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Cell wall elongation mode in Gram-negative
bacteria is determined by peptidoglycan
architecture
Robert D. Turner1,2, Alexander F. Hurd1,2, Ashley Cadby1,3, Jamie K. Hobbs1,3 & Simon J. Foster1,2

Cellular integrity and morphology of most bacteria is maintained by cell wall peptidoglycan,

the target of antibiotics essential in modern healthcare. It consists of glycan strands,

cross-linked by peptides, whose arrangement determines cell shape, prevents lysis due to

turgor pressure and yet remains dynamic to allow insertion of new material, and hence

growth. The cellular architecture and insertion pattern of peptidoglycan have remained

elusive. Here we determine the peptidoglycan architecture and dynamics during growth in

rod-shaped Gram-negative bacteria. Peptidoglycan is made up of circumferentially oriented

bands of material interspersed with a more porous network. Super-resolution fluorescence

microscopy reveals an unexpected discontinuous, patchy synthesis pattern. We present

a consolidated model of growth via architecture-regulated insertion, where we propose only

the more porous regions of the peptidoglycan network that are permissive for synthesis.
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P
eptidoglycan is the main stress-bearing component of the
bacterial cell wall1–3. In cylindrical Gram-negative bacteria,
glycan chains are currently thought to run roughly

circumferentially around the cell in a single layer4. These have
been hypothesized to be organized in tessera, hexagonal regions
bounded by two non-asaccharides and two peptide cross bridges,
where alternate peptides participate in cross-bridges5. Glycan
strands have a theoretically higher spring constant than the
peptides enabling them to resist the circumferential hoop stress,
which is twice the longitudinal stress when the cell is modelled as
a thin-walled pressure vessel6. This would allow cylindrical shape
to be maintained, and is the basis of more sophisticated numerical
models7. Peptidoglycan architecture must be propagated
accurately for the cell to grow. This requires that new
peptidoglycan is inserted in a way that maintains the integrity,
shape and thickness of the existing sacculus, whereas continually
resisting turgor pressure.

Although the peptidoglycan insertion pattern is quite well
established in Gram-positive organisms8–11, there has been a long
running conflict between models of peptidoglycan insertion
during elongation in Gram-negative bacteria12, including
proposals of helical13 and diffuse14 modes. Localization of some
of the proteins required for peptidoglycan synthesis, for example,
Mre and Lpo proteins15–17, goes some way towards settling this
matter. However, an overarching growth model requires a direct
means of localizing insertion at high resolution and for this
pattern to be related to peptidoglycan architecture.

Here, we apply tapping mode Atomic Force Microscopy
(AFM) and fluorescence microscopy that we have previously used

to reveal architecture in several Gram-positive species10,11,18,
along with super-resolution Stochastic Optical Reconstruction
Microscopy (STORM)19,20 to develop a new model of cell wall
elongation in Gram-negative bacteria.

Results
Escherichia coli peptidoglycan architecture. Gram-negative
sacculi were purified using standard methods. The relatively flat
profile of the Gram-negative sacculi and imaging sacculi in liquid
revealed significantly more architectural detail than previous
AFM studies (Fig. 1 and Supplementary Fig. S1), as well as the
now-familiar folds and trapped cytoplasmic material10,11,18,21.

E. coli sacculi derived from several bacterial strains, and from
both exponential and stationary-phase cells, exhibited roughly
circumferential light and dark bands (Fig. 1a-e and
Supplementary Fig. S1). AFM generates contrast from relative
height, so the light bands contained more material than the dark
ones. These bands were discontinuous and did not fully encircle
the cells, nor had they a defined periodicity or distinct edges, and
thickness varied continuously from one band to the next; band
orientation was 90� (s.d. 20�, n¼ 166), relative to the long axis of
the sacculi. The thickness of the sacculi was 2.0 nm (s.d. 0.3,
n¼ 18, Fig. 1c); mean length was 2.0 mm (s.d. 0.6, n¼ 60) and
width was 1.3 mm (s.d. 0.3, n¼ 60). Filamentous mutant E. coli
cells contract by B17% when exposed to detergent22. This
shrinkage could, hypothetically, introduce an artefactual
concertina effect on the sacculus, leading to the observed
banding. To simulate the effects of turgor pressure on the
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Figure 1 | Tapping Mode AFM images of peptidoglycan architecture in E. coli MC1061. (a) Sacculi imaged under water showing banded variation, folds

and trapped cytoplasmic contents (scale bar, 500 nm; height, 10 nm). (b) Stationary-phase sacculi imaged in ambient conditions (scale bar, 500 nm; height,

