure 7. The Wbp2 molecular pathway.

A Diagram showing the Wbp2 molecular pathway, including its downstream targets and their functional relationship. The blue arrows, light blue lines and green lines
link data from the literature (in vivo and in vitro); the orange squares and red arrows indicate up- or down-regulation shown in our experimental observations, as
reported in this study.

B Quantitative real-time PCR showing reduced mRNA levels for Esr1, Esr2 and Pgr and up-regulation of Shank3 and Psd-95 in cochleae of 4-week-old Wbp2-deficient
mice compared to littermate controls (n = 3 for each genotype). Hprt is used as a relative control. *P = 0.03 for Psd-95; **P = 0.007 for Shank3; *P = 0.03 for Esr2;
**P = 0.0016 for Esr1; *P = 0.037 for Pgr.

C Synapses from one mutant and one control IHC at 4 weeks of age after Psd-95 and CtBP2 labelling, showing stronger Psd-95 expression in the mutants compared to
controls, representing double labelling experiments performed on 3 mutants and 3 controls. Scale bar, 10 lm.

D Quantification of Psd95 fluorescence in IHC synapses, representing expression in the apical (9-kHz best frequency region of the cochlea) and basal (24-kHz best
frequency region of the cochlea) regions at 4 weeks of age. Data from 2 wt and 2 homs were analysed (16 synapses per cochlear region per mouse). AU, arbitrary
units. Wt: 24 kHz 22.41 � 10.70, 9 kHz 11.045 � 2.128; mutants: 24 kHz 66.73 � 13.70, P = 0.069; 9 kHz: 26.02 � 5.79 P = 0.075.

Data information: Data are shown as mean � SD and were statistically analysed by two-tailed Student’s t-test.

Source data are available online for this figure.
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is similar to that reported following ageing or noise damage (Kujawa

& Liberman, 2009; Sergeyenko et al, 2013). We also found raised

thresholds for DPOAEs, indicating OHC dysfunction.

The most likely site of the initial IHC dysfunction is the post-

synaptic region of the afferent synapse rather than the pre-synaptic

complex, for a number of reasons. Firstly, resting membrane poten-

tial, basolateral membrane currents and neurotransmitter release

from IHCs of Wbp2 mutants appear normal, and mutant hair cells

show little sign of degeneration even at 30 weeks old. Secondly,

GluR2/3 labelling, a marker of AMPA receptor subunits at PSDs, is

reduced in mutant IHC synapses. Thirdly, the earliest sign of a struc-

tural defect is the swelling of the post-synaptic unmyelinated termi-

nals, which progresses from P14 (when the synaptopathy is not

severe enough to cause raised ABR thresholds) to 8 weeks of age,

fitting with the progressive increase in ABR thresholds. Fourthly,

the strongest intensity of Wbp2 expression is within spiral ganglion

neurons, even though we do not see any obvious degeneration of

these neurons in mice up to 6 weeks old. However, there are some

signs of pre-synaptic defects too, including the reduced SP ampli-

tude suggesting impaired depolarisation of mutant IHCs, and some

misplaced ribbons observed by TEM, so we cannot rule out a direct

effect of the mutation on IHCs. The raised thresholds for DPOAEs

indicate abnormal OHC function, which will contribute to the raised

ABR thresholds through reduced amplification by OHCs, but cannot

directly explain the changes we detect at IHC synapses.

Interestingly, the disruption of the post-synaptic complex at IHC

synapses in mutants does not lead to the loss of pre-synaptic

ribbons, at least up to 8 weeks of age, but leads to swelling of IHC

afferent nerve terminals, which is a sign of glutamate excitotoxicity.

Glutamate can be toxic if it accumulates at excitatory synaptic clefts,

giving rise to acute destruction of the nerve endings and eventually

to neuronal death (Pujol & Puel, 1999). Swelling is a commonly

described sign of synaptic impairment in the organ of Corti (Kujawa

& Liberman, 2009).

WBP2 is a novel human deafness gene

Wbp2 is haplosufficient in mice and in humans, as we found no

abnormalities in mouse Wbp2 heterozygotes despite reduced mRNA

levels (Fig 1C), and the four parents of the children with WBP2 vari-

ants had no reported hearing loss, suggesting that only one func-

tional copy is required for normal hearing.

