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Key Points:

+ Physical model that treats lithosphere of Anatolia and the Aegean as a fluid sheet fits
GPS velocities with RMS misfit of 5 mm/yr.
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though moderate weakening likely near N Anatolian fault.
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Abstract

We estimate the strength of the lithosphere in Anatolia and the Aegean, and the boundary
forces acting upon it, using a dynamical model that treats the lithosphere as a thin fluid sheet
deforming in response to variations in gravitational potential energy. This model has one
free material parameter, the power-law exponent, n, of the vertically-averaged rheology of the
lithosphere, and two parameters that specify the forces per unit length applied to its edges.
Solutions to this model that best fit the velocities of 346 reliable GPS sites require an ef-
fective viscosity of the lithosphere of 10?2 to 10?! Pa s at strain rates of 10 to 100 nano-
strain per year. The best-fitting force at the Arabia-Anatolia boundary is consistent with

the lithostatic pressure due to the high topography there, and the force at the Nubia-Aegean
boundary is consistent with the contrast in lithostatic pressure across that boundary. No ad-
ditional force, from “slab roll-back” or basal tractions due to convection in the mantle, is
required to explain the observations. These results are supported by scaling relations de-
rived from approximate analytical solutions. The inverse relationship between the viscos-
ity of the lithosphere and deviatoric stress produces strong slowly deforming regions in the
Southern Aegean and Central Anatolia whose motions resemble those of micro-plates. The
distribution of geodetic strain rates within the region, and the partitioning between normal
and strike-slip faulting, are explained by the interplay between boundary conditions, internal
variations in gravitational potential energy, and the power-law rheology of the lithosphere.

1 Introduction

We investigate the forces responsible for the deformation of Anatolia and the Aegean,
the continental region that lies between eastern Turkey and the coasts of the Eastern Mediter-
ranean and Ionian Seas (Figure 1). The region is bounded to the south by the Nubian and
Arabian plates and to the north by stable Eurasia. Hereinafter we use the term Eurasia to
refer to the part of the Eurasian continent and its surrounding ocean floor that exhibits negli-
gible internal deformation and, unless otherwise specified, velocities are relative to Eurasia.
Nubia and Arabia move roughly northward whereas Anatolia moves northwest-to-westward,
and western Turkey and Greece move west-to-southwestward (Figure 2a, [and Aktug et al.,
2009; Floyd et al., 2010; M°Clusky et al., 2000; Reilinger et al., 2006]). Kinematic descrip-
tions of the motion of Anatolia and the Aegean have labelled it as “extrusion” or “escape”
[e.g. Armijo et al., 1999, 2003; Sengor et al., 1985] or have ascribed it to the “rollback” of
the Nubian slab beneath the southern Aegean [e.g. Le Pichon, 1982; Le Pichon and Kreemer,
2010; Royden, 1993]. Dynamical explanations for this motion attribute it to differences in
gravitational potential energy between eastern Turkey and the southern Aegean (Figure 3),
or to tractions applied to the base of the lithosphere by flow of the mantle [e.g. Faccenna
et al., 2014; Le Pichon, 1982; Le Pichon and Angelier, 1979; Le Pichon and Kreemer, 2010;
MC¢Kenzie, 1972, 1978].

Although the large-scale motions of Anatolia and the Aegean relative to Eurasia can be
described approximately by a rigid-body rotation with a pole near the Nile delta [Le Pichon
and Kreemer, 2010; Reilinger et al., 2006], active faults pervade the region and GPS veloc-
ities increase systematically by 20 mm/yr from east to west [e.g. Aktug et al., 2009, 2013;
Floyd et al., 2010; Goldsworthy and Jackson, 2000, 2001; Goldsworthy et al., 2002; Jackson,
1994; Jackson and M®Kenzie, 1988; Reilinger et al., 2006; Saroglu et al., 1992; Shaw and
Jackson, 2010; Taymaz et al., 1991a, and see Figures 1, 2 and 4b]. This deformation results
in widespread large shallow earthquakes (Figure 1b) whose focal mechanisms vary from
thrust and reverse faulting along the western and southern margins of the region, to normal
faulting throughout mainland Greece and western Turkey, to normal-plus-strike-slip faulting
in the northern Aegean, and to strike-slip faulting on the north and south-eastern margins of
Anatolia.

The velocity differences of ~ 20 mm/yr within Anatolia and the Aegean have been de-
scribed by kinematic models that contain between two and six elastic blocks, with permanent
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Figure 1. Tectonic setting. (a) Location map, showing places referred to in the text. KFZ: Kefalonia Fault
Zone; PST: Pliny and Strabo Trenches; NAF: North Anatolian Fault; EAF: East Anatolian Fault. Active
faults of the region are shown in blue (strike-slip) or red (normal) [Goldsworthy and Jackson, 2000, 2001;
Goldsworthy et al., 2002; Saroglu et al., 1992]. Yellow triangles indicate the locations of the active volca-
noes of the Aegean arc. (b) Seismic activity of the region. Dots show the epicenters of earthquakes between
1960 and 2007 with hypocenters shallower than 33 km [International Seismological Centre, 2011]. Focal
mechanisms from the GCMT catalogue [Dziewonski et al., 1981; Ekstrom et al., 2012] and from Jackson and
MCKenzie [1988]; Shaw and Jackson [2010].
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Figure 2. Velocities, relative to Eurasia, of the 346 GPS sites in the Aegean and Anatolia used as con-

straints on the physical model (Section 2). Double line shows region in which the calculations of this paper

are carried out (Figure 3).

deformation being concentrated around their edges [e.g. Le Pichon et al., 1995; M®Clusky

et al., 2000; Nyst and Thatcher, 2004; Reilinger et al., 2006]. Alternatively, they have been
interpreted as the strain of a ductile lithosphere within which stronger enclaves are embedded
[e.g Billiris et al., 1991; Clarke et al., 1998; Davies et al., 1997; Hollenstein et al., 2008] that
deforms in response to boundary tractions and internal gradients in gravitational potential
energy [e.g. Hatzfeld et al., 1997; Le Pichon, 1982; Le Pichon and Angelier, 1979; Le Pichon
and Kreemer, 2010; Martinod et al., 2000; M°Kenzie, 1972, 1978; Ozeren and Holt, 2010].