5 nm). (c) Sacculus in ambient conditions; material is thicker at the septum (scale bar, 500 nm; height, 10 nm); cross-section (dotted line) shows height

variation and site of thickness measurements (distance between arrows 3 nm). (d) Enlargement of boxed region: bands are made up of less-ordered

‘‘filigree’’ features (scale bar, 50 nm; height, 5 nm). (e) Sacculi imaged in ambient conditions showing internal and external architecture (scale bar, 500 nm;

height, 7 nm). (f) Mechanical stretching (‘‘The Rack’’) of sacculus tethered to Cell Tack in ambient conditions, showing maintenance of banding under

approximately � 1.4 strain (main image scale bar, 500 nm; phase, 10�; inset scale bar, 200 nm, phase, 1.6�). (g) Diagram of ‘‘The Rack’’. (h) High-resolution

AFM image of part of a sacculus in water rendered in a three-dimension, pitch 14� (scale bar, 50 nm). (i), Pore-size distribution from h (n¼ 73).
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sacculi, we constructed ‘‘the rack’’ an apparatus that allowed us to
apply strain to a sample during AFM (Fig. 1f–g and
Supplementary Movie S1). The banding pattern remained
visible under longitudinal strain (Fig. 1f and Supplementary Fig.
S1i-k), implying that it would also be present in an intact cell
experiencing turgor pressure.

The circumferentially oriented bands (tens by hundreds of nm)
were too large to be glycan strands. To probe their nanoscale
architecture, we carried out higher resolution AFM and found
that they were made up of a porous ‘‘filigree’’ network (Fig. 1h).
Crucially, this network exhibited no general orientation.
However, there were instances when circumferential orientation
of features was observed (Supplementary Fig. S1f-g). The height
variation seen across intact (Fig. 1) and broken (Fig. 2a and
Supplementary Figs. S1l-p) sacculi shows that the peptidoglycan
layer must be viewed as a polymer network where strands can
be loosely or densely packed, and can overlap each other forming
a continuum. Our data are not compatible with the tessera
model of peptidoglycan architecture5, as pores of a range of
sizes greater in effective diameter (B10 nm) than that of the
proposed tesserae (B1 nm) are clearly visible (Fig. 1h,i). Some
tessera-sized pores might be present in the network, but there are
many much larger pores; hence, the tessera model cannot be
generally applied. Bands that appear light at lower resolutions
contain smaller pores, and may well contain pores smaller than
the AFM limit of detection; darker bands contain larger pores.
Features were visible both in ambient conditions and under
aqueous solution. The observed pores would likely be
longitudinally extended, relative to the cell in vivo, due to
turgor pressure. Our new in situ AFM imaging method avoided
drying or staining artefacts; AFM requires no staining and image
features were unaffected by whether the sample was dried during
preparation (Supplementary Fig. S1c,d).

Our imaging showed that circumferential organization
was only present at relatively large scale. Nano-dissection using
peptidoglycan hydrolases allowed investigation of the
contribution of glycan–glycan and glycan–peptide bonds in
architecture (Fig. 2b–d and Supplementary Movies S2,3).
Digestion with lysozyme, which targets the glycan–glycan
bonds, led to the formation of increasingly large pores in the
‘‘filigree’’ until it was completely solubilized. This suggests glycans
running planar to the cell membrane but without circumferential
orientation. Digestion with Atl amidase23, which cuts the glycan–
peptide bonds, led to bunching of material into raised knobbles
before complete solubilization. Amidase digestion removes
peptides leaving only glycans, and would have been expected to
reveal a general glycan strand orientation, had there been one.
Instead, there is apparent bunching of material. This may be due
to the peptidoglycan polymers adopting a relaxed confirmation,
potentially indicating that some parts of the network remained
under tension even after turgor was removed and contracted in
response to hydrolysis of bonds.

A French press forces cells through a small aperture under
pressure, causing them to break open, freeing cytoplasmic
contents. Imaging sacculi from cells broken by the French press
(Fig. 2a and Supplementary Fig. S1l) revealed fragments of
material similar in overall shape to those seen by TEM24. The
architecture was the same as sacculi from intact cells with no
discernible difference between the inside and outside; thus, bands
and ‘‘filigree’’ are not dependent on geometrical constraints of
overall sacculus shape. Sacculi broke circumferentially, along the
short axis, attributable to porous bands where fewer bonds are
present (Supplementary Fig. S1l).