The results of our investigation into the isoforms present in the

mouse organ of Corti and brain suggested that the long isoform,

including exon 5, is the predominant isoform in the organ of Corti,

while both long and short isoforms are present in the brain. It is

therefore likely that variants affecting this long isoform, such as the

p.Ala160Thr and p.Met163Leu variants, which both lie in exon 5,

are more likely to impair critical protein function in the organ of

Corti than in tissues that express both isoforms, such as the brain.

This is in accordance with our observations of the children bearing

compound variants in WBP2; each child carries the p.Ala160Thr

variant, which is one of the two variants in exon 5. The first child

carries a second variant in exon 7, which is predicted to be deleter-

ious by most of the mutation predictors (Table 1). The second child

has a second variant in exon 5, and although the predictions for the

two exon 5 variants are less deleterious (Table 1), the importance of

this exon for the organ of Corti supports our conclusion that the

deficiency in WBP2 is the cause of the deafness observed in these

children.

Steroid hormones and synaptopathy

Here, we defined the role of oestrogen signalling in the cochlea as

essential for normal glutamatergic synapses in the cochlea. Both

oestrogen and progesterone are known to be neuroprotective against

stroke and glutamate toxicity in the central nervous system (CNS)

when bound to their receptors (Singer et al, 1996; Liu et al, 2012).

17-b-Estradiol and its receptors have been reported to enhance

synaptic function in the hippocampus, acting locally at PSDs, where

Esr1 and Esr2 are also expressed (Adams & Morrison, 2003),

controlling the expression of key post-synaptic proteins upon activa-

tion and translocation of the receptor into the nucleus (Akama &

McEwen, 2003; Liu et al, 2008; Pinaud & Tremere, 2012). In the

auditory system, oestrogen is known to control central and periph-

eral auditory processing (Hultcrantz et al, 2006). Esr1 and Esr2 are

expressed in both IHCs and OHCs (Motohashi et al, 2010), and they

protect against neuropathy following acoustic trauma (Meltser et al,

2008; Simonoska et al, 2009).

The levels of steroid hormones decrease during ageing

(Motohashi et al, 2010); however, their levels can also be reduced

in young individuals due to genetic or environmental causes, includ-

ing Turner syndrome (Stenberg et al, 2002), autism (Sarachana

et al, 2011; Rosenhall et al, 1999) and early-onset Alzheimer’s

disease (Henderson, 1997). In these cases, the main early symptoms

are all associated with an impairment of synaptic plasticity and

high-frequency hearing loss.

The down-regulation of Esr1, Esr2 and Pgr in Wbp2-deficient

mice causes a significant decrease in GluR2/3 AMPA receptor subu-

nits as well as a significant increase in the mRNA levels of the key

post-synaptic proteins Shank3 (involved in autism and long-term

potentiation) (Peca et al, 2011; Raynaud et al, 2013) and Psd-95

(with a key role in learning and memory) (Migaud et al, 1998).

Their overexpression may be due to a negative feedback response to

decreased estrogen receptor activation. In contrast, in non-patholo-

gical conditions, selective Esr2 agonists increase the expression of

Psd-95 in the hippocampus (Liu et al, 2008).

The effects of Wbp2 deficiency are not limited to females. Wbp2-

deficient mice are fertile, and we do not observe any differences in

auditory function between genders. Moreover, deafness has been

associated with variants in the human gene in both a boy and a girl.

A brain-generated oestrogen binding to intracellular estrogen recep-

tors at PSDs has been described because of its neurotrophic and

neuroprotective actions in both males and females (Lee & McEwen,

2001; Motohashi et al, 2010; Pinaud & Tremere, 2012). Our finding

of no significant abnormalities other than deafness in either mice or

the children with Wbp2 deficiency suggests that Wbp2 might have a

specific effect on the transcription of the intracellular estrogen

receptors in the auditory system rather than on the hormonal recep-

tors regulating gonadal functions. This opens up the Wbp2 pathway

as a route to therapeutic approaches that specifically target the audi-

tory system, avoiding potential unwanted effects of more general

pharmacological manipulation of oestrogen/progesterone signalling.