The differences among these descriptions of the motions of Anatolia and the Aegean,
and of their internal deformation, are rooted in questions about the relative magnitudes of
forces acting on the lithosphere, and about the importance of lateral variations in its strength.
We investigate these issues using a physical model constrained by a regional-scale GPS ve-
locity field. First we show that the stresses associated with lateral differences in gravitational
potential energy are large enough to cause the observed deformation of the lithosphere. Sec-
ond we show that the distribution of this deformation does not require strong lateral varia-
tions in the intrinsic physical properties of the lithosphere. Furthermore we show that the
boundary tractions required to explain the observed field of deformation are consistent with
the GPE contrasts across the Aegean and Anatolian boundaries, and that tractions acting on
the base of the lithosphere are not required to explain the deformation.

2 GPS observations

Our analysis is constrained by measurements of crustal velocities made using the Global
Positioning System (GPS). Nocquet [2012] combined 24 GPS studies in a common reference
frame, checking for consistency among solutions and re-evaluating uncertainties in velocity.
We added measurements by Aktug et al. [2013]; Aktug et al. [2015]; Ozener et al. [2010];
Tatar et al. [2012] and Yavasoglu et al. [2010] as individual solutions and made a full combi-
nation using the procedures of Nocquet [2012]. We then selected, using information from the
original publications, only those stations that were occupied on at least three occasions, over
a time span of longer than four years. All sites having a formal error greater than 2 mm/yr in
their velocity were eliminated, leaving 346 measurements of horizontal velocity within the
region shown in Figure 2. These are considerably fewer than the 872 velocities used by Oz-

-40°

-38°

-36°

34°



Il Il Il Il Il | Il Il Il Il |
42" — - 42°
o
D% \QQ
L o N ,
Q =,
40" \ S N7 g ) = - 40°
3 ‘1? ; I3
: o
u & A P
T 050
38" 0 ’ o ¢ I-38°
Vo o, Y S )
b 81 N2 0 7
'au ﬂ@,‘f hS S, -
S "; ~&_5OQ & 0. A
36" : ; s§ : - 36"
34° J ° J ° J ° J ° J ° J o J ° J ° J ° J ° J ° 0345

—1500 —1(500 —%50 —500 —2‘50 0 250 500 1000 1250 1500 1750 2000
Smoothed surface height (m)

T
-2.0 -15 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

GPE TN/m

Figure 3. Topography and GPE within the calculation domain (delineated by labelled boundary segments).
(a) Surface height within the calculation domain smoothed with a Gaussian filter of width 100 km. (b) GPE
calculated from surface height (Section 3.1, Eq. (5) and parameters given in Table 1). Lines labelled A to F
indicate the locations at which different boundary conditions are applied in the calculations. Conditions of
zero velocity are applied on segments, A, B, and D. Forces per unit length I'ywy and I'g are applied to segments
C and E, as discussed in the text (Section 3.2). Zero tangential traction and zero normal velocity are applied to

the north-south boundary segment F.
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(a) The geographical region of interest (bounded by grey lines) is approximated by a box of east-west length /

and north-south dimension 2w (double lines); the slight curvature is neglected. Dots show locations of GPS

sites whose velocities (magnitudes) are plotted in (b); sites within 150 km of the profile are used, except those

on the Eurasian or Arabian plates. (b) Projection of magnitudes of GPS velocities along the line x = 0. Grey

shaded region shows the range of velocities calculated for the best-fitting analytical solution (Eq. (A.6), and

see Section 4.) Upper boundary of grey shade corresponds to the solutionat y =

0, lower bound to the solu-

tionaty = =150 km.(c) Comparison between analytical solution and observations (in the analytical solution

positive uy is eastwards).



eren and Holt [2010], but that data set contained many sites reported by two or more publi-
cations, and many sites that we have excluded by the criteria of number and duration of occu-
pations. We therefore expect that the data set we use, in addition to having more information
in Anatolia [Aktug et al., 2013; Aktug et al., 2015; Ozener et al., 2010; Tatar et al., 2012,
Yavasoglu et al., 2010], is appreciably less influenced by measurement error. The mean spac-
ing between sites is about 50 km, though sites within the Aegean Sea are separated by up to
100 km.

3 Physical Model
3.1 Mathematical formulation

We treat the continental lithosphere as a sheet of fluid whose deformation is deter-
mined by the vertical averages of its physical properties and of the forces acting upon it — the
thin sheet approximation [Bird and Piper, 1980; England and M°Kenzie, 1983; Houseman
and England, 1986, and see Schmalholz et al. [2014] for a recent discussion that corrects
some misapprehensions that have arisen in the literature concerning this approximation].
Geodetic measurements of the deformation of the lithosphere are taken at the top of the up-
per crust, which in general deforms elastically. We take the view that, except during the post-
seismic intervals of nearby earthquakes, the strain of this thin elastic layer follows closely the
ductile strain of the layer beneath [e.g. Bird and Piper, 1980; Bourne et al., 1998; Houseman
and England, 1986]. This view contrasts with interpretations of velocity fields that treat the
lithosphere as an elastic medium whose surface deformation is controlled by the slip of dis-
locations buried within it [e.g. Hammond et al., 2011; Meade et al., 2002; Meade and Hager,
2005; Reilinger et al., 2006; Wallace et al., 2007].

Garthwaite and Houseman [2011] compared 3D calculations with the results of the 2D
thin-sheet model and showed that, in the absence of strong vertical stratification of physical
properties, differences are minor provided that the horizontal scale of the deforming zone,
and the length scale over which significant changes in boundary condition occur, are greater
than the thickness of the lithosphere. The first of these conditions is met: the horizontal
scales of the region of interest are of order a thousand kilometers whereas the lithospheric
thickness is of order a hundred kilometers. The second condition may be violated in small
regions, such as either end of the Hellenic plate boundary, where there are abrupt changes in
boundary condition.

The depth-averaged rheology of the thin sheet is described by a power-law relation
between deviatoric stress and strain rate:

— (Lo .
T,'jZBE(" DEU

where £;; is the i 7™ component of the strain-rate tensor, assumed constant with depth through
the sheet, 7;; is the i j‘h component of the deviatoric stress, with the over-bar denoting aver-
ages over the thickness, L, of the lithosphere, n is the power-law exponent for the rheology,
and ]

E = (érén)?
is the second invariant of the strain-rate tensor and the convention of summation over re-
peated indices applies. The fluid is assumed to be incompressible (£xx = 0).