Gram-negative sacculi are more elastic longitudinally than
circumferentially: an elastic anisotropy21. Glycans are expected to
have a higher spring constant than peptides7,21. If glycans were
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circumferentially oriented, the anisotropy would have been
accounted for by circumferential orientation of less-elastic glycans
and consequential longitudinal orientation of more elastic peptides.
However, based on our observations, the anisotropy would be better
attributed to the orientation of the circumferential bands where
more material is present, which would be less elastic than the
intervening regions. Thus, the best current explanation is that
in vivo circumferential stress on the peptidoglycan is borne by
architectural features containing more material.

We have determined that E. coli peptidoglycan has a previously
unconceived tier of organization in the form of circumferential
bands. These are made up of a ‘‘filigree’’ network of features, which
becomes increasingly porous on enzymatic digestion, suggesting
glycans have no general orientation and are generally planar to the
cell surface. As the peptidoglycan has a novel banding architecture
with regions of differential porosity, to explain biosynthesis we need
to determine the insertion pattern of nascent material to formulate
a compatible growth model.

Peptidoglycan insertion pattern. Fluorescent vancomycin can be
used to label sites of peptidoglycan incorporation in Gram-
positive bacteria, as it targets the D-ala-D-ala motif associated
with unmodified and therefore nascent material8,9. Vancomycin
can also be detected by immunofluoresence when bound to E. coli
sacculi13. The outer membrane generally prevents vancomycin
from reaching the periplasm of the Gram-negative bacteria, but
we were able to develop a method to fix and treat E. coli cells so as
to allow vancomycin binding to occur (Methods). We then
established a means of directly labelling sacculi with fluorescent
vancomycin to provide further evidence of the specificity of
binding. Fluorescence microscopy revealed distinct regions of
synthesis associated with division septa, where one would expect
a lot of peptidoglycan insertion would take place (Fig. 3a–d). This
was apparent regardless of whether cells or sacculi were the
subject of labelling, and was common to E. coli (MC1061,
MG1655 and MG1655 DdacA25) and Caulobacter crescentus
(NA1000). Increased labelling was seen in the E. coli (MG1655
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DdacA) mutant (known to have increased numbers of D-ala-D-
ala motifs). It is surprising that there was labelling of cell poles, as
these are known to contain large amounts of relatively old
material, which is not partitioned during growth12; growth does
not occur at the poles. However, this does not preclude the
presence of the D-ala-D-ala motifs introduced by remodelling of
peptidoglycan. Deconvolved images of cells seem to show
variously sized swathes of labelled material all along the cell
cylinder, with no overriding orientation (Fig. 3a). However, the
resolution of standard fluorescence microscopy does not allow
accurate assessment of nascent peptidoglycan insertion. Thus, we
constructed a STORM19,20 to resolve the nanoscale insertion
pattern. Our system is capable of B40 nm resolution (Methods)
and shows that there are multiple distinct foci of nascent
peptidoglycan insertion, from single motifs through to B50 nm
clusters (Fig. 3e-f). As a final confirmation of our observations
and the specificity of labelling, we labelled sacculi from broken
cells (Supplementary Fig. S2) and were thereby able to exclude
any potential for non-specific labelling of trapped cytoplasmic

contents (known to be present in some intact sacculi, but absent
from sacculus fragments, from our AFM imaging).

Peptidoglycan insertion in Gram-negative bacteria occurs in
multiple distinct foci spread over the cylindrical portion of
the cell. This is surprising, as the elongation machinery moves
about the cell in a helical manner15, and it is often assumed that
peptidoglycan insertion would follow this helical pattern.
However, Lpo proteins, required for peptidoglycan synthesis,
are present in patches all over the cell16,17. There must be
additional factors acting to guide insertion.

Conservation of peptidoglycan architecture in Gram-negative
bacteria. To determine the level of conservation of peptidoglycan
architecture in Gram-negative bacteria, we imaged C. crescentus,
Pseudomonas aeruginosa and Campylobacter jejuni sacculi by
AFM (Fig. 4). These exhibited a similar architecture to E. coli.
Stalks were present in C. crescentus sacculi without banding.
In some P. aeruginosa sacculi, multiple large pores (for example,
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Figure 4 | AFM images of C. crescentus, P. aeruginosa and C. jejuni sacculi. (a) C. crescentus sacculi showing stalks (scale bar, 750 nm; height 20 nm).

(b) Broken C. crescentus sacculus (scale bar, 500 nm; height, 7 nm). (c) Close up of boxed region from b showing ‘‘filigree’’ porous network

architecture (scale bar, 50 nm; height, 7 nm). (d) Field of P. aeruginosa sacculi (scale bar, 500 nm; height, 8 nm). (e) P. aeruginosa sacculus (scale bar,

200 nm; height, 6 nm). (f) Close up of boxed region in c showing architecture (scale bar, 50 nm; height, 6 nm). (g) Field of C. jejuni sacculi (scale bar,

500 nm; height, 4 nm). (h) C. jejuni sacculus (scale bar, 200 nm; height, 4.5 nm). (i) Close up of boxed region from h, showing disordered ‘‘filigree’’

network (scale bar, 100 nm; height, 3.5 nm).
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Supplementary Fig. S3b: diameter 13 nm, s.d. 5 nm, n¼ 11) were
present near the poles (Fig. 4c). This is the location of multiple
pili, and the pores could accommodate the 18.5 nm diameter
trans-periplasmic type IV secretion systems26, one of which is
required for each pilus (note that tip convolution generally leads
to AFM, underestimating the length measurements at this scale).
In some C. jejuni sacculi, one or two large polar pores (425 nm
diameter; Fig. 4h) were present; these could demark flagellum
motor sites27.

The architecture in all Gram-negative species, the sacculi
of which we visualized by AFM, was essentially similar.

Discussion
Our observed peptidoglycan architecture and insertion pattern do
not fit with existing models for cell wall structure and dynamics.
The most plausible explanation for the data is that certain regions
of the sacculi are more permissive for peptidoglycan insertion
than others. It is unlikely that these would be areas where there is
a lot of pre-existing peptidoglycan, as that would lead to those
regions becoming interminably denser and thicker, with no
potential for growth. We therefore propose a new peptidoglycan-
architecture-regulated model of growth where insertion of
peptidoglycan takes place only in the regions of the sacculus
with the most and largest pores (Fig. 5). If these regions have a
permissive architecture, negative feedback would act, as they
acquire more material during biosynthesis leading to a non-
permissive architecture. The peptidoglycan biosynthetic appara-
tus includes penicillin binding proteins (PBPs), and is mediated
by mobile15, cytoskeletal28,29, MreB, which gives it an overall
circumferential orientation. Biosynthesis also requires the outer
membrane protein LpoA16,17, which has to span the
peptidoglycan layer and interact with PBP1A to permit the
incorporation of new material. The interaction, and hence
biosynthesis, can only occur in the more porous regions of the
peptidoglycan and is inhibited by deposition of new material, thus
providing a regulatory mechanism for control of peptidoglycan
thickness and location of synthesis. Growth can then occur as the
non-permissive, less porous regions are ultimately hydrolysed and

stretched under turgor, leading to cell elongation, and once again
becoming permissive for insertion. There are multiple
peptidoglycan hydrolases in E. coli30, some forming complexes
with PBPs3, suggesting spatio-temporal linkage of peptidoglycan
metabolism, compatible with our architecture-regulated model of
insertion.

Gram-negative peptidoglycan is more disordered than
previously thought4; the peptidoglycan layer is a porous three-
dimensional polymer network with differentiated bands.
This architecture, in concert with the spatial ordering
components of the elongation machinery, enables high-fidelity
propagation of cell shape and cell wall thickness, resulting in a
new model of architecture and synthesis, applicable to several
Gram-negative species. The next challenges will be to elucidate
the roles of individual synthetic and autolytic enzymes in the
generation of the architecture we have observed, and to associate
architectural complexity with the chemical diversity apparent
from muropeptide analyses.

Methods
Purification of peptidoglycan. Peptidoglycan was purified using a standard
procedure for Gram-negative organisms (see Supplementary Table S1 for strains
and growth conditions). Cells were grown to exponential phase (optical density
(OD)600B0.3) or stationary phase (OD600B1), chilled on ice, collected by cen-
trifugation (8,000g, 10 min) and resuspended in PBS at 4 �C. Where stated, samples
were broken by the French press at 4 �C. Breakage was confirmed by optical
microscopy. The PBS suspension was then added dropwise to boiling 5% w/v SDS
in distilled water. The resulting mixture was then boiled for 30 min and washed
three times by ultracentrifugation (400 000g for 15 min at room temperature).
This was resuspended in sodium phosphate buffer (50 mM, pH 7.3) containing
100 mg ml� 1 a-chymotrypsin and 0.05% w/v sodium azide, and incubated over-
night at 37 �C, with agitation at 250 r.p.m. Material was collected by ultra-
centrifugation then resuspended in 5% w/v SDS and boiled for 30 min. The
resulting suspension was washed twice by ultracentrifugation as before, and then
resuspended in HPLC grade water, aliquoted and flash frozen with liquid nitrogen.

In exception to this method, E. coli (BL21 and W3110) and C. crescentus cells
were added directly to SDS before boiling. There was no apparent difference
between this method, SDS treatment and that described above. Further purification
was as above.

Preparation of AFM samples. Aliquots of sacculi were defrosted at 4 �C, diluted in
5 mM HCl and incubated at room temperature for 10 min, to aid dispersal of
sacculi. C. crescentus sacculi were placed in an ultrasonic bath for 20 min to aid
dispersal; this did not interfere with sacculus architecture. A 10-ml drop was applied
to freshly cleaved mica, dried with flowing nitrogen, then washed three times with
HPLC grade water before further nitrogen drying.

Preparation of AFM samples without drying. Aliquots were defrosted at 4 �C
then diluted in sodium citrate/citric acid buffer (10 mM, pH 3) and incubated at
room temperature for 10 min. In parallel with this incubation, 50 ml of nickel
chloride (15 mM in 5 mM HCl) was applied to freshly cleaved mica and incubated
for 10 min. The nickel–mica was washed three times with HPLC grade water and
dried with nitrogen. Then, 50ml of sacculus suspension was applied to the nickel–
mica and incubated for 1 h, and subsequently washed three times with HPLC grade
water and transferred to the AFM without being allowed to dry.

Preparation of AFM samples for mechanical stretching (‘‘The Rack’’). A large
glass coverslip was glued to a glass slide to provide a flat substrate. Poly-
dimethylsiloxane (PDMS, QSil 216, ACC Silicones) was prepared by mixing the
polymer 10:1 w/w with the cross-linker, then degassing using a vacuum pump to
avoid bubbles. The liquid PDMS was then cast against the coverslip by baking at
60 �C for at least 2 h. The resulting sheet of PDMS (B2 mm thick) was cut into a
dogbone shape with a razorblade so as to fit the stretching apparatus. A 21 mg ml� 1

Cell Tack solution31 was prepared in sodium bicarbonate buffer (100 mM, pH 8.3).
Then, 30ml of the solution was pipetted onto the PDMS and incubated for 15 min
before being washed 15 times with HPLC grade water. Without allowing the
surface to fully dry, 10ml of sacculus suspension in 1 mM HCl was added and
the surface subsequently dried with nitrogen.

AFM imaging. AFM imaging was carried out using a Multimode AFM with
extended Nanoscope III controller, apart from the mechanical stretching experi-
ments that were conducted on a Dimension AFM with Nanoscope IV controller.
All imaging was carried out in tapping mode. Silicon cantilevers (Olympus
AC160TS) were used for imaging in ambient conditions. Silicon nitride cantilevers
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Figure 5 | Model of peptidoglycan insertion based on AFM, fluorescence
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with silicon tips (Bruker SNL, kB0.32 Nm� 1) were used for imaging in liquid. For
thickness measurements, the AFM was calibrated using silicon atomic steps (NT-
MDT, STEPP). AFM image processing, including a three-dimensional display of
data, was carried out using Gwyddion (version 2 or later).

Pore-size measurements. Two roughly orthogonal measurements were taken and
averaged for each pore. Sample roughness precluded use of thresholding
measurements.

In situ enzyme digests. Samples were prepared as described above, loaded into the
AFM and allowed to equilibrate for several hours under ‘‘Buffer A’’ (10 mM Tris
HCl, 1 mM calcium chloride, pH 7.5), then imaged. Enzymes were added
(to 10mg ml� 1) to the fluid cell by exchanging buffer A for the same, but
containing the enzyme of interest. This was done with the tip retracted using the
z-piezo. Several exchanges of buffer containing enzyme were carried out in the
course of the experiments to counter reduction in buffer volume owing to
evaporation.

Mechanical stretching. A home-built stretching apparatus (‘‘The Rack’’) was
constructed comprising two opposing stepper motors mounted with clamps to
allow pulling on a piece of elastic material about 30 mm in length. These were
controlled using Labview software such that strain could be applied incrementally.
This device was mounted on a Dimension AFM for imaging the elastic material.
Sacculi were prepared on elastic PDMS and imaged between incremental
applications of strain.

Labelling of E. coli with fluorescent vancomycin. All growth took place at 37 �C
with agitation. Cultures were grown overnight in lysogeny broth and used to
inoculate subsequent cultures to OD600¼ 0.05. These were allowed to grow to
OD600B0.3 to 0.4 (exponential phase).

Cells were fixed by adding 5 ml culture to 5 ml fixing solution (4 ml PBSþ 1 ml
16% w/v paraformaldehyde) and incubated on a rotary shaker for 15 min at room
temperature. Cells were collected by centrifugation (5,000g, 10 min) and pellets
resuspended in 1 ml PBS before being washed twice by centrifugation (14,000g,
1 min). Cells were then incubated in 1 ml 0.1% v/v Triton X-100, 5 mM EDTA in
PBS for 45 min at room temperature before being washed three times in PBS as
before. Cells were resuspended in 1 ml PBS to which fluorescent vancomycin
(prepared using a succinimidyl ester of Alexa Fluor 532 (Invitrogen, A-20001) as
previously described8) was added to a final concentration of 4 mg ml� 1. The sample
was protected from light and incubated at room temperature for 5 min before being
washed by centrifugation (14,000g, 1 min) with water. Cells were resuspended in
water and deposited on an agarose pad or poly-l-lysine coated slide for imaging.

Labelling of sacculi with fluorescent vancomycin. Coverslips were sonicated for
15 min in 1 M KOH, washed with copious water and dried with nitrogen32. If
intended for super-resolution microscopy, coverslips were sparsely coated with
fiducial 103 nm diameter gold nanoparticles (Nanopartz, 13-100-25). Sacculi were
then deposited onto coverslips as described for AFM on mica. The sacculi were
labelled by applying a 50ml drop of 4 mg ml� 1 fluorescent vancomycin in water
and incubating for 15 min, before thoroughly washing with water and drying with
nitrogen. The coverslips were mounted on the slides before imaging with either 5 ml
Slow Fade Gold (Invitrogen, S36936) for deconvolution microscopy or 5 ml PBS
containing 10 mM cysteamine for super-resolution microscopy.

Deconvolution microscopy. Deconvolution microscopy was conducted as
previously described10. Images were processed in ImageJ (version 1.45g).

Super-resolution microscopy. Direct STORM imaging was used33. A 100-mW,
532-nm diode laser (Laser 2000) was focussed onto the back plane of a 60� ,
numerical aperture 1.4 oil immersion objective mounted in an Olympus IX71
inverted optical microscope. A filter cube containing a 552-nm longpass dichroic
filter (Semrock FF552-DI02) and a 565(24)-nm bandpass emission filter (Semrock
Brightline 565/24) was inserted for STORM. A piezoelectric motor (Physik
Instrumente) was used to adjust focus. An image expander comprising a 35-mm
and a 100-mm lens was used to project the image onto a Hamamatsu ImagEM
camera set to acquire at 50 frames per second. A 1-m focal length cylindrical lens
was inserted between the image expander lenses to allow for compensation of drift
perpendicular to the focal plane32. Focus was maintained by repeatedly localizing a
fiducial particle and adjusting the lens position using the piezo to maintain the
ratio of the fitted full-width half maxima (FWHM) in perpendicular directions at
1:1. Laser power was adjusted by pulse-width modulation to maximize signal
without saturating the charge-coupled device. The camera and piezo were
controlled using Labview (version 10).

Image processing was conducted using photoactivation localization microscopy/
STORM methodology as previously described by others19,32. Data were processed
by fitting Gaussian functions to individual molecule fluorescence, identified by
very clear intrinsic blinks, using Matlab. Drift in the focal plane was corrected

retrospectively by tracking a fiducial particle throughout the acquisition sequence
and offsetting localizations against its position. Super-resolution images were
rendered by creating an image of desired pixel size and marking each pixel to
which a blink event was localized bright. A 30-nm Gaussian blur was applied
in ImageJ (version 1.46c).

Resolution can be estimated by taking the FWHM of position distributions for
molecules that emit light in five or more sequential frames, providing an estimate
of error pertinent to a dye molecule. For example, this resulted in FWHMxB42 nm
and FWHMyB44 nm for the image in Fig. 3e, and FWHMxB35 nm,
FWHMyB34 nm for the image in Fig. 3f. Resolution was not estimated using
fiducial particles, as these were much brighter than the dye molecules under the
imaging conditions employed, and would therefore make resolution appear
artificially better than it was.
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