We have demonstrated a clear link between the Wbp2 mutation

and hearing loss. The lack of detectable Wbp2 results in reduced

expression of Esr1, Esr2 and Pgr in the cochlea through the activity
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of Wbp2 as a transcriptional coactivator of estrogen and proges-

terone receptors (Dhananjayan et al, 2006; Lim et al, 2011). Oestro-

gen signalling is known to control the expression of post-synaptic

proteins upon activation and translocation of the receptor into the

nucleus (Akama & McEwen, 2003; Liu et al, 2008; Pinaud &

Tremere, 2012), and we found disrupted expression of Psd-95,

Shank3 and AMPA receptor subunits in the Wbp2-mutant cochlea,

including in IHC synapses. IHCs showed normal pre-synaptic func-

tion, but the earliest pathology detected was swelling of the post-

synaptic nerve endings, a sign of glutamate excitotoxicity, indicating

a primary post-synaptic defect. The progressive increase in ABR

thresholds correlated both in time (age) and in location (point along

the cochlear duct) with the swelling of IHC afferent nerve endings.

Furthermore, the reduced amplitude of ABR wave 1 indicates a

reduced cochlear nerve afferent activity. Swelling of cochlear

afferent nerve endings directly affects single cochlear neuron func-

tion and summed auditory responses (Robertson, 1983), leading to

hearing impairment.

The finding of a new molecule, Wbp2, involved in hearing high-

lights a potential new target for manipulation of the oestrogen

signalling pathway specifically in the auditory system to prevent or

reverse progressive hearing loss. These findings highlight the

control of post-synaptic proteins as a key target of oestrogen signal-

ling in the cochlea and suggest that manipulation of this pathway

may be useful for treating other causes of synaptic damage due to

other triggers, including later-onset progressive hearing loss. For

example, the recent discovery that some types of age-related hearing

loss as well as noise-induced damage can impair auditory function

through primary auditory synaptopathy makes any insight into how

this might be reversed particularly important (Kujawa & Liberman,

2009; Sergeyenko et al, 2013). Our findings also indicate which

pathological subtype of hearing loss is most likely to respond to

oestrogen-based therapy.

Finally, the finding of a new gene involved in human deafness

after the original discovery of its role in hearing through a mouse

screen emphasises the value of mouse genetics in understanding

human disease.

Materials and Methods

Ethics statement

Mouse studies were carried out in accordance with UK Home

Office regulations and the UK Animals (Scientific Procedures) Act

of 1986 (ASPA) under UK Home Office licences, and the study

was approved by the King’s College London and the University of

Sheffield Ethical Review Committees. Mice were culled using

methods approved under these licences to minimise any possibil-

ity of suffering.

For human studies, informed consent was obtained from the

adult participants and the parents or guardians of children

prior to participation, and the experiments conformed to the

principles set out in the WMA Declaration of Helsinki and the

Department of Health and Human Services Belmont Report. The

study was approved by the Ethics Committee of the First Affili-

ated Hospital of the Third Military Medical University, PLA,

Chongqing, China.

Statistics

Sample sizes were in line with power calculations carried out to

detect biologically meaningful differences between mutants and

controls for each measure using estimates of variance from previous

similar experiments. Matched littermate controls were used without

randomisation. Data collection was carried out blinded where

feasible. Statistical tests were selected according to the nature of

the data, e.g. normal or non-normal, repeated measures, etc. The

SigmaPlot v12.5 was used to aid selection of the appropriate test.

Estimates of variation are plotted on figures as standard deviations

and were generally similar as a proportion of the mean in mutant

compared with control groups. Experiments and analysis were

carried out in compliance with the ARRIVE guidelines.

Production and genotyping of Wbp2tm2a/tm2a mice

Wbp2-deficient (Wbp2tm2a(EUCOMM)Wtsi) mice were produced at the

Wellcome Trust Sanger Institute and carry a knockout-first condi-

tional-ready allele (Skarnes et al, 2011; White et al, 2013) in which

a promoterless cassette including LacZ and neo genes was inserted

in intron 1-2 of the Wbp2 gene located on chromosome 11 (Fig 1A).

The mice were maintained in individually ventilated cages at a stan-

dard temperature and humidity and in specific pathogen-free condi-

tions on the mixed C57BL/6N genetic background, and the mice of

both genders were used. The Wbp2-deficient mice are viable and

fertile, and the frequency of homozygous offspring from heterozy-

gous intercross matings follows the expected Mendelian ratio.

Homozygous mutants were screened by ABR for hearing impair-

ment at 14 weeks of age as part of a standardised battery of primary

phenotypic tests (White et al, 2013).