Sonder and England [1986] showed that Eq. (1) closely approximates the vertically-
averaged rheology of a lithosphere deforming by a combination of creep mechanisms, which
are largely temperature-dependent, and frictional mechanisms, which depend principally
on pressure. Furthermore, if the brittle upper crust is cut by a numerous faults then it may
be appropriate to describe its long-term deformation field by a power-law rheology of the
form of Eq. (1) [e.g. Nanjo and Turcotte, 2005]. The single parameter, n, allows the depth-
averaged rheology for the lithosphere to range from Newtonian behavior (whenn = 1) to
almost plastic behavior for large n.

)
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Table 1. Notation.

Parameter Definition Value/Reference
B Viscosity coefficient Eq. (1)
g Acceleration due to gravity 9.8 ms™?
h Surface height Figures 1 and 3
ho Reference surface height 100 m
L Thickness of the lithosphere 100 km
S Crustal thickness
So Reference crustal thickness 35 km
u; it component of velocity
Uy velocity scale Eq. (8)
&ij ij component of strain rate
E Second invariant of strain-rate tensor Eq. (2)
Neff Effective viscosity Eq. (3)
r Gravitational potential energy Nm™!
per unit surface area or Jm™2
Pe Density of crust 2800 kg m™3
Om Density of mantle 3200 kg m™3
T ij™ component of deviatoric stress
The quantity

Meft = %BE(%—I) = %B"T(Hﬂ,
where T is the second invariant of the vertically-averaged deviatoric stress tensor, (Tx;Tk;) %,
is commonly referred to as the effective viscosity, by analogy with the viscosity of a New-
tonian fluid in the case that n = 1. Note that for n # 1 the effective viscosity depends on
the deviatoric stress, or equivalently upon strain rate, so that lithosphere of spatially invariant
viscosity coefficient, B, will in general exhibit lateral variation in its effective viscosity.

The equations governing the deformation of the thin sheet (Eq. (A.14)) express the bal-
ance between horizontal gradients of the deviatoric stress required to deform the sheet and
gradients in its gravitational potential energy per unit area (GPE). We estimate the GPE of
lithospheric columns using the distribution of surface height shown in Figure 3a, having ap-
plied a Gaussian filter of width 100 km to the surface height within the calculation domain.
We define a reference column of lithosphere, with crustal thickness Sy, surface height iy and
densities as stated in Table 1. Surface height above sea level, 4, is related to crustal thick-
ness, S, under the assumption of Airy isostatic balance

L(h_hO)’

Pm — Pc

S—So=

where p. and p,, are the average densities of crust and mantle. For uniform crust overlying
uniform mantle, the difference in GPE between the reference column, of GPE Iy, and a col-
umn with crust of thickness S is

m (h—h
I'-To =gpc (h—hy) (50+L0))

2(pm — pec)

where g is the acceleration due to gravity; for columns with 2 < 0 these expressions are
adjusted for the contribution from the water column [Haxby and Turcotte, 1978].

Within the continental lithosphere of the region the GPE (I" — I'y) varies from a high
of 2 TN m~! in the east to a low of -1 TN m~! in the southernmost Aegean (Figure 3b). The
assumption of Airy isostasy is not critical; if isostatic compensation is maintained in part by
density variations in the mantle, then the GPE for a given surface height would be slightly

3)
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higher or lower than that given by equations (5), resulting in minor local adjustments to the
velocity field. The small size of isostatic gravity anomalies in the region [Balmino et al.,
2012] rules out significant non-isostatic contribution to GPE from lifting of the lithosphere
by convective tractions applied to its base, sometimes referred to as “dynamic topography”
[e.g. Molnar et al., 2015, Fig. 5].

3.2 Calculation domain and boundary conditions

We divide the border to the calculation domain into six sections whose lengths and lo-
cations are dictated by their geological setting (Figure 3b). The adoption of a small number
of long boundary segments is justified by a fundamental aspect of the governing equations:
a condition of stress or velocity, when applied over a length w of boundary, influences strain
rates over a distance from that boundary that is ~ w/(a+/n), where n is the exponent in the
power-law rheology (equation (1)) and @ depends on the nature of the boundary condition
[England et al., 1985; Sonder et al., 1986]. When the boundary condition is one of normal
velocity or traction, @ ~ 1; when the condition is tangential, the length scale is four times
shorter (o ~ 4). It follows that any variation in boundary condition over a scale that is small
compared with the size of the region of interest has only a local influence, and does not sig-
nificantly affect the distribution of stresses and velocities far from that boundary. This as-
sertion is supported by investigation of alternative, more complex, boundary conditions in
Section 5.4.

The reference frame is fixed to Eurasia and we set velocity to zero along a boundary
(segment A in Figure 3b) that follows the southern edge of the Black Sea which we presume,
from the lack of deformation within and to the north of it, to be part of Eurasia. At its west-
ern end, segment A runs to the north of the regions of extension and convergence in Greece.
Although there is some active deformation to the north of this line, velocities there are gen-
erally lower than 2-3 millimeters per year relative to Eurasia [Burchfiel et al., 2006; Kotzev
et al., 2000].

We place the boundary between the Aegean lithosphere and the Nubian plate along a
line running to the landward side of the Hellenic, Pliny, and Strabo Trenches, which repre-
sent the outcrops of major faults at the southern border of the Aegean [e.g. Le Pichon and
Angelier, 1979; Mascle and Chaumillon, 1998]. Segment C in Figure 3b corresponds ap-
proximately to the down-dip limit of shallowly dipping thrust-faulting earthquakes on the
plate interface, and represents the boundary between the accretionary prism and the overrid-
ing Aegean continental crust [e.g. Shaw and Jackson, 2010]. It is probable that 80% to 90%
of the convergence across this boundary occurs by steady aseismic slip on the subduction in-
terface [Jackson and M€Kenzie, 1988; Reilinger et al., 2009; Vernant et al., 2014] (though
see Ganas and Parsons [2009] for an alternative viewpoint); it is therefore difficult to con-
strain the velocity condition for this boundary. Instead, we apply a normal force per unit
length, I'w, and allow this to be a free parameter in the calculations.

Similarly, it is appropriate to specify a normal force per unit length at the boundary
between Arabia and Anatolia (segment E in Figure 3b); again we allow this force, ['g, to be
a free parameter in the calculations. We continue the calculation domain to 41°E (segment F
in Figure 3b), for simplicity setting the east-west velocity and the tangential traction on this
boundary to be zero. This segment is short enough that its location and conditions do not
appreciably influence velocities throughout most of the calculation domain.

The relative velocities across the boundaries between Turkey and Nubia (segment D in
Figure 3b) and between the Ionian Sea and the northwestern part of the region (segment B)
are poorly constrained. Segment D lies along a diffuse zone of deformation between Rhodes
and the Gulf of Iskenderun [e.g. Aksu et al., 2009; Hall et al., 2009; ten Veen et al., 2004;
Woodside et al., 2002], and it is unclear what fraction of the relative motion between Nubia
and Anatolia is absorbed south of the coast of Turkey. Equally, the rate of convergence across
the boundary with the Ionian Sea is a few millimetres a year [e.g. D’Agostino et al., 2008]



and it is unclear what fraction of that rate is absorbed offshore. In order to maintain the sim-
plicity of our calculations we initially set the velocity on each segment to zero, investigating
more complex boundary conditions later (Section 5.4).

4 Preliminary Analysis

We first investigate the observed distribution of velocities using an analytical solution
for the flow of a thin sheet of Newtonian fluid (Appendix A1, Eq. (A.6)). In this approxi-
mation, the geometrically complex boundary conditions on Anatolia and the Aegean are re-
placed by a box bounded by planes at x = 0,/ and at y = +w (Figure 4a). The planes at
y = =w represent the northern and southern boundaries of Anatolia and the Aegean. The
plane x = 0 approximates the Hellenic plate boundary, and x = [ approximates the eastern
boundary to Anatolia. The GPE in this box varies linearly from I'y at x = Oto[gatx = [,
giving a gradient of GPE that is

Ig-Tw Al

P

The plane y = w is taken to have zero velocity, i.e to be fixed to Eurasia. The plane y = —w
runs close to segments E, D, and part of C (Figure 3b). As discussed in Section 3.2, the set
of conditions along this boundary cannot be captured by a single parameter; to maintain the
simplicity of the approximation, the velocity on this boundary is also set to zero. The bound-
ary conditions on x = 0,/ are expressed as forces per unit length, Al'w, Al'g, which repre-
sent contrasts in GPE across the boundaries (positive values of these quantities correspond to
lower GPE outside the boundary, therefore to a net extensional force acting on that boundary:
Egs. (A.4) and (A.5)).

(6)

The east-west dimension, /, of the geographical region of interest is about 1800 km
(from 20°E to 41°E, Figure 4a). The north-south dimension varies from about 400 km in
the east to 800 km in the west (Figure 4a); we adopt a value of 600 km for the width of the
box (w = 300 km). We do not expect the approximate solution to hold near the coastlines
of Turkey, where the configuration of the boundaries is complex. In Figure 4b we compare
this solution with the variation in GPS velocities along a swath from eastern Anatolia to the
Hellenic plate boundary that is 300 km wide.

The analytical solution (Eq. (A.6)) has three velocity scales: AI' w2/ (2nLl) and (Al'w or AI'g) x 4w/ (7r217L),
where 7 is the viscosity of the lithosphere and L its thickness. We found, by linear least-
squares inversion, the values of these parameters for which the analytical solution best fits
the observations. The best-fit velocity scale associated with the GPE difference, AT, is -
29 mm/yr. With AI' ~ 3 x 10> N m™! (Figure 3b),/ ~ 1800km, w ~ 300 km, and
L ~ 100 km, this scale yields an estimate of ~ 10%! Pa s for the viscosity of the lithosphere.
The best-fitting velocity scales associated with the GPE difference at x = 0 and /, AT'w and
ATg, are respectively 7 mm/yr and 22 mm/yr; with 7 ~ 10%! Pa s, these scales give forces per
unit length of ATy ~ 0.2 TN m™! on x = 0 and AT’ ~ 0.6 TN m~! (both in relative tension)
onx =1

The approximate solution (Figure 4b,c) displays the principal features of the varia-
tion in velocity between eastern Anatolia, despite the considerable differences between the
idealised distribution of GPE (Eq. (6)) and that shown in Figure 3b. This analysis provides
evidence that the large-scale deformation of the region is described by the balance between
gradients of GPE and deviatoric stress in the lithosphere.

5 Numerical Experiments
5.1 Means of solution

We solve the governing equations (Eq. (A.14)) subject to the boundary conditions
described in Section 3.2, and with the distribution of GPE derived from topography (Sec-
tion 3.1, Figure 3b), using a finite-element approximation to the equations for deformation

—10-



Table 2. Values of parameters for the best fits (Figure 5) to the observed velocities (Figure 2), with n and the

boundary forces I'yy and I'g as free parameters.

I'w Ig B M (Eq. (8))
TNm™' TNm™'  Pasl/? mm yr~!
n=1]| 0625 -1.5 2.4 x 10%! 5.1
n=3 1.0 -1.75  6.0x 101 4.7
n=>5 1.25 2.0 8.1 x 10° 4.7
n=9| 1625 -2.25 5.7 x 108 4.8

"For a Newtonian fluid, the viscosity, 7, is equal to half the viscosity coefficient, B (Eq. (3)).

on the surface of a sphere (see Appendix A2). The finite-element mesh contains 5,400 nodal
points, 346 of which are placed at the locations of the GPS sites. The mean spacing between
nodal points is approximately 15 km, smaller than the typical spacings between GPS sites
(Figure 2b). We checked the resolution of the calculations using meshes of 13,000 points
and found that the RMS misfit to the observations differed by less than 1% between the two
meshes.

As discussed in Appendix A2, the equations are reduced to non-dimensional forms that
depend on a single parameter, the Argand number

Ar = gch(l - pc/pm)’ (7)

B (Uo/L)'"
whose numerator represents a stress scale associated with density variations within the litho-
sphere and whose denominator represents the stress required to deform the lithosphere at a
reference strain rate Uy/L (see Eq. (1)) [England and M°Kenzie, 1982].

In each calculation we chose a value for Ar which ensured that the maximum dimen-
sionless velocity was of order 1, and determined Uy by minimizing the misfit function

1

1 & 2|’
M = [ﬁ Z u®S — Yo, (8)
i=1
where ul.GP S is the velocity of the i™ GPS site, u; is the dimensionless velocity of the same
site in the calculation, and N is the number of GPS sites. This value of Uy then implies a
value of the viscosity coefficient
cL 1 - MPc
g = 8PcL = pc/pm) ©)

Ar (Up/L)'"

For any given calculation, the value of B is independent of the chosen value of Ar (see
Appendix A2). With the configuration of boundary conditions fixed, and with the distribu-
tion of GPE specified from the topography (Figure 3b), there are therefore only three free
parameters: the exponent n in the power-law rheology (Eq. (1)) and the magnitudes of I'y
and I'g, the forces per unit length applied at the western and eastern boundaries (Figure 3b).

5.2 Estimation of boundary forces and lithospheric rheology

We calculated velocity fields varying 'y and —I'g between zero and 10 TN m~! in
steps of 0.125 TN m~!, and withn = 1,3,5, and 9. Solutions for n = 5 exhibit no feature
that cannot be illustrated by the solutions for n = 3 and 9 so they are not shown, but the best-
fitting parameters are listed in Table 2.

The misfits define an elongate valley on the 'y — I'g plane (Figure 5) with minima near
I'e = —(Tw + 1 TN m™!). Values of 'y yielding the best fits to observations lie in the range
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Figure 5. Root-mean-square misfits between calculated and observed velocity fields for a thin viscous sheet
withn = 1,3,9 subjected to the boundary conditions and the internal distribution of gravitational potential
energy shown in Figure 3b. Colors and black contours show the variation of RMS misfits (Eq. (8)) with I'yy
and I'g. Best-fitting combinations of 'y and I'g are shown by white dots (see Table 2). Double lines show
contours of the logarithm to base 10 of the viscosity coefficient, B, for the solutions (units of Pa s'/”*). Panel

on bottom right shows distributions of misfits for the case in which there are no internal gradients of GPE.

0.75 to 2 TN m~! and those for I'g lie in the range -1.5 to -2.25 TN m~'. Because velocity
gradients near the boundaries scale with the magnitude of the relevant boundary forces (I'g
or I'w) raised to the power n (Eq. 1, see also Section A1.2, Eq. (A.12)), solutions that depart
from the best-fitting valleys disagree sharply with the observations. This sensitivity causes
the valleys in Figure 5 to become narrower as n increases.

Figure 5d shows the misfits for calculations in which the boundary conditions are var-
ied, as above, but the GPE within the sheet is zero; this problem has only two free parame-
ters, I'g / I'w and n. RMS misfits to the observations for these calculations are at least 50%
greater than in the case where internal variations in GPE are included (M > 7.5 mm/yr).

Figure 5 also displays contours of the viscosity coefficient B (Eq. (3)) that is implied
by the velocity scale for each combination of I'g and I'w (see Eq. (8)). The Appendix shows
that the flow may be approximated by that of a power-law fluid confined between two parallel
plates and subjected to a constant pressure gradient representing the variation in GPE from
west and east across the region. This approximation leads to a scaling relationship between
the viscosity coefficient of the lithosphere and the differences in velocities and GPE across
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the region. From Eq. (A.13), Appendix
1/n

V2 (D)

Umax (1 + 1)

Al'w

B
IL

With umax ~ 30 mm/yr and the other variables as discussed in Section 4, this scaling gives
B ~2x10*1,3x 10,4 x 10° and 2 x 103 Pas!/" forn = 1,3,5,and 9, respectively.
The corresponding values of B for the best-fitting solutions to the full thin-sheet equations
(Table 2) are 2 x 10%!,6 x 10!, 8 x 10? and 6 x 108 Pa s!/"; inspection of the contours of
B in Figure 5a-c shows that solutions with values of B obtained from Eq. (10) have misfits
similar to the best-fitting solutions. The agreement between the scaling relationship and nu-
merical solutions provides further support to the argument that the dynamics of Anatolia and
the Aegean reflects the balance between gravitational potential energy and the stress required
to deform the lithosphere.

5.3 Comparison with observed velocities

Figure 6 compares the observed velocities (Figure 2a) with those of the best-fitting
thin-sheet calculations for n = 3 and n = 9. The variation by ~90° in the orientations of ve-
locity between eastern Anatolia and the southern Aegean, and the corresponding increase in
velocity from ~ 15 to ~ 35 mm/yr relative to Eurasia, are reproduced by these calculations.
The RMS misfit of the calculations to the observations (M, Eq. (8)) is less than 5 mm/yr
while the RMS magnitude of the observed velocities (Figure 2a) is 20 mm/yr. Thus a model
with a single adjustable material parameter, n the power-law exponent in the rheology of the
lithosphere, and two parameters that specify the forces per unit length (or, equivalently, the
GPE) at the eastern and western boundaries, can account for > 90% of the variance in the
velocity field.

The RMS misfits to the observations vary by less than 0.1 mm/yr between the best-
fitting solutions for n = 3,5, and 9 (Table 2). This result is at first sight surprising, because
strain rates in power-law fluids depend on deviatoric stress to the power n (Eq. 1). As dis-
cussed in Section 5.2, however, the flow is analogous to that of a channel of power-law fluid
whose velocity has the form Uy (1 - ly/ wl"“) (Eq. (A.12)), where y is the distance from the
center line of the channel. For a given value of Uy, solutions with different values of n differ
appreciably only within narrow shear zones adjacent to the walls of the channel.

5.4 Additional complexity in boundary conditions

Despite the broad agreement between observed and calculated velocity fields, system-
atic misfits remain at the level of 5 — 10 mm/yr, in particular in the regions near Kefalonia
(marked by K in Figure 6b, c), near Rhodes (R), in southeast Turkey (E), and near the North
Anatolian fault (N). The misfits near Rhodes and Kefalonia resemble those that would be ex-
pected, from the arguments in Section 3.2, if the extensional normal traction were too low
(R) or too high (K). Similarly, the misfits in southeast Turkey resemble those that would be
expected if there were a tangential component of traction missing from the boundary condi-
tions there, and the zone of dextral shear near the North Anatolian Fault is broader in the cal-
culations than in the observations. Clearly these minor misfits could be reduced if tractions
were allowed to vary along the boundary segments, and to include tangential components.

As discussed in Section 3.2, the influence of an individual boundary segment extends
no further into the sheet than the length of that segment [England et al., 1985]. Subdivision
of the boundary into many small segments adds complexity to the pattern of strain rate near
the boundary, but deformation in the interior still responds principally to the long-wavelength
features of the boundary conditions. To illustrate these considerations, we divided segments
B-F of the boundary to the calculation domain into 13 smaller segments (Figure 7); there
are only about 60 GPS observations in locations that are sensitive to these short boundary
segments, so we do not consider subdivision at any finer scale. We adjusted the normal and
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Table 3. Values of forces per unit length on boundary segments shown in Figure 7. Positive normal force
corresponds to an extensional deviatoric stress at the boundary; positive tangential force corresponds to an

applied sinistral shear.

Segment | Normal Tangential
Number force force
TN m™! TN m™!

1 -0.51 -0.89

2 -0.19 -0.32

3 1.14 0.00

4 0.89 0.00

5 0.25 0.00

6 1.08 -0.06

7 1.40 0.51

8 -0.51 0.38

9 -1.14 0.57

10 -1.40 0.00

11 -1.14 0.51

12 -2.29 0.32

13 -1.78 0.00

tangential forces per unit length on those segments by trial and error until the magnitudes of
misfits near each boundary segment become comparable with those in the interior, obtaining
a solution (Figure 7, Table 3) that has an RMS misfit of 4.3 mm/yr. Thus we show that mis-
fits near the boundaries may plausibly be accounted for by minor adjustments to boundary
conditions.

5.5 Lateral heterogeneity

The misfit vectors in northern Anatolia (N in Figure 6b, c) show a more diffuse right-
lateral shear in this region than is observed, suggesting that it is reasonable to investigate the
additional complexity of a localised weak zone. We introduce the parameter B’, which is the
ratio of B within the weak zone to B in the rest of the sheet. We chose the shape of the weak
zone to follow the North Anatolian Fault and its extension through the Sea of Marmara and
into the North Aegean Trough (Figure 8), and carried out calculations forn = 3andn = 9
in which B’ varied between 1 and 0.1 in steps of 0.05, and I'yy and —I'g varied between 0 and
5TNm~!. Withn = 3 the minimum misfit of 3.9 mm/yr is found with B’ = 0.45 ; with
n = 9, the minimum misfit of 4.4 mm/yr is found with B’ = 0.8. It can be seen that most
of the reductions in misfits, in comparison with the homogeneous calculations, arise from
improved fit to observed velocities in the north of Anatolia (compare Figures 6b,c with 8a,b).

Trades-off clearly exist between the value of B’ and the width of the weak zone, and
others can arise if aspects of the GPE distribution are incorrectly assigned. For example, be-
cause the dynamics is dominated by the balance between east-west gradients of GPE and gra-
dients of deviatoric stress (Section 4 and Appendix A1), there would be a trade-off in misfits
within Central Anatolia between those resulting from a decreased tangential force per unit
length on its northern edge and those resulting from an increased west-to-east gradient in
GPE across the region. Equally, strengthening or weakening the lithosphere near a particular
boundary segment would, correspondingly, increase or decrease strain rates there, so that the
reduction in misfits obtained by specifying a complex set of boundary forces (Section 5.4)
might alternatively have been obtained by multiple local adjustments to B [e.g. Ozeren and
Holt, 2010, Fig. 10].
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Removal of the simplifying assumption of laterally invariant material properties opens
up a parameter space that is infeasible to explore systematically; the solutions of Figures 7 and 8
should therefore be regarded as illustrative, not definitive.

6 Tectonic Implications

We examine the implications of our analysis for the tectonics of the region, using the
best-fitting solutions for the three-parameter calculations with n = 3 and 9 (Figure 6) and for
the solution with multiple boundary segments and uniform B (Figure 7).

6.1 Boundary forces

The best-fitting solutions for the calculations with spatially invariant rheology and
n > 1 (Table 2) give a value for I'g, the compressional force per unit length at the eastern
boundary (segment E, Figure 3b) between —2.25 and —1.5 TN m~!, and the best-fitting (ex-
tensional) forces per unit length on the Hellenic boundary segment (C, Figure 3b) are be-
tween 0.6 and 1.6 TN m~'. These estimates are consistent with those made by Ozeren and
Holt [2010] and by Cianetti et al. [2001]; we disagree, however, with these authors about the
origin of these forces. Ozeren and Holt [2010] refer to the forces at the Hellenic plate bound-
ary as the result of “slab rollback”, while Cianetti et al. [2001] refer to them as “trench suck
force”. If terms such as these have a dynamical meaning it is that the negative buoyancy of
the slab causes the normal stress acting on this boundary to be more tensional than would
be expected from the lithostatic stress arising simply from the GPE of the external Nubian
lithosphere [e.g. Le Pichon, 1982; Molnar and Atwater, 1978].

The best-fitting forces per unit length I's and I'w are remarkably close to those ex-
pected from the GPE of isostatically balanced columns at the boundaries (a condition that
is equivalent to Al'yy and AT'r being small in the analytical approximation discussed in Sec-
tion 4). Smoothed surface heights in eastern Turkey reach 1500 to 2000 m (Figure 3a); the
GPE associated with this range of heights is between 1.5 and 2 TN m~! (Eq. (5)), which is
consistent with the range obtained for I'g (Table 2). The GPE of ocean floor to the south of
the Hellenic plate boundary is about 2 TN m~! lower than that of our reference column of
continental lithosphere [e.g. Le Pichon, 1982], so the range of 1 to 2 TN m~! obtained for I'y
(Table 2) suggests that, if anything, the state of stress at the Hellenic plate boundary is more
compressional than would be expected from the GPE contrast alone.

The southward migration relative to Eurasia of the Nubian-Aegean boundary is a kine-
matic consequence of extension within the southern Aegean. “Slab rollback” is often in-
ferred to accompany such “trench retreat”; forces associated with this process, and with more
general flows in the upper mantle, have been suggested to cause deformation of Anatolia and
the Aegean [e.g. Faccenna et al., 2014; Le Pichon and Kreemer, 2010; Royden, 1993]. How-
ever, a physical model that includes only stresses associated with lateral variations in internal
density structure of the lithosphere explains both the magnitudes and spatial variation of the
observed velocity field, and we suggest that tractions caused by flow in the upper mantle ex-
ert only a minor influence on the deformation of the lithosphere in this region.

6.2 Strain rates

We calculated a strain-rate field from the GPS observations using the method of Shen
et al. [2015], in which the horizontal velocity gradients are estimated at a set of regularly
spaced gridpoints from the weighted GPS velocities by least-squares inversion. The weight
on each observation is the product of the area of the Voronoi cell occupied by the site and a
Gaussian weight, exp (—Rizj/ Dz-), where R;; is the distance of site i from gridpoint j. The
smoothing distances, D;, are chosen so that the total weight of observations on each grid-
point is the same. A weight of Wy = 36, in the notation of Shen et al. [2015], gives a median
smoothing distance of 100 km, roughly the thickness of the lithosphere.
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We first make quantitative comparisons between measures of the observed strain rate
field and that of the best-fitting three-parameter calculation with n = 3; comparisons with
the solutions for n = 9 and for the 13-segment boundary conditions yield similar results.
Figure 9a superimposes the principal axes of strain rate derived from the GPS observations
on the second invariant of the strain-rate tensor (Eq. (2)) computed for the solution of Fig-
ure 6a,b. Calculated strain rates range from lower than 5 to over 150 nanostrain per year, and
the geographical regions in which GPS observations show high and low strain rate corre-
spond closely to the equivalent regions in the finite-element calculations. At 202 out of the
323 locations for which strain rates are determined from the velocity measurements, the cal-
culated and observed rates agree to within a factor of two (Figure 9b). The range in azimuths
of the observed principal horizontal axes of compression is about 120° (Figure 9c). At 189
out of the 323 locations the calculated and observed azimuths agree to within 20°; at most of
the sites where the disagrement is greater than 20° the strain rates are lower than 10 nanos-
train/yr, as shown by the colors of the symbols in Figure 9.

Figure 10 compares the distribution of second invariant of the strain rate (equation (2))
derived from the GPS observations (Section 4) with those of the best-fitting calculations for
n = 3 and 9 (Figure 6) and of the calculation with multiple boundary segments (Figure 7). In
the observations, a narrow band of high strain rate runs from south of the Black Sea, through
the North Aegean Trough, and through central Greece. The presence of an equivalent narrow
zone in the calculations reflects the property of a thin viscous sheet that the width of a shear
zone associated with a strike-slip boundary is much narrower than the length of the boundary
itself [England et al., 1985, and see Section 3.2]. The greater is n, the greater is the decrease
of viscosity with strain rate; the calculation for n = 9 shows a narrower band of high strain
rate than that for n = 3.

The observed regions of low strain rate in eastern Anatolia and near the Hellenic plate
boundary (Figure 10a) are also seen as regions of low strain rate in the calculations (Fig-
ure 10b-d). Strain rates are low here because deviatoric stresses are low. The compressional
force per unit length, I'g, applied at the eastern boundary is balanced by the high GPE of the
lithosphere near the boundary, with eastern Turkey transmitting the plate-boundary boundary
forces to the interior of Anatolia, in the same way that the elevated Tibetan plateau transmits
the compressional force from India to the interior of Asia [Molnar and Tapponnier, 1978].
Equally, the extensional force per unit length at the Hellenic plate boundary is transmitted,
through the low-GPE lithosphere of the southern Aegean, to the central and northern Aegean
and the adjacent parts of Greece and Turkey.

The horizontal divergence of the velocity field, (Oux/0x + du, /0y = —£;) represents
the rate of thickening or thinning of the lithosphere. The observed pattern of divergence
shows horizontal extension over most of central Anatolia and all of western Turkey, Greece,
and the Aegean Sea, with the highest rates of extension occurring in a horseshoe-shaped re-
gion surrounding the Aegean Sea (Figure 11a). This pattern is also seen in the calculations.
The overall pattern of extension results from the contrast in GPE between those regions and
the Nubian ocean floor to the south (Section 6.1). Because the GPE on the margins of the
Aegean Sea is higher than within it, rates of extension on the margins are correspondingly
higher.

We emphasise that the extension in central Greece results from the contrast in GPE be-
tween this region and its surroundings. It has been suggested that the extension is enhanced
by propagation of the North Anatolian Fault into the region [e.g. Armijo et al., 1996, 1999,
2003; Flerit et al., 2004]. This suggestion provides, however, no explanation for the equally
prominent extensional deformation in the other locations of high relative GPE that surround
the Aegean (see discussion of Figure 11). Our calculations with a homogeneous lithosphere
agree with the strain rates derived from GPS (Figure 9a), which show north-south extension
in central Greece with negligible horizontal simple shear, and with the dominance of nor-
mal faulting and absence of strike-slip faulting in the region (Figure 1) [see also Floyd et al.,
2010; Jackson, 1994; Pérouse et al., 2012].
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Figure 9. Comparison between observed and model strain rates. (a) Colors show the field of the second

invariant of the strain-rate tensor for the solution withn =

3 and constant B (Figure 6a,b); superimposed

crosses show the orientations and magnitudes of the principal axes of strain rate model from the GPS veloci-

ties, as described in Section 6.2. (b) Comparison between observed and model values of the second invariant

of the strain rate tensor (Eq. (2)) at the location of each of the cross symbols in (a). Gray lines delineate the

region in which model values are within a factor of two of the observed values. (c) Comparison between the

azimuths of the principal horizontal axis of extension at the location of each of the cross symbols in (a) and

the azimuths of the same axes in the model deformation field. Symbols are colored according to the magni-

tude of the second invariant of strain rate in the best-fitting model calculation, at the geographical location

of the observation. Gray lines delineate the region in which model azimuths are within 20° of the observed

azimuths.
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6.3 Quasi-rigid motion of fluid lithosphere

Whereas we have been able to account for the distribution of velocities and strain rates
in Greece and Turkey with a lithosphere that has spatially invariant physical properties (Eq. (1),
with constant B), others have argued that the regions of low strain rate in the Southern Aegean
and Central Anatolia (Figure 10a) represent strong inclusions or “micro-plates” [e.g. Cianetti
et al., 2001; Fischer, 2006; Nyst and Thatcher, 2004; Le Pichon and Kreemer, 2010; Reilinger
et al., 2006]. These two points of view may reconciled by the recognition that any piece of
lithosphere that is in a state of lower deviatoric stress than its surroundings will both deform
more slowly and, by Eq. (3), have a higher effective viscosity.

Our calculations show high-viscosity regions, bordered by the yellow lines in Fig-
ure 12, which correspond to the Southern Aegean and parts of Southern and Central Ana-
tolia. The high effective viscosity of these regions is entirely the consequence of the low
deviatoric stresses acting within them. The GPS velocities within the corresponding geo-
graphical regions are fit by a rigid-body rotation with RMS residuals of 2.5 mm/yr (Anatolia)
and 1.7 mm/yr (South Aegean) (Table 4). We found the rigid-body rotations that best fit the
calculated velocities within these regions for the solutions with laterally invariant material
properties and n = 3 and 9. The RMS residuals to these fits are, for each region, smaller than
the misfits of the GPS vectors (Table 4), demonstrating that regions of plate-like behavior can
arise naturally in the deformation of a lithosphere with power-law rheology, without the need
to impose lateral variation in material properties.

6.4 Active faulting and seismicity

It is reasonable to ask whether the consistency between calculations and GPS obser-
vations spanning one or two decades extends to measures of the long-term geological strain
such as deformation of crust by slip on faults. Adoption of the thin sheet model to interpret
GPS measurements of the earth’s surface motion carries the assumption that stresses asso-
ciated with the deformation of the lower lithosphere are large enough to cause matching de-
formation in the upper crust. Under that assumption, the expected style of deformation in the
seismogenic upper crust is determined by the ratio of the principal horizontal strain rates, &
and &;. The quantity

p= §+larctan(2) (1
4 &1
indicates the expected style of surficial faulting [Houseman and England, 1986; Gordon and
Houseman, 2015]. When 0 < p < 0.25 reverse faulting only is predicted (RR, Figure 13).
When 0.25 < p < 0.5 there is reverse faulting plus subsidiary strike slip (RS) or strike slip
plus subsidiary reverse faulting (SR), with the transition between RS and SR taking place
where p = 0.375. Pure strike-slip faulting occurs when p = 0.5 and the transitions from
strike-slip with subsidiary normal faulting (SN) to normal faulting with subsidiary strike-slip
(NS) and from NS to NN take place at p = 0.625 and p = 0.75 (Figure 13).

Figure 13 compares the distributions of active faulting [Goldsworthy and Jackson,
2000, 2001; Goldsworthy et al., 2002; Saroglu et al., 1992] and earthquakes [Dziewonski
et al., 1981; Ekstrom et al., 2012; M®Kenzie, 1972; Taymaz et al., 1991a,b; Jackson and
MCKenzie, 1988; Shaw and Jackson, 2010] with the distribution of p derived from the so-
Iution with multiple boundary segments (Figure 7). Deformation above the subduction in-
terface, which is delineated by thrust-faulting earthquakes whose focal planes dip more shal-
lowly than 25° [Shaw and Jackson, 2010], is not treated by our formulation so earthquakes
on and above this interface are excluded from the comparison.

Normal faulting is predicted to dominate (NS, NN, p > 0.625, Figure 13) in Greece,
most of the southern Aegean, and south-west Anatolia. The active faults in the regions where
p > 0.625 are predominantly normal (Figure 13a) and 148 out of the 233 normal-faulting
earthquakes were in these regions (Figure 13b, Table 5). The main regions in which strike-
slip faulting is predicted to dominate (SR, SN, 0.375 < p < 0.625, Figure 13) correspond to
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Figure 12. Model distributions of effective viscosity (7.4, equation (3)) for the best-fitting solutions for the
homogeneous sheet withn = 3 and 9 (Figure 6). Yellow lines show regions of high viscosity fluid for which

angular velocities are calculated, as though they were rigid bodies (Table 4).

the northern Aegean, westernmost Turkey, the Sea of Marmara, north Anatolia, and eastern
Anatolia. These regions exhibit strike-slip faulting, with some normal faulting in western-
most Turkey (Figure 13a), and 88 out of the 114 earthquakes with strike-slip focal mecha-
nisms occurred within the regions for which 0.375 < p < 0.625 (Figure 13c, Table 5).
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Figure 13. Predicted distributions of fault types for the calculation with 13 boundary forces (Figure 7) com-
pared with observed distribution of faulting and earthquake focal mechanisms. Colors show the distribution
of fault types predicted by the model strain rate field (equation (11), Section 6.4); in the two-letter designa-
tions, N, S, R, refer to normal, strike-slip, and reverse faulting; the first letter refers to the type of faulting that
accommodates the greater fraction of strain rate. The p = 0.5 contours are shown as double lines. (a) Active
faults are shown in blue (strike-slip) or red (normal) [Goldsworthy and Jackson, 2000, 2001; Goldsworthy

et al., 2002; Saroglu et al., 1992]. (b) Normal-faulting earthquakes of the region. (c) Strike-slip-faulting
earthquakes of the region. Focal mechanisms from the GCMT catalogue [Dziewonski et al., 1981; Ekstrom

et al., 2012] and from Jackson and M°Kenzie [1988]; Shaw and Jackson [2010].
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Table 4. Angular velocities for Central Anatolia and the Southern Aegean calculated from GPS observations
and from the solutions for the deformation of a homogeneous sheet with n = 3 and 9. The angular velocity
that provides the best fit to the observed GPS velocities or to the calculated velocities, within the regions

defined in Figure 12, is found by least-squares regression (RMS misfit in fourth column).

Longitude  Latitude Rate RMS Misfit
(°/Myr) (mm/yr)

| | Central Anatolia
GPS 32.8°E  30.64°N 1.24 2.5
n=73 314°E  294°N 1.1 24
n=9 31.5°E  30.1°N 1.1 2.1

‘ ‘ South Aegean
GPS 140.8°E -453°N 0.39 1.7
n=73 88.3°E  -274°N 0.28 1.0
n=9 55.0°E 10.8° N 0.45 0.9

Table 5. Numbers of normal-, strike-slip-, and reverse-faulting earthquakes within the continental litho-
sphere of Anatolia and the Aegean. Earthquakes are sorted by areas in which the calculations of Figure 13
indicate that different fault types should dominate the deformation (Eq. (11) and Figure 13). The earthquakes
are separated into normal-, strike-slip-, or reverse-faulting events according to whether the smallest, interme-

diate, or greatest principal axis of their moment tensor is closest to vertical.

Predicted Dominant Number of Earthquakes ‘
Fault Type Normal  Strike-Slip Reverse ‘
RR 1 10 0
RS 1 6 0
SR 6 21 1
SN 77 67 1
NS 124 7 0
NN 24 3 0

The principal discrepancy in this comparison appears to lie in the absence of reverse-
faulting earthquakes in regions RS and SR on Figure 13c. Note, however, that only 18 earth-
quakes lie in the region for which p < 0.375, whereas there were 329 in the regions of
normal-plus strike-slip faulting (Table 5). Furthermore, some of the strike-slip earthquakes
exhibit an oblique component that implies a component of vertical thickening, consistent
with p < 0.5, and many of the pre-1960 earthquakes were assigned a pure strike-slip mecha-
nism, in the absence of strong constraint from first-motion observations.

The agreement between the observed and calculated styles of deformation (Figure 13)
implies that the seismogenic upper crust is weak enough to deform pervasively in response
to the stresses arising from contrasts in GPE within the lithosphere. This implication is sup-
ported by the observation that the T-axes of earthquakes in Greece and western Turkey are
aligned with the axes of principal elongation of the strain-rate field derived from GPS [Floyd
et al., 2010, Fig. 17]. This alignment holds regardless of size of the earthquake, or of whether
it lies close to a postulated block boundary, again suggesting that the faults within the upper
crust of the region are taking up a continuous field of deformation.
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Many of the earthquