
This is a repository copy of Iterative criteria-based approach to engineering the
requirements of software development methodologies.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/10815/

Article:

Ramsin, R. and Paige, R.F. orcid.org/0000-0002-1978-9852 (2010) Iterative criteria-based
approach to engineering the requirements of software development methodologies. IET
SOFTWARE. pp. 91-104. ISSN 1751-8806

https://doi.org/10.1049/iet-sen.2009.0032

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://doi.org/10.1049/iet-sen.2009.0032
https://eprints.whiterose.ac.uk/id/eprint/10815/
https://eprints.whiterose.ac.uk/

promoting access to White Rose research papers

White Rose Research Online
eprints@whiterose.ac.uk

Universities of Leeds, Sheffield and York
http://eprints.whiterose.ac.uk/

This is an author produced version of a paper published in
IET SOFTWARE

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/10815

Published paper

Ramsin R, Paige RF (2010)
Title: Iterative criteria-based approach to engineering the requirements of software

development methodologies

IET SOFTWARE

4 91-104
http://dx.doi.org/10.1049/iet-sen.2009.0032

1

An Iterative Criteria-Based Approach to Engineering

the Requirements of Software Development

Methodologies

Raman Ramsin, Richard F. Paige

Department of Computer Science

University of York

Heslington

York, YO10 5DD

United Kingdom

{ramsin@sharif.edu, paige@cs.york.ac.uk}

Phone: +44 1904 433242

Fax: +44 1904 432767

Abstract. Software engineering endeavours are typically based on and governed by the requirements of the

target software; requirements identification is therefore an integral part of software development methodologies.

Similarly, engineering a software development methodology involves the identification of the requirements of

the target methodology. Methodology engineering approaches pay special attention to this issue; however, they

make little use of existing methodologies as sources of insight into methodology requirements.

We propose an iterative method for eliciting and specifying the requirements of a software development

methodology using existing methodologies as supplementary resources. The method is performed as the

analysis phase of a Methodology Engineering process aimed at the ultimate design and implementation of a

target methodology. An initial set of requirements is first identified through analyzing the characteristics of the

2

development situation at hand and/or via delineating the general features desirable in the target methodology.

These initial requirements are used as evaluation criteria; refined through iterative application to a select set of

relevant methodologies. The finalized criteria highlight the qualities that the target methodology is expected to

possess, and are therefore used as a basis for defining the final set of requirements. In an example, we

demonstrate how the proposed elicitation process can be used for identifying the requirements of a general

object-oriented software development methodology.

Due to its basis in knowledge gained from existing methodologies and practices, the proposed method can help

methodology engineers produce a set of requirements that is not only more complete in span, but also more

concrete and rigorous.

Keywords: Methodology Engineering, Requirements Engineering, Criteria-Based Evaluation

1 Introduction

A Software Development Methodology (SDM) can be loosely defined as “a recommended collection

of phases, procedures, rules, techniques, tools, documentation, management, and training used to

develop a system” [1]; but it is easier to grasp when described as consisting of two main parts [2]: a

set of modeling conventions comprising a Modeling Language (syntax and semantics); and a Process,

which specifies the development activities and their order, provides guidance for monitoring the

activities, and specifies what artifacts should be developed using the Modeling Language.

Methodology engineering – or Method Engineering (ME), as it has come to be called – was originally

defined as “The engineering discipline to design, construct, and adapt methods, techniques and tools

for the development of information systems” [3, 4]. The concept has over the years become mainly

restricted to Situational Method Engineering (SME) [5], in which methodologies are constructed or

adapted to fit specific project situations. SME is based on the notion that software development

processes are software too [6, 7], and applying an engineering approach to their development is

therefore logical. It is also motivated by the observation that the one-size-fits-all strategy pursued by

older versions of heavyweight methodologies (such as Rational Unified Process – RUP [8] and

Object-oriented Process, Environment and Notation – OPEN [9]) is not justifiable, since

methodologies typically have to be tailored – engineered – to fit particular project situations. This

3

observation is now widely accepted in the software engineering community, and as a result, modern

methodologies strive to provide configurable and flexible processes that can be adapted to the specific

needs of a software development project; examples include heavyweights such as Catalysis and

Enterprise Unified Process (EUP), and agile lightweights such as Adaptive Software Development

(ASD), Crystal Clear, and Dynamic Systems Development Method (DSDM) [10]. The switch to SME

has now resulted in the emergence of methodology assembly frameworks and their corresponding

method-chunk repositories, through which custom methodologies can be constructed by assembling

reusable method chunks [5]. Most heavyweight methodologies have now been replaced or enhanced

by such SME frameworks; for instance, OPEN has become OPEN Process Framework (OPF) [11],

RUP has been fused into the Rational Method Composer (RMC) [12], and the Eclipse Process

Framework (EPF) has gained widespread recognition as a generally applicable process framework

[13].

Eliciting the requirements of a methodology is not a practice exclusive to modern SME approaches.

Methodology requirements have long been used for methodology selection and adaptation. The

Jackson System Development (JSD) methodology of 1983 is an early example of a methodology that

regards characteristics of the problem domain as methodology requirements, and uses them in

customizing the methodology and verifying its suitability for the problem at hand [14]. A similar

approach can also be observed in some modern adaptive processes [10]. As a further example,

the Problem Frames approach [15], and some of the various methods based on it [16, 17],

capture methodology requirements as specifications of the problem domain, based on which

the software development methodologies that are most appropriate for the project are

proposed.

Although methodology requirements have long shown their usefulness, SME is where

methodology requirements demonstrate their full significance. In SME projects, methodology

requirements may not be restricted to the relevant characteristics of a specific software-

development problem domain – functional and non-functional requirements of a specific

software product, such as quality-related issues, that affect the choice of methodology. Direct

4

characteristics of the methodology itself, often imposed by the organization, are considered

more essential; examples include Seamlessness and Flexibility of process. Although these

characteristics are usually categorized in software engineering as non-functional development

requirements/constraints [18], in many cases they are common among several projects. It

should be noted that methodologies developed through SME may not be targeted at one

software development project only; organizations can use SME to develop their own adaptive

processes, each aimed at a host of similar projects (or recurring project situations). Therefore,

the problem domain of a methodology-engineering project may be broader than that of any of

its target software-engineering projects – projects for which the methodology is intended.

As typologies of SME approaches and techniques show [19, 20], and as expected in any software

engineering effort, methodology development is heavily dependent on eliciting and specifying the

requirements of the target methodology as early in the development process as possible; the

methodology development effort will then proceed in a requirements-based fashion. Requirements

engineering approaches currently practiced in method engineering rely on the organization or project

situation at hand as the sole source of requirements [21, 22, 23]. This seems logical, since the

project/organization is in fact the problem domain itself. However, requirements elicited in this

fashion are deliberately abstract. Abstract methodology requirements may be achievable at a spectrum

of degrees and through diverse methods. While abstractness is desirable when implementation-

independence should be observed, it can increase the number of alternative solutions, thereby

complicating the design process.

In method engineering approaches currently practiced, existing methodologies are mainly used as

sources of method fragments: methodologies are broken down into method chunks, which are then

stored in method repositories to later be reused for assembling bespoke methodologies [24]. Ideas

from existing methodologies are sometimes captured as guidelines [11], but they are rarely used as

resources for method requirements; whereas in software engineering, alternative

solutions/architectures and software systems similar to the target system are explored during detailed

analysis and early stages of design. Agile methods and third-generation object-oriented methodologies

5

prescribe the specification of architectural design alternatives even earlier in the process. This means

that solution-domain issues are explored prior to design, resulting in enhanced risk mitigation,

especially as pertaining to technical and requirements risks. The same approach could also be useful

in a methodology engineering context: existing methodologies and techniques that are relevant to the

situation at hand can be explored in order to identify their capacities and shortcomings: strengths that

can be reused, weaknesses that should be addressed, opportunities for improvement, and pitfalls that

ought to be avoided. A better understanding is thereby acquired of the issues involved in developing

the target methodology, resulting in a set of requirements that is not only more complete in span, but

also more rigorous due to the level of insight gained.

It should be noted that methodology engineering should in no way be considered as strictly limited to

Situational Method Engineering, i.e., on-the-fly development of custom methodologies; it can also

include the engineering of general-purpose, customizable methodologies. In such cases, existing

methodologies can be even more useful as resources, as they not only help enrich the requirements

with ideas from the solution domain, but can also lead to new requirements; existing methodologies

are thus considered as complements to the SME problem domain. This is somewhat similar to

eliciting the requirements of a software system from scratch; that is, when an older version of

the system does not exist in the organization.

Motivated by the issues outlined above, we propose an approach to methodology requirements

engineering which is based on the notion that a software development methodology can be developed

(engineered) via a software engineering process – that is, through the generic development phases of

requirements analysis, design, implementation and test. The approach adopted for the requirements

analysis phase – reported herein – is based on using existing methodologies and techniques as

additional resources when eliciting and specifying methodology requirements. This is somewhat

analogous to approaches used for analyzing and designing Domain-Specific Languages (DSL) [25].

We argue that since methodology requirements need to be precise and complete enough to be useful

during methodology design, it is worthwhile to enrich them with ideas from the solution domain prior

to design. Hence, an iterative criteria-based approach is proposed that, starting from a basic set of

6

high-level requirements, selects and evaluates the methodologies that are relevant to the project

situation at hand. The basic requirements are then used as initial evaluation criteria; they are refined

and restructured through iterative application to the selected methodologies, and are ultimately used

for specifying the requirements. A concrete specification of the requirements is thus produced that not

only defines the desirable level of satisfaction for each requirement, but also provides suggestions for

realizing the requirement through using ideas from existing methodologies. The target methodology

can then be developed through making use of existing techniques in such a way as to satisfy the

requirements.

The rest of this paper is structured as follows: an overview of our proposed iterative criteria-based

process and a discussion of its motivations and justifications are presented in Section 2, while section

3 contains a detailed step-by-step description of the elicitation process; Section 4 presents an example

that demonstrates how the proposed elicitation process is used for identifying the requirements of a

general object-oriented software development methodology; and Section 5 contains the conclusions

and several suggestions for furthering this research.

2 The Proposed Iterative Criteria-Based Approach

The merits of criteria-based analysis as a source of insight into the capabilities and shortcomings of

software development methodologies has long been recognized, as shown in previous research on

software development methodologies in general [26] and object-oriented software development

methodologies in particular [27, 28]. The results obtained from such analyses are prevalently used for

selecting, tailoring and effective usage of methodologies. Naturally, the main problem that any

researcher attempting to exercise such analyses faces is the definition of a suitable set of criteria.

In our proposed approach to methodology requirements elicitation, evaluation criteria are used as

intermediate means for refining the requirements: initial high-level requirements are taken as

evaluation criteria, which are then refined through iterative application to methodologies, and

ultimately converted to detailed and concrete specifications of the requirements. The criteria-

refinement method proposed herein is based on the observation that the strengths and weaknesses of

7

methodologies (identified through criteria-based evaluation) provide further ideas as to what is and

what is not desirable in methodologies; this can in turn lead to the identification of new criteria and/or

refinements to the existing ones. Thus, the approach uses the evaluation results themselves for

refining the criteria. A method can thus be devised to refine an initially incomplete set of evaluation

criteria through applying them iteratively to software development methodologies, until the criteria

and the evaluation results are stabilized.

The evaluation results appear to be the main output of this process, yet it is the final criterion set that

will provide the ultimate objective: a set of requirements for the target software development

methodology. This is achieved by evolving each criterion into a requirement through adding the level

of support that the target methodology is expected to provide for that criterion, taking into account the

lessons learnt from existing methodologies (as inferred from the evaluation results). The details of the

requirements elicitation process based on the above approach are explained in the next section.

3 Requirements Elicitation Process

The elicitation process consists of the following stages, during which initial requirements are

identified and set as evaluation criteria, the criterion set is refined through iterative criteria-based

evaluation of selected methodologies, and the final criteria are turned into requirements (Figure 1).

The stages are described through the rest of this section.

Definition of an initial set of requirements

Initial requirements help select the methodologies of interest, and also act as seed criteria for the

iterative evaluation stage of the process. The initial set of requirements is extracted from the

parameters of the project situation at hand [21, 29, 30], and/or selected from among features that are

considered to be desirable in the target methodology [31, 32]. The important point to have in mind is

that the initial set of requirements will be applied as the seed criterion-set, and is therefore expected to

act as a “detonator”: Since the criteria are used as focus-pointers guiding the evaluation process in

exposing the processes’ strengths and weaknesses, the initial criterion set should be expansive and

incisive in order to trigger a large-scale fan-out effect, ever increasing the breadth and depth of the

8

analysis, and thereby uncovering new criteria and refining the existing ones. It is therefore

recommended that certain coverage requirements be added to the initial list to ensure the detonation

effect; these are requirements that address the generic-lifecycle coverage of the methodologies

(consisting of generic Definition, Development, and Maintenance activities [18, 32]). The initial

criterion set is expected to undergo dramatic changes – both in structure and content – during the

evaluation process.

Selection of a set of software development methodologies

Relevant methodologies are selected to then be analyzed based on the evaluation criteria. This

typically requires studying available resources to gain a better understanding of relevant

methodologies. Since the richness of the reviews and the analysis results is of utmost importance

when defining the requirements, the set of methodologies should be comprehensive enough to provide

extensive coverage of the features targeted; sets of process patterns and process metamodels may also

be added to further broaden the coverage. The list of selected methodologies will be revisited and

revised during the iterative refinement stage.

Summarization and review of the selected methodologies

The selected methodologies are summarized using a process-centered template, highlighting the

activities prescribed in each methodology while keeping the description and discussion of the artifacts

produced (and the modeling languages used) as secondary to the activities [10]. The description

produced using this template offers little critique on the methodologies, yet abstracts them so that

detailed analysis of each individual methodology is facilitated. The description of a methodology

based on this template consists of the following parts [10]:

1. An introductory preface providing a brief account of the methodology’s history and distinguishing

features, as well as an abstract overview of the development process prescribed by the

methodology.

2. A number of subsections, one for each high-level subprocess in the methodology’s development

process, each consisting of:

9

2.1. Details of the activities performed in the subprocess and the order in which they are

performed.

2.2. A concise description of the artifacts produced and the modeling languages used in the

subprocess, described as part of their relevant activities.

Iterative refinement process

During the following steps, the evaluation results are incrementally built, and the criterion set – which

initially contains the seed criteria – is gradually refined. The final list of criteria is expected to possess

a minimum degree of quality, measured through a predetermined set of meta-criteria (criteria for

evaluating other criteria) that are iteratively applied to the criteria. The choice of meta-criteria may

depend on the problem domain, but it is imperative that the meta-criteria are defined prior to the

initiation of the iterative refinement process. The cycle is repeated until the evaluation results and the

criterion set are stabilized (i.e., further iterations are unlikely to significantly change the criteria and

the evaluation results):

1. Evaluating the selected methodologies based on the criterion set: The significant strengths and

weaknesses of the methodologies are thus determined. The criteria are used as focus-pointers,

concentrating the evaluation on areas where significant strengths and weaknesses are most likely

to be found. Unlike many criteria-based evaluations, the results are not represented as ratings

denoting the degree of support each methodology provides for each of the criteria. Furthermore,

since the criteria are used as focus-pointers, there is no one-to-one relationship between the

criteria and the results: a process might possess several significant strengths/weaknesses as

pertaining to one criterion, while having nothing significant to offer in relevance to another

criterion. A simple rating procedure would add nothing new to the criteria, whereas the focus-

pointing approach makes it possible to gradually increase the span and depth of exploration, and

thereby identify potential areas for improving the criteria; the criteria are thus allowed to evolve.

Evaluation results may need to be restructured based on the preferences of the analysts: In cases

where two or more results are similar, merging may be considered; on the other hand, if an

10

evaluation result points to two or more distinct strengths/weaknesses that should be stressed in

their own right, decomposition may be deemed necessary.

2. Updating (evolving) the criterion set and the list of methodologies: Using the evaluation results as

a resource, the following activities are performed:

2.1. New criteria are added, and refinements are made to existing criteria or their structure. It is

perfectly acceptable if there are criteria that cannot be traced to any of the previous (or seed)

criteria; this may happen if new criteria are added during iterative refinement. However, if

there is a previous (or seed) criterion to which none of the current criteria can be traced, a

requirements loss has occurred, which is not acceptable. The important rule is that existing

criteria should be maintained, unless they are covered by other criteria. If this rule is not

strictly observed, traceability could be compromised. Permissible actions are as follows:

2.1.1. A new criterion will be added in case a new feature (requirement) is identified for the

target methodology. The typical case is when evaluation results point to a new

feature; usually, the new feature is either a finer-grained version of an original

criterion (e.g., “support for risk estimation” is a finer-grained version of “support for

risk management”), or a concrete implementation that satisfies a criterion (e.g.,

“iterative-incremental nature of the development process” satisfies “support for risk

management”). The original criterion is usually kept along with the new one, unless

the analysts decide that it is redundant.

2.1.2. As evaluation proceeds, the definition of each criterion will be refined in order to

better express the feature being evaluated.

2.1.3. Criteria are restructured in order to enhance their understandability. Criteria leading

to similar results may be merged, and criteria pointing to different features may be

broken down to emphasize the constituent features.

2.2. The list of methodologies is revisited, and due changes are applied based on the new set of

criteria. New methodologies are added if one or more criteria are not adequately addressed

by the methodologies that are currently on the list.

11

Producing and specifying the requirements

The stabilized criterion set is used as a framework for producing the requirements of the target

methodology, and also for detailing it using the evaluation results. Since the criterion set can be

regarded as a framework that defines the general features desirable in the target methodology,

requirements can be specified by detailing and enriching these features with information on the degree

of support expected in the target methodology. Consider risk-management as an example of an

evaluation criterion: in order to evolve it into a requirement, the degree of risk management support

that the target methodology is expected to provide should be defined. Furthermore, development

processes offer alternative ways for implementing desirable features. Therefore, evaluation results can

be enriched with information as to how criteria are met or contradicted in each of the methodologies

evaluated, thus providing a toolkit of methods and techniques for implementing features, as well as a

list of potential pitfalls to be avoided. The repertoire of ideas thus built (containing lessons learnt from

existing software development processes) can guide the developers in defining and refining the

requirements.

4 Example: Eliciting the Requirements of an Object-Oriented

Methodology

An Object-Oriented Software Development Methodology (OOSDM) is specifically aimed at viewing,

modeling and implementing a system as a collection of interacting objects, using specialized

modeling languages, activities and techniques needed to address the specific issues of the object-

oriented paradigm. The applicability of the object-oriented approach to systems analysis and design

was recognized in the mid 1980s, and the subsequent enthusiasm has been such that a plethora of

object-oriented software development methodologies have been introduced [10].

A close look at the present state of affairs in the field of object-oriented software development

methodologies shows that despite all the advances made over the years, numerous deficiencies appear

in these methodologies, some of which have been summarized in [33, 34]. Nevertheless, OOSDMs

are still considered state of the art, and research aimed at improving them is an ongoing process [33,

12

35]. There is motivation for developing methodologies that use the lessons learnt from the Unified

Modeling Language (UML) [36] and the long history of object-oriented methodologies in setting up a

framework for software development that addresses the problem issues.

In order to show how the proposed elicitation process works, it has been used for eliciting the

requirements of an object-oriented methodology that addresses the deficiencies commonly seen in

such methodologies. Object-oriented software development methodologies are a suitable context for

such an effort, mainly because of their relatively long history, during which many development

problems have been encountered and addressed [10, 31, 35]; the degree of maturity enjoyed by these

methodologies means that they are rich resources that can be used for providing the criteria and the

requirements.

4.1 Initial Requirements

The following have been observed as core areas where further work on OOSDMs is needed, hence

highlighting the general characteristics of an enhanced object-oriented methodology [10]:

1. Compactness: an extensible core is preferable to a customizable or generic framework with

complex parameters and/or numerous parameter options.

2. Extensibility: with extension mechanisms and guidelines clearly defined.

3. Traceability to requirements: all the artifacts should be traceable to the requirements.

4. Consistency: artifacts produced should not be allowed to contradict each other; alternatively, there

should be mechanisms for detecting inconsistencies.

5. Testability of the artifacts from the start: this will allow tools to be developed to verify and

validate the artifacts.

6. Tangibility of the artifacts: artifacts should be concrete enough to be related to and understood by

the parties involved in their development or assessment.

7. Visible rationality: there should be evident rationality behind every task and the order in which

the tasks are performed, and undeniable use for every artifact produced. The developers should be

able to see this logic, and have access to information that will help them determine whether

digression will put their objectives at risk.

13

The eight requirements selected as the initial requirements are tabulated in Table 1, to also be used as

seed criteria. The seven characteristics listed above have been included in order to reveal what the

existing processes lack or provide in this regard, thus unearthing features to exploit and pitfalls to

avoid. The first requirement has been added in order to broaden the scope of the evaluation to cover

the whole lifecycle of the processes, and also to prompt scrutiny into the details of the activities

performed. Each criterion on this list has been designated with an identifier; these identifiers will be

used in later sections to demonstrate traceability.

Table 1. Initial Requirements (Seed Criteria)

Requirement (Criterion) Explanation Identifier

Coverage of standard software

development activities

Covering activities constituting or supporting the generic software development

lifecycle [32].

SC1

Compactness of process

Referring to lightness and simplicity of process, and its being free of nonessential,

excess features; hefty and complex processes are hard to understand and master, and

difficult to use.

SC2

Extensibility of process

The degree to which the process can be extended to support software development

efforts of different sizes, complexities and criticalities.

SC3

Traceability of artifacts to

requirements

The degree to which artifacts can be shown to have stemmed from the requirements. SC4

Consistency of artifacts Mutual agreement and logical coherence of the artifacts. SC5

Testability of artifacts

The degree to which artifacts lend themselves to establishment of test criteria and

performance of tests to determine whether the test criteria have been met.

SC6

Tangibility and

understandability of artifacts

to users and developers

The level of consideration given to the balance between abstraction and concreteness

in producing the artifacts – removal or reduction of low-level detail when appropriate

and developing physical manifestations when necessary (e.g. prototyping) – with the

ultimate objective of enhancing the perceptibility of the underlying notions.

SC7

Rationality of process and

artifacts

Evident rationality behind every task and the order in which the tasks are performed,

and undeniable use for every artifact produced.

SC8

14

4.2 Selection and Process-Centered Description of Methodologies

Based on the initial requirements of Table 1, a total of 24 object oriented methodologies were chosen

as resources, spanning all the three classes of object-oriented methodologies: seminal, integrated and

agile [10]. Since a general methodology was targeted, methodologies had to be selected that offered

alternative ways for satisfying the initial requirements. This necessitated the selection of a wide

spectrum of methodologies. A set of process patterns and process metamodels were also added in

order to complement the set of methodologies, thereby enriching the feature set to be used in defining

the requirements.

Due to the large number of methodologies, only those most renowned and influential have been

selected; methodologies that, according to the evolution timelines of [37] and [38], either have started

or are suitable representatives of individual branches of evolution.

It should be noted that object-oriented software development approaches that lack a detailed process

or a reasonably-defined process metamodel have not been considered for inclusion. Methodologies

based on the Model Driven Architecture (MDA) [39] are the most important of these, as they are not

mature enough for our purposes [40].

Table 2 shows the methodologies, process patterns and process metamodels used in this analysis. The

methodologies were described using the process-centered template; the reader is referred to [10] for

the full descriptions. The list of methodologies is revisited during the iterative refinement process and

may be changed according to the current version of the criteria and the evaluation results: for

example, when the selected methodologies do not have much to offer as to a specific feature that is

evaluated by a recently added criterion. However, in our example, changing the list of methodologies

was not necessitated. This was due to the richness of the methodologies originally selected.

Table 2. Object-oriented methodologies, process patterns and process metamodels used in the example

Methodologies Seminal

Shlaer-Mellor (1988, 1992)

Coad-Yourdon (1989, 1991)

RDD (1990)

Booch (1991, 1994)

15

OMT (1991)

OSA (1992)

OOSE (1992)

BON (1992, 1995)

Hodge-Mock (1992)

Syntropy (1994)

Fusion (1994)

Integrated

OPM (1995, 2002)

Catalysis (1995, 1998)

OPEN (1996)

RUP/USDP (1998, 1999, 2000, 2003)

EUP (2000, 2005)

FOOM (2001, 2007)

Agile

DSDM (1995, 2003)

Scrum (1995, 2001)

XP (1996, 2004)

ASD (1997, 2000)

dX (1998)

Crystal (1998, 2004)

FDD (1999, 2002)

Process Patterns Ambler (1998)

Process Metamodels
OPF – as part of the OPEN methodology (2001)

SPEM (2002)

4.3 Iterative Criteria-Based Evaluation

As a result of iterative criteria-based evaluation of the selected methodologies and process

patterns/metamodels, their significant strengths and weaknesses were identified. As an example,

Figure 2 shows the final results obtained for RUP; the complete results for all methodologies can be

found in [41]. The identifiers in the brackets are identifiers of the final criteria (Table 3), and show

how the results shown in the figure correspond to the final criterion set. It should be noted that the

results shown in Figure 2 are the final evaluation results; they are therefore more closely

16

related to the final criteria of Table 3 than the seed criteria of Table 1. Earlier versions of the

results, however, are naturally oriented towards the seed criteria. As iterative refinement proceeds,

criteria and results are iteratively revisited and revised. In our example, iterative restructuring and

refinement has changed both the criteria and the evaluation results extensively. The evaluation results

were used along with the final criteria for defining the requirements of a general OOSDM.

Table 3. Final criterion set

Methodology

Component

Criterion Identifier

Process

Clarity, rationality, accuracy, and consistency of definition [SC1,SC8] PC1

Coverage of the generic development lifecycle activities (Analysis, Design, Implementation,

Test, Maintenance) [SC1]

PC2

Support for umbrella activities, especially including: [SC1,SC3]

 Risk management

 Project management

 Quality assurance

PC3

Seamlessness and smoothness of transition between phases, stages and activities [SC4,SC8] PC4

Basis in the requirements (functional and non-functional) [SC1,SC4,SC8] PC5

Testability and Tangibility of artifacts, and traceability to requirements [SC4,SC6,SC7] PC6

Encouragement of active user involvement [SC4,SC7,SC8] PV7

Practicability and practicality [SC2,SC8] PC8

Manageability of complexity [SC3,SC8] PC9

Extensibility/Configurability/Flexibility/Scalability [SC2,SC3,SC8] PC10

Application scope [SC8] PC11

Modeling

Language

Support for consistent, accurate and unambiguous object-oriented modeling at different levels

of abstraction and diverse degrees of granularity [SC4,SC5,SC6,SC7,SC8]

MLC1

Provision of strategies and techniques for tackling model inconsistency and managing model

complexity [SC5,SC7,SC8]

MLC2

17

4.4 Final Criterion Set

The final, stabilized version of the criterion set, refined as the result of iterative application to the

selected methodologies and process patterns/metamodels, is shown in Table 3. The identifiers in the

brackets show how each final criterion can be traced to the seed criteria of Table 1.

The validity meta-criteria of [26] – which are specifically intended for appraising criteria that are used

for evaluating object-oriented methodologies – were used in the example as quality meta-criteria. The

final criteria satisfy these meta-criteria in that they are:

1. general enough to be used for evaluating all object-oriented software development methodologies,

2. precise enough to help discern and highlight the similarities and differences among object-

oriented software development methodologies,

3. comprehensive enough to cover all significant features of object-oriented software development

methodologies, and

4. balanced: adequate attention has been given to all three major types of features in a methodology:

technical, managerial and usage [26].

A closer look at the final criteria shows the effects of iterative refinement. To get a better

understanding of the effect of the refinement process, consider the first seed criterion (SC1: Coverage

of standard software development activities) as an example. As refinement progressed, it was

observed that evaluation results showed two aspects of coverage: coverage of generic software

development activities (ultimately evolved into PC2), and inclusion of management (umbrella)

activities (ultimately evolved into PC3). It was also observed that an important factor in assessing

coverage was the availability of proper documentation (later evolved into PC1). It should be noted

that in many cases, evaluations based on two separate criteria gave similar or related results; in such

cases, the evaluation results were merged, sometimes even resulting in a merger of their

corresponding criteria.

Compared to the seed criteria, the final criterion set is more complete, finer-grained, and better

structured. The restructuring that has been applied to the criteria during iterative refinement has

resulted in a many-to-many relationship between the seed criteria and the final criteria.

18

4.5 Final Requirements

Using the final criterion set as the basis, and applying the lessons learnt from the results of the

criteria-based evaluation of object-oriented software processes, the following requirements have been

identified for the target object-oriented software development methodology:

PR - Process Requirements

PR 1- Definition: The methodology should be well-documented (a comprehensive, clear, rational,

accurate, detailed and consistent description should be provided):

1. What should be captured? Lifecycle and work-units, producers, modeling language, work-

products, techniques and rules, and issues pertaining to umbrella activities. Metamodels suggested

by SPEM and OPF provide useful information as to what should be captured in the definition.

2. How? Mainly process-centered: the structure of the documentation should closely resemble that

of the lifecycle, and everything should be described as secondary to the work-units (phases, stages

and activities) of the lifecycle. Gradual refinement (hierarchical layering) should be used in

describing the process. Role-centered and product-centered views of the methodology can also be

added as complements, as suggested by SPEM and OPF – which regard processes as consisting of

work-units, roles (producers), and products (artifacts). The role-centered view focuses on the

producers involved in the methodology, describing the work-units they participate in and the

artifacts they produce, while the product-centered view focuses on the artifacts produced,

describing the work-units where they are produced and the producers (roles) involved.

PR 2- Coverage: The generic software development lifecycle activities (Definition, Development,

and Maintenance) should be covered. Fusion, RUP, EUP and Catalysis are examples of

methodologies providing extensive coverage. Close examination of the generic software development

lifecycle [18, 32], Ambler process patterns [42], and the OPEN Process Framework (OPF) [11] shows

that the following activities should be covered as a minimum:

1. Definition

1.1. Problem domain exploration and modeling

1.2. Requirements elicitation

19

1.3. Feasibility analysis

2. Development

2.1. Architectural Design

2.2. Detailed Design

2.3. Programming

2.4. Test

2.5. Deployment

3. Maintenance

PR 3- Support for umbrella activities: Especially including:

1. Risk management: through risk assessment and risk mitigation activities incorporated into the

lifecycle. Of special importance are techniques proven effective in other methodologies: e.g.

preliminary feasibility analysis (as seen in Crystal Clear and DSDM), prototyping (e.g. RUP,

DSDM, and XP), risk-based planning (e.g. RUP, DSDM and Scrum), iterative-incremental

development (e.g. RUP and agile methodologies), active user involvement (e.g. Scrum and FDD),

continuous verification and validation (e.g. Hodge-Mock, XP and ASD), iterative

process/product/plan reviews (e.g. ASD and Crystal Clear), early releases (e.g. XP and DSDM),

and continuous integration (e.g. XP and Crystal Clear).

2. Project management: through planning, scheduling and control techniques incorporated into the

process (as in RUP and EUP; DSDM and Scrum are good agile examples). Provision should be

made for the plans and schedules to be iteratively revisited and revised based on experience

gained through the development (as in EUP, ASD and Scrum). Special attention should be given

to team management aimed at enhancing intra-team and inter-team communication and

collaboration (as seen in RUP, EUP, Scrum and ASD).

3. Quality assurance: through quality assessment and enhancement techniques incorporated into the

process. Of special importance are techniques proven effective in other methodologies: e.g.

iterative technical reviews (agile methodologies; e.g. ASD and Crystal Clear), design by contract

(e.g. BON), continuous verification and validation (e.g. Hodge-Mock, XP and DSDM), and

strategies/techniques enhancing requirements traceability (e.g. use-case-driven methodologies

20

such as OOSE and RUP, scenario-based methodologies such as Hodge-Mock, and agile

methodologies such as DSDM and FDD).

PR 4- Seamlessness and smoothness of transition between phases, stages and activities: Although

seamlessness can be incorporated via basing all tasks and artifacts on a common concept (e.g. classes

in BON, the Domain Model in Shlaer-Mellor, and use cases in RUP), the transition between phases,

stages and activities is not necessarily smooth, since it might involve the production of brand new

artifacts; even though not violating seamlessness, the effort that is typically required damages

smoothness of transition. An alternative seamless strategy is continuous refinement of a specific set of

models, around which the development tasks are oriented, which provides both seamlessness and

smoothness of transition (as used in Coad-Yourdon, Syntropy and Catalysis). Fractal modeling (as in

Catalysis) is an example of a technique that is particularly successful in this context. It should be

noted that all methodologies providing smooth transition are not necessarily seamless; many agile

methodologies provide smooth transition because of the iterative-incremental nature of their

development strategy and the short cycles they usually have, yet they cannot always be considered

seamless, since there can be a huge gap between analysis and implementation.

PR 5- Basis in the requirements (functional and non-functional): Functional and non-functional

requirements should be captured early in the process, modeled in their own right, and used as a basis

for design and implementation (Coad-Yourdon is an example of a methodology that neglects this

seemingly obvious requirement). Requirements-driven methodologies – such as use-case-driven

methodologies (e.g., Catalysis and RUP), and agile methodologies (e.g., FDD and XP) – are good

examples of successful methodologies in this regard. Requirements should be allowed to evolve

during the process, as is the case in agile methodologies.

PR 6- Testability and tangibility of artifacts, and traceability to requirements: Artifacts should

be few, simple, and understandable, with dependencies that are minimal and clearly defined (Catalysis

is a good example, as are many seminal methodologies, e.g. Fusion). Artifacts should complement

each other in the context of the process, not decorate each other with clutter. Tangibility of the

artifacts to the users and the developers should be maximized: executable artifacts and artifacts with

syntax and semantics understandable to the user are tangible to the user (as in DSDM), while

21

developers find those artifacts tangible that are visibly useful in the process (otherwise they will be

ignored or botched, and quality may suffer as a result). Artifacts should be traceable to the

requirements (e.g., as direct or indirect realizations of the requirements – as in RUP, FDD, and XP, or

via the use of requirements-based evaluation scenarios – as in Hodge-Mock).

PR 7- Encouragement of active user involvement: This is vital for risk management and quality

assurance. Ambassador users, and planning and review sessions with user participants are proven

techniques. Agile methodologies have a great deal to offer in this regard.

PR 8- Practicability and practicality: The methodology should be employable; and effectively,

efficiently and usefully at that. Over-complex methodologies are not practicable; configurability does

not solve the problem since it typically involves complex procedures (as is the case with RUP), and

neither do instantiation frameworks (like OPEN), for the same reason. Practicability can also depend

on the project in hand; performing a feasibility analysis task early in the process (possibly involving

the deployment of suitability filters, as in DSDM) is essential. There are numerous factors, other than

complexity, that affect practicality (some adversely), and should therefore be taken into account.

Tasks that distract the developers from mainstream activities or encumber them with impertinent or

unnecessary details should be deleted; techniques and strategies for focusing the development, such as

requirements-based models (such as those seen in Fusion, Catalysis and FDD), system

architecture/metaphor (such as those seen in RUP and XP), and team management sessions (such as

those seen in Scrum and Crystal Clear), have been proven successful in this context. Dependence on

error-prone techniques and strategies can damage practicality (such is the over-dependence of some

agile methods on the efficacy of human communication, and dogged adherence of some integrated

methodologies to UML). Dependency on special tools and technologies can also be detrimental to

practicality. A very important factor affecting practicality is the project management strategy; lack of

adequate management measures can render the methodology impractical or even impracticable,

especially in large projects with stringent constraints on time and resources.

PR 9- Manageability of complexity: The complexity of work-units should be manageable, e.g. via

partitioning and layering. Catalysis is a particularly successful example.

22

PR 10- Extensibility/Configurability/Scalability/Flexibility: The process should be an extensible

core, with extension points and mechanisms explicitly specified. It is desirable to be able to configure

the extensions or even the core itself in order to fit it to the project at hand (process patterns can be

useful in this context). The methodology should be applicable to projects of different sizes and

criticalities (as seen in integrated methodologies such as RUP and Catalysis, as well as some agile

ones such as FDD and the Crystal family). It should also be dynamically flexible: it should be

possible to tune the methodology according to the experience gained during the development; useful

techniques are iterative process review sessions, and feedback-based revisions (as seen in ASD and

Crystal Clear); it should be noted, however, that tuning is a project-wide decision, and individual

teams and developers should not be allowed to make alterations that may have broad implications.

PR 11- Application scope: The application scope depends on the intended usage context, yet

targeting information systems as a general usage context seems to be a logical minimum requirement,

as this is likely to address the minimum modeling needs of a general methodology (Catalysis and

Fusion are prominent examples).

MLR - Modeling Language Requirements

MLR 1- Support for consistent, accurate and unambiguous object-oriented modeling:

Specifically covering:

1. Diverse modeling viewpoints: Structural – Functional – Behavioral (as seen in UML, and the

modeling languages of OMT and OSA)

2. Logical to Physical modeling: Business-Process/Problem Domain to Solution Domain to

Implementation Domain (as seen in UML and OPEN/OML)

3. Diverse levels of abstraction and granularity: Enterprise level – System level –

Subsystem/Package level – Inter-object level – Intra-object level (as seen in UML, and the

modeling languages of Hodge-Mock and Fusion)

4. Formal and Non-formal specifications (as seen in UML/OCL, and the modeling languages of

BON and Syntropy)

23

Although UML is rich and extensible enough to provide ample support, strict adherence to UML

should not be enforced. The use of data-flow diagramming for functional problem-domain modeling

is an example of complementing UML with other modeling languages; examples include EUP (where

DFDs are used for business modeling) and FOOM (where object-oriented extensions of DFDs are

extensively used).

MLR 2- Provision of strategies and techniques for tackling model inconsistency and managing

model complexity: Tackling model inconsistency is usually up to the process component of the

methodology rather than the modeling language; yet modeling languages can facilitate consistency-

checking through providing semantics which define model dependencies and constraints. UML lacks

such semantics [39], leaving it to the methodology process to define them; Catalysis is an example of

a successful process in this regard. However, modeling languages proposed by many seminal

methodologies offer such semantics (examples include BON and Fusion). Another noteworthy

contribution in this regard is OPM’s single-model approach, which facilitates consistency-checking

through eliminating model multiplicity. Modeling languages should also include constructs

facilitating complexity management; UML package and component elements are apt examples.

5 Conclusions

The methodology requirements engineering approach introduced in this paper elicits and specifies the

requirements of a target software development methodology by using existing methodologies as

supplementary resources. It therefore builds on concrete features that are already present in existing

methodologies; as demonstrated through the example, this enables the analysts to provide concrete

and tangible specifications for the requirements.

The criterion set is initially set to a list of high-level requirements, which are identified through

conventional situational method engineering approaches (i.e., based on project parameters) and/or by

defining the general characteristics that should be present in the target methodology. This ensures that

the process builds on methodology requirements that have been extracted from the problem context.

24

The example shows the effectiveness of this feature: seed criteria (initial requirements) are covered by

(i.e., addressed by) the final criteria as well.

The proposed criteria-based evaluation approach is based on iterative review of selected methodology

processes, thereby incrementally identifying the strengths and weaknesses of the processes, refining

the set of criteria along the way. The iterative nature of the refinement process ensures that the criteria

(requirements) can be constantly reviewed and polished to the desirable degree of completeness and

precision. The example presented herein seems to confirm this, as the final criterion set is by far more

complete, finer-grained and better structured than the initial seed criteria.

The products of the evaluation process are the evaluation results (lists of strengths and weaknesses for

the processes), and the refined criterion set. The requirements are produced through specifying the

degree of support expected to be provided by the target methodology for each criterion in the final

criterion set. The list of strengths and weaknesses is also used in specifying the requirements: the

strengths and weaknesses identified in existing processes show how existing processes meet (or fail to

meet) the requirements. This means that they can be used for providing a more detailed specification

of the requirements through proposing useful techniques (and warning of potential pitfalls)

encountered in existing methodologies. The example shows the potential benefits of this feature, as

the final requirements consider practical issues as well, and are therefore more rational in definition.

We have applied our proposed method to the problem of eliciting and specifying the requirements of a

general object-oriented methodology. Future research can be focused on applying the approach to

elicit and specify requirements for general methodologies belonging to other paradigms, or even

specific application domains. However, the applicability of the approach in this context depends on

the maturity of the problem domain to which it is applied, since it requires the existence of a set of

established methodologies from which to extract the final set of evaluation criteria (and hence, the

requirements). Agent-oriented development, for example, is a suitable candidate for furthering this

research in this direction. There is also potential for enriching methodologies in poorly-defined

problem domains by using features from more mature domains. This requires a multi-domain

25

analysis, which is expected to be more complex, but it is an opportunity that is definitely

worth exploring.

Another direction for furthering this research is to integrate the proposed methodology analysis

process with a matching methodology design process. An instance of such a design process, called the

Hybrid methodology design method, has been developed by the authors as a complement to the

requirements engineering process that has been proposed herein. Hybrid uses an iterative process to

systematically apply alternative methodology design techniques to produce a blueprint of the target

methodology. This process has been used in designing a new general object-oriented methodology

[41], and an agile methodology for developing mobile software systems [43].

The main application context for the proposed method is situational method engineering. Future

research can proceed to test the requirements engineering method (and its corresponding design

process) in the context of an industrial SME project. An alternative strand of research can focus on

integrating the proposed methodology requirements engineering method with existing assembly-based

SME approaches.

References

[1] Avison, D.E., and Fitzgerald, G.: ‘Information Systems Development: Methodologies, Techniques and

Tools’ (McGraw-Hill, 2003, 3rd edn.)

[2] Object Management Group (OMG): ‘Unified Modeling Language Specification (v1.5)’ (OMG, 2003)

[3] Brinkkemper, S.: ‘Method engineering: engineering of information systems development methods and

tools’, Information and Software Technology, 1996, 38, (4), pp. 275-280

[4] Kumar, K., and Welke, R.J.: ‘Method engineering: a proposal for situation-specific methodology

construction’, in Cotterman, W.W., and Senn, J.A. (Eds.): ‘Systems Analysis and Design: A Research

Agenda’ (Wiley, 1992), pp. 257-268

[5] Ralyté, J., Brinkkemper, S., and Henderson-Sellers, B. (Eds.): ‘Situational Method Engineering:

Fundamentals and Experiences’ (Springer, 2007)

[6] Osterweil, L.J.: ‘Software processes are software too’. Proc. Int. Conf. Software Engineering, Monterey

Canada, March 1987, pp. 2-13

26

[7] Osterweil, L.J.: ‘Software processes are software too, revisited: An invited talk on the most influential

paper of ICSE 9’. Proc. Int. Conf. Software Engineering, Boston, USA, May 1997, pp. 540-548

[8] Kruchten, P.: ‘Rational Unified Process: An Introduction’ (Addison-Wesley, 2003, 3rd edn.)

[9] Graham, I., Henderson-Sellers, B., and Younessi, H.: ‘The OPEN Process Specification’ (ACM

Press/Addison-Wesley, 1997)

[10] Ramsin, R., and Paige, R.F.: ‘Process-centered review of object-oriented software development

methodologies’, ACM Computing Surveys, 40, (1), 2008, Article 3, pp. 1-89

[11] Firesmith, D., and Henderson-Sellers, B.: ‘The OPEN Process Framework: An Introduction’ (Addison-

Wesley, 2001)

[12] Kroll, P.: ‘Introducing IBM Rational Method Composer’, The Rational Edge, January 2005

[13] Haumer, P.: ‘Eclipse Process Framework Composer – Part 1: Key Concepts’ (EPF Project, 2006)

[14] Jackson, M., ‘System Development’ (Prentice-Hall, 1983)

[15] Jackson, M., ‘Problem Frames’ (Addison-Wesley, 2001)

[16] Kovitz, B., ‘Practical Software Requirements: A Manual of Content and Style’ (Manning Publications,

1999)

[17] Bray, I., ‘An Introduction to Requirements Engineering’ (Addison-Wesley, 2002)

[18] Sommerville, I.: ‘Software Engineering’ (Addison-Wesley, 2004, 7th edn.)

[19] Ralyté, J., Deneckére, R., and Rolland, C.: ‘Towards a generic model for situational method engineering’.

Proc. Conf. Advanced Information Systems Engineering, Klagenfurt, Austria, June 2003 , pp. 95-110

[20] Ralyté, J., Rolland, C., and Deneckére, R.: ‘Towards a meta-tool for change-centric method-engineering:

A typology of generic operators’. Proc. Conf. Advanced Information Systems Engineering, Riga, Latvia,

June 2004 , pp. 202-218

[21] Gupta, D., and Prakash, N.: ‘Engineering methods from method requirements specifications’,

Requirements Engineering, 2001, 6, (3), pp. 135-160

[22] Ralyté, J.: ‘Requirements definition for the situational method engineering’. Proc. IFIP WG8.1 Working

Conf. Engineering Information Systems in the Internet Context, Kanazawa, Japan, September 2002, pp.

127-152

[23] Leppänen, M.: ‘Conceptual analysis of current ME artifacts in terms of coverage: A contextual approach’.

Proc. Int. Workshop on Situational Requirements Engineering Processes, Paris, France. August 2005, pp.

75-90

27

[24] Mirbel, I., and Ralyté, J.: ‘Situational method engineering: combining assembly-based and roadmap-driven

approaches’, Requirements Engineering, 11, (1), 2006, pp. 58-78

[25] van Deursen, A., Klint, P., and Visser, J.: ‘Domain-specific languages: an annotated bibliography’,

SIGPLAN Notices, 35, (6), 2000, pp. 26-36

[26] Karam, G.M., and Casselman, R.S.: ‘A cataloging framework for software development methods’, IEEE

Computer, 26, (2), 1993, pp. 34-45

[27] Abrahamsson, P., Warsta, J., Siponen, M.T., and Ronkainen, J.: ‘New directions on agile methods: A

comparative analysis’. Proc. Int. Conf. Software Engineering, Portland, USA, May 2003, pp. 244-254

[28] Monarchi, D.E., and Puhr, G.I.: ‘A research typology for object-oriented analysis and design’, Commun.

ACM, 35, (9), 1992, pp. 35-47

[29] Rolland, C., and Prakash, N.: ‘A proposal for context-specific method engineering’, in Brinkkemper, S.,

Lyttinen, K., and Welke, R.J. (eds.): ‘Method Engineering Principles of Method Construction and Tool

Support’ (Chapman & Hall, 1996), pp. 191–208

[30] Slooten, K., and Hodes, B.: ‘Characterising IS development projects’, in Brinkkemper, S., Lyttinen, K.,

and Welke, R.J. (eds.): ‘Method Engineering Principles of Method Construction and Tool Support’

(Chapman & Hall, 1996), pp. 29–45

[31] Graham, I.: ‘Object-oriented Methods: Principles and Practice’ (Addison-Wesley, 2001, 3rd edn.)

[32] Pressman, R.S.: ‘Software Engineering: A Practitioner’s Approach’ (McGraw-Hill, 2004, 6th edn.)

[33] Boehm, B., and Turner, R.: ‘Balancing Agility and Discipline: A Guide for the Perplexed’ (Addison-

Wesley, 2004)

[34] Boehm, B., and Turner, R.: ‘Management challenges to implementing agile processes in traditional

development organizations’, IEEE Software, 22, (5), 2005, pp. 30-39

[35] Capretz, L.F.: ‘A brief history of the object-oriented approach’, ACM SIGSOFT Software Engineering

Notes, 28, (2), 2003

[36] Object Management Group (OMG): ‘Unified Modeling Language Specifications (v2.1.2)’ (OMG, 2007)

[37] Webster, S.: ‘On the evolution of OO methods’ (Bournemouth University, 1996)

[38] Abrahamsson, P., Salo, O., Ronkainen, J., and Warsta, J.: ‘Agile Software Development Methods: Review

and Analysis’ (VTT Publications, 2002)

[39] Object Management Group (OMG): ‘Model Driven Architecture (MDA)’ (OMG, 2001)

28

[40] Asadi, M., and Ramsin, R.: ‘MDA-based methodologies: An analytical survey’. Proc. Euro. Conf. on

Model Driven Architecture Foundations and Applications, Berlin, Germany, June 2008, pp. 419-431

[41] Ramsin, R.: ‘The Engineering of an Object-Oriented Software Development Methodology’, PhD Thesis,

University of York, 2006, http://www.cs.york.ac.uk/ftpdir/reports/YCST-2006-12.pdf

[42] Ambler, S.W.: ‘Process Patterns: Building Large-Scale Systems Using Object Technology’ (Cambridge

University Press, 1998)

[43] Rahimian, V., and Ramsin, R.: ‘Designing an agile methodology for mobile software development: A

hybrid method engineering approach’. Proc. IEEE Int. Conf. Research Challenges in Information Science,

Marrakech, Morocco, June 2008, pp. 351-356

29

Figure 1. The proposed methodology requirements elicitation and specification process

30

Figure 2. Example of evaluation results: strengths and weaknesses identified in RUP