To genotype animals, DNA was extracted from the tissue of ear-

clips and used as the template for short-range PCR using the forward

primers: for the wild-type allele: forward: GCCCAATGGAGAGGAA-

CAAG and reverse: GTAACTCCAGCATCAGGGGG.

The mutant allele shares the same reverse primer with wild type

(the cassette is inverted in the Wbp2tm2a/tm2a mice), and the reverse

primer: TCGTGGTATCGTTATGCGCC.

The mutant line is available from the European Mutant Mouse

Archive, EMMA (http://strains.emmanet.org/).

Auditory brainstem response (ABR) recordings

ABRs were recorded in mice of a range of ages from post-natal day

(P) 14 to 44 weeks old. Mice were anaesthetised with ketamine

(1 mg/g)/xylazine (0.01 mg/g), and ABRs were recorded as previ-

ously described (Ingham et al, 2011). Response thresholds for each

stimulus were estimated from the resulting ABR waveform and

defined as the lowest sound level where any recognisable feature of

the waveform was visible. Wave 1 amplitude and latency were

measured with the help of ABR Notebook software routines (cour-

tesy of MC Liberman, Harvard/MIT). In addition, we estimated

amplitudes of the summating potential (SP, defined as a positive

deflection peak occurring before wave 1). Due to the small amplitude

of the SP, we generated an averaged waveform across all wt controls

and all Wbp2-deficient mice recorded, using 5-dB SL increments.

There was no effect of gender on the range of 24-kHz thresholds

recorded at 4 weeks old in male (n = 19, median = 30 dB)
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or female wt (n = 20, median = 30 dB) (Mann–Whitney U-

Statistic = 174.0, T = 396.0, P = 0.652) or in male (n = 16,

median = 40 dB) or female hom (n = 12, median = 50 dB) (Mann–

Whitney U-Statistic = 166.5, T = 302.5, P = 0.975). Similarly, there

was no effect of gender on the range of 24-kHz thresholds recorded

at 14 weeks old in male (n = 2, median = 20 dB) or female wt

(n = 8, median = 25 dB) (Mann–Whitney U-Statistic = 2.0, T = 5.0,

P = 0.178) or in male (n = 8, mean = 53.1 dB) or female hom

(n = 6, mean = 77.5 dB) (t-test, t = 2.065, two-tailed P = 0.0613).

To exclude the possibility that the ketamine/xylazine anaesthetic

combination may have selectively influenced the hearing phenotype

of the post-synaptically compromised Wbp2 mutants by blocking

the activation of NMDA receptors at PSDs, we tested a different

cohort of mice at P27–28 under urethane anaesthesia. ABR thresh-

olds were estimated under urethane anaesthesia, given as 0.1 ml/

10 g of a 20% solution, by i.p. injection. ABR waveform shapes

were collated at 20 dB and 50 dB above threshold, and the mean

waveform amplitude was calculated and plotted. Mean ABR thresh-

olds in Wbp2 homs were comparable to those seen in mutants

tested under ketamine/xylazine, and the range of ABR thresholds of

affected frequencies (24–42 kHz) was not significantly different

under urethane anaesthesia (n = 9) compared to ketamine/xylazine

(n = 37) (Mann–Whitney U-Statistic = 2,374.0, P = 0.303) (Fig 2B).

Distortion product otoacoustic emission (DPOAE) measurements

We measured distortion product otoacoustic emissions in mice aged

4 and 21 weeks old, anaesthetised with 20% urethane. Experiments

were performed using Tucker Davis Technologies (TDT) BioSigRZ

software driving a TDT RZ6 auditory processor and a pair of TDT

EC1 electrostatic transducers. Signals were recorded via an Etymotic

ER-10B+ low-noise DPOAE microphone. Stimuli were presented and

microphone signals recorded via a closed-field acoustic system

sealed into the auditory meatus of the mouse. Stimulus tones were

presented in an f2:f1 ratio of 1.2. f2 tones were presented at frequen-

cies matching ABR measurements (6, 12, 18, 24 and 30 kHz). f1

was presented at levels from 0–75 dB in 5-dB steps. f2 was

presented at 10 dB below the level of f1. The magnitude of the 2f1-f2

DPOAE component was extracted from a fast Fourier transform of

the recorded microphone signal and plotted as a function of f2 level.

For each f2 level, the 20 spectral line magnitudes surrounding the

2f1-f2 frequency were averaged to form a noise floor for each

measurement. DPOAE threshold was defined as the lowest stimulus

level where the emission magnitude exceeded 2 standard deviations

above the mean noise floor.

Endocochlear potential (EP)

Mice were anaesthetised with an i.p. injection of urethane (0.1 ml/

10 g of a 20% solution), a tracheal cannula was inserted and the

mouse placed in a head holder on a homeothermic heating blanket.

EP was measured as previously described (Steel & Barkway, 1989;

Chen et al, 2014).

RNA extraction and quantitative RT–PCR

The cochleae of 4-week-old Wbp2-mutant mice and littermate

controls (n = 3 for each genotype) were dissected and stored at

�20°C in RNAlater stabilisation reagent (QIAgen, cat. no. 76106).

RNA was extracted using QIAshredder columns (QIAgen, cat. no.

79654) and the RNeasy mini kit (QIAgen, cat. no. 74104), following

the manufacturer’s instructions. cDNA was created using Super-

script II Reverse Transcriptase (Invitrogen, cat. no. 11904-018) after

treatment with DNase 1 (Sigma, cat.no: AMP-D1). Real-time PCR

was performed in an CFX Connect Real-Time System (Bio-Rad), in

triplicate for each sample using the following TaqMan probes from

Applied Biosystems: Mm01246338_m1 (Wbp2); Mm00498775_m1

(Shank3); Mm00492193_m1 (Psd-95); Mm00433149_m1 (Esr1);

Mm00599821_m1 (Esr2); Mm00435628_m1 (Pgr). The PCR was

performed. Hypoxanthine-guanine phosphoribosyltransferase (Hprt)

was amplified simultaneously (Applied Biosystems, Mm01318747_g1)

as the internal reference. Statistical analysis was performed using

the Student’s t-test.

SNP prediction

Fathmm (http://fathmm.biocompute.org.uk/, (Shihab et al, 2013)),

Mutation Assessor (http://mutationassessor.org/, (Reva et al,

2011)), Mutation Taster (http://www.mutationtaster.org/, (Schwarz

et al, 2014)), SIFT (http://sift.jcvi.org/, (Ng & Henikoff, 2003)),

PolyPhen (http://genetics.bwh.harvard.edu/pph2/index.shtml,

(Adzhubei et al, 2010)) and PhD-SNP (http://snps.biofold.org/phd-

snp/phd-snp.html, (Capriotti et al, 2006)) were used to predict the

effects of the human variants upon WBP2 protein function. In all

cases, the long isoform was used (ENST00000254806;

ENSP00000254806). SIFT offers multiple methods of analysis, so we

used the implementation in Ensembl’s Variant Effect Predictor

(http://www.ensembl.org/Homo_sapiens/Tools/VEP?db=core), the

automated method (http://sift.jcvi.org/www/SIFT_enst_submit.html)

and the manual method where we selected the input orthologues

(http://sift.jcvi.org/www/SIFT_related_seqs_submit.html).

cDNA sequencing

cDNA was obtained from the organ of Corti of P4 wild-type mice

(n = 3), adult organ of Corti (n = 1) and from cochleae of P28 wild-

type mice (n = 4) as described above. Brains were extracted from

P28 wild-type mice (n = 4), snap-frozen in liquid nitrogen and

stored at �20°C. RNA was extracted using TRIzol, and cDNA was

made as described above. Primers were designed for sequencing

using Primer3 (Untergasser et al, 2012), (Koressaar & Remm,

2007)): ENSMUSE00000252777_F: CTGTGAGATTAAGCAGCCGG,

ENSMUSE00000669944_R: GTAAGAGGCGGGAAGTGGG. Capillary

sequencing was carried out by Source BioScience (Nottingham, UK),

and the traces were examined using Gap4 (Bonfield et al, 1995).

Western blot

Protein lysates from half-brain and from six cochleae pooled

together across three different mice with the same genotype (n = 3

of each genotype) at 4 weeks of age were analysed by Western blot

on 10% SDS–PAGE (Buniello et al, 2013). The primary antibodies

used were: Wbp2 (Cell Signaling, 11831; 1:1,000), GluR2/3 (Milli-

pore, 7598; 1:1,000), Gapdh (Abcam, ab9482; 1:5,000) and b-tubulin
(Covance, MRB-435P; 1:5,000). The secondary antibodies used

were anti-rabbit HRP conjugate (Millipore, 12-348; 1:5,000) and
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anti-mouse HRP conjugate (Bio-Rad, 170-6516; 1:5,000). While the

cochlear Westerns were developed using a conventional darkroom,

the brain Westerns were developed using a Biospectrum 810

imaging system (UVP, Upland, CA).

Semi-thin sections and transmission electron microscopy

Inner ears (n = 3 for each genotype) were dissected and processed

as previously described (Chen et al, 2014). Ultrathin sections

(70–90 nm) were cut longitudinally using a Leica EM UC7 ultrami-

crotome with knife angle of 35 degrees, mounted on copper grids

and contrasted using uranyl acetate and lead citrate. Samples were

examined on a JEOL JEM-1400Plus (120 kV) fitted with an 8-M

pixel fully integrated high-precision camera. Semi-thin sections

(0.5 lM) were stained with 1% toluidine blue for light microscopy

observation.

Histology and anatomy of the ear

Bisected heads from mutants and littermate controls aged

4–6 weeks (n = 3 for each genotype) were fixed with 10% formalin

and embedded in paraffin wax, and 8-lm sagittal sections were

stained with haematoxylin and eosin. The anatomy of the middle

ear was examined as previously described (Chen et al, 2013), and

the specimens were imaged using microscope with Nomarski optics

(Axioplan; Zeiss) and digital camera (AxioCam; Zeiss).

X-gal staining

In the knockout-first conditional-ready design used to generate the

Wbp2-mutant allele (Fig 1A), a LacZ gene inserted in the allele

makes it possible to visualise the expression of the targeted gene by

using X-gal. Wild-type littermates were used as negative controls.

Inner ears from homozygous and heterozygous mutants and wild-

type littermate controls (n = 2 for each genotype) at post-natal day

14 were dissected out and fixed in fresh 4% paraformaldehyde for

45 min at 4°C with rotation, washed in PBS and decalcified over-

night in 10% EDTA before a detergent wash (2 mM MgCl2; 0.02%

NP-40; 0.01% sodium deoxycholate; in 0.1 M sodium phosphate

buffer, pH 7.3 in PBS) for 30 min at room temperature.

X-gal (Promega; cat.no. V394A) was added 1:50 to 500 ll of pre-
warmed staining solution (5 mM K3Fe(CN)6; ferrate (III) and 5 mM

K4Fe(CN)6; ferrate (II)); then, ears were stained at 37°C in the dark

for 1 h, washed in PBS and gradually dehydrated before paraffin

embedding; 8-lm-thick sections were obtained from the embedded

samples, which were counterstained with Nuclear Fast Red as the

X-gal reaction labelling is always cytoplasmic (VWR, cat.no.

342094W), mounted on slides and imaged using the AxioCam

MRc camera (Carl Zeiss), using the Axiovision 3.0 software

(Carl Zeiss).

Scanning electron microscopy

The organ of Corti from wild-type and mutant mice at 5 weeks (wt

controls, n = 11; het, n = 8 and mutants n = 7) and 30 weeks (wt

controls, n = 15; mutants, n = 14) of age was fixed and processed

by the OTOTO protocol as previously described (Hunter-Duvar,

1978) and viewed with a Hitachi FE S-4800 Scanning Electron

Microscope operated at 3–5 kV. The best frequency regions were

determined as previously reported (Müller et al, 2010).

Confocal imaging and post-acquisition analysis

For whole-mount immunostaining, cochleae at P14 (n = 3 for each

genotype), 4 weeks (n = 9 for each genotype for neurofilament/

CtBP2, n = 3 for GluR2/3/CtBP2 and n = 3 for Psd95/CtBP2) and

8 weeks (n = 3 for each genotype) were perfused with 4%

paraformaldehyde, post-fixed for 1–2 h at room temperature, decal-

cified in EDTA for 24–48 h at 4°C and fine-dissected. Samples were

then blocked in 5% normal horse serum (NHS), 1% bovine serum

albumin (BSA) and 0.3% Triton X-100 in PBS for 1 h at room

temperature and immunostained in 1% normal horse serum (NHS),

0.3% Triton X-100 in PBS as previously reported (Kujawa & Liber-

man, 2009). Antibodies against CtBP2 (BD Transduction Laborato-

ries, 612044, 1:200), GluR2/3 (Millipore, 7598; 1:300), NF-H

(Abcam, ab4680, 1:800), Myo7a (Proteus, 1:300) and Psd-95 (Cell

Signaling Technology, 2507; 1:500) were used. Secondary antibodies

used were Alexa Fluor 546 donkey anti-mouse (Invitrogen,

A100036, 1:400), Alexa Fluor 488 goat anti-rabbit (Invitrogen,

A11008, 1:400) and Alexa Fluor 488 goat anti-chicken (Invitrogen,

A100036, 1:400). Mounting was performed using ProLong Gold

mounting medium (Invitrogen, P36930) on 1-mm-thick microscope

slides (Thermo Fisher Scientific, 1014356290F). Most confocal imag-

ing was performed using a Nikon A1R point-scanning confocal

microscope system (Nikon Instruments UK). The CtBP2 and GluR2/3

double immunofluorescence was imaged using a Leica TCS SP5

confocal microscope (Leica, Germany). All images were captured

using Plan Apo VC 60x/1.4NA and Plan Apo VC 100x/1.4NA lenses.

Confocal z-stacks were obtained with a z-step size of 0.200 to

0.500 mm. NIS Elements v4.2 software (Nikon Instruments UK) and

Image J (NIH, Bethesda, Maryland, US) software were used for

acquisition and post-acquisition analysis, including synaptic counts.

The PSD-95 fluorescence intensity units at IHC synapses were

quantified using the “Automated Measurements” tool of the NIS

Elements software (n = 2 of each genotype). The reads were then

averaged, and the statistical analysis was performed using the

Student’s t-test. The study was performed throughout the whole

length of the cochlea, and representative images from the regions of

interest are shown in the figures. The best frequency regions were

determined as previously reported (Müller et al, 2010).

Pathway analysis

The Wbp2 pathway analysis was generated with the help of

QIAGEN’s Ingenuity Pathway Analysis (IPA�, QIAGEN Redwood

City, www.qiagen.com/ingenuity). All links were checked by read-

ing the relevant primary publications before including in the path-

way. Additional data from our own experiments were added.

Single-hair cell electrophysiology

Inner hair cells from control and littermate Wbp2-deficient mice

were studied in acutely dissected organs of Corti from post-natal

day 7 (P7) to P33, where the day of birth is P0. The basal coil of the

cochleae, corresponding to an approximate frequency range of

35–55 kHz, was dissected in normal extracellular solution (in mM):
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135 NaCl, 5.8 KCl, 1.3 CaCl2, 0.9 MgCl2, 0.7 NaH2PO4, 5.6

D-glucose, 10 Hepes-NaOH. Sodium pyruvate (2 mM), MEM amino

acids and vitamin solutions were added from concentrates (pH 7.5;

~308 mmol/kg).

Electrophysiological recordings were performed using an Opto-

patch (Cairn Research Ltd, UK) or Axopatch 200B (Molecular

Devices, USA) amplifiers. Data acquisition was controlled by

pClamp software using Digidata 1440A boards (Molecular Devices,

USA). Patch pipettes were coated with surf wax (Mr Zoggs SexWax,

USA) to minimise the fast patch pipette capacitance transient.

Recordings were performed either at room temperature (22–24°C)

or at body temperature (34–37°C).

Current and voltage recordings from IHCs (see Table EV1) were

performed using the following intracellular solution in the patch

pipette containing (in mM): 131 KCl, 3 MgCl2, 1 EGTA-KOH, 5

Na2ATP, 5 Hepes-KOH, 10 Na2-phosphocreatine (pH 7.3; ~296

mmol/kg). Recordings were low-pass-filtered at 2.5 kHz (8-pole

Bessel), sampled at 5 kHz and stored on computer for off-line

analysis (Origin: OriginLab, USA). Membrane potentials in voltage

clamp were corrected for the voltage drop across the uncompen-

sated residual series resistance (Rs: 1.0 � 0.1 MΩ, n = 15) and for a

liquid junction potential (LJP) of �4 mV.

Mechanoelectrical transducer (MET) currents were elicited by

stimulating the hair bundles of OHCs using a fluid jet from a pipette

(tip diameter of 8–10 lm) driven by a piezoelectric disc (Corns et al,

2014). V. MET currents were recorded with a patch pipette solution

containing (in mM): 106 Cs-glutamate, 20 CsCl, 3 MgCl2, 1 EGTA-

CsOH, 5 Na2ATP, 0.3 Na2GTP, 5 Hepes-CsOH, 10 sodium phospho-

creatine (pH 7.3). Membrane potentials were corrected for the LJP

of �11 mV.

Real-time changes in membrane capacitance (DCm) were

measured using the Optopatch as previously described (Johnson

et al, 2008, 2010). Briefly, a 4-kHz sine wave of 13 mV RMS was

applied to IHCs from �81 mV and was interrupted for the duration

of the voltage step (50 ms and in 10 mV increments). The capaci-

tance signal from the Optopatch was amplified (×50), filtered at

250 Hz and sampled at 5 kHz. DCm was measured by averaging the

Cm trace over a 200-ms period following the voltage step. These

exocytotic recordings were performed using the above Cs-based

intracellular solution. Membrane potentials were corrected for the

uncompensated residual series resistance (Rs: 6.0 � 0.2 MΩ,
n = 25) and LJP (�11 mV). DCm was recorded while applying

30 mM TEA and 15 mM 4AP (Fluka, UK) and additionally 80 lM
linopirdine and 300 nM apamin (Tocris, UK) to reduce K+ currents.

Variant identification in the WBP2 gene in human deafness

We designed a target enrichment (TGE) kit for the molecular diag-

nosis of hereditary hearing loss in humans. The target region

included a total of 438 human protein-coding genes potentially

related to hearing loss. We adopted Agilent SureSelect TGE technol-

ogy to manufacture the assay chemistries. The TGE kit was used to

capture the genomic DNA from the probands with hearing loss,

according to the supplier’s instructions. The library enriched by the

TGE kit was sequenced on an Illumina HiSeq 2000 in 90-bp paired-

end reads. Raw image files were processed by Illumina CASAVA

Software version 1.7 for base calling with default parameters. The

bioinformatics analysis was carried out as described previously (Lu

et al, 2014). Following the large-scale sequencing, specific primers

were designed to amplify the genomic region encompassing exons 5

and 7 of the WBP2 gene for the probands and the parents. PCR prod-

ucts were sequenced in both forward and reverse directions on an

ABI 3100 using the BigDye Terminator Cycle Sequencing Ready

Reaction Kit (Applied Biosystems).

Expanded View for this article is available online.
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The paper explained

Problem
Progressive hearing loss is a very common disease. However, very little
is known about its molecular mechanisms and the lack of knowledge
leads to the lack of targets for medical therapies. Steroid hormones
are known to be implicated in normal auditory function and neuro-
protection, and estrogen receptors are expressed in sensory hair cells.

Results
In order to investigate the functional link between hormonal signal-
ling and hearing impairment and identify new targets for therapies,
we analysed Wbp2-deficient mice. WBP2 encodes the WW domain-
binding protein 2, which acts as a transcriptional coactivator for the
estrogen and progesterone receptors ESR1 and PGR.
We demonstrate for the first time a direct link between the Wbp2
mutation and progressive hearing loss. Wbp2-deficient mice show
progressive high-frequency hearing loss due to a primary synaptopa-
thy. The lack of detectable Wbp2 results in reduced expression of Esr1,
Esr2 and Pgr in the cochlea. Oestrogen signalling is known to control
the expression of post-synaptic proteins upon activation and translo-
cation of the receptor into the nucleus, and we found disrupted
expression of Psd-95, Shank3 and AMPA receptor subunits in the
Wbp2-mutant cochlea, including in inner hair cell synapses. The disso-
ciation of the post-synaptic complex explains the synaptopathy and
therefore the hearing impairment. The earliest pathology detected
was swelling of the post-synaptic afferent nerve endings at inner and
outer hair cells, a sign of glutamate excitotoxicity. Glutamate can be
toxic if it accumulates at synaptic clefts as a result of a synaptic
dysfunction. The progressive increase in the hearing impairment
correlated both in time (age) and in location (point along the cochlear
duct) with the swelling of IHC afferent nerve endings.
Most importantly, we also demonstrated that WBP2 is crucial for
hearing also in humans. We reported the cases of two children
affected by severe to profound deafness, each carrying two variants in
heterozygosis in the WBP2 gene.

Impact
This study opens up the Wbp2 pathway as a route to therapeutic
approaches that specifically target the auditory system, avoiding
potential unwanted effects of more general pharmacological manipu-
lation of oestrogen/progesterone signalling.
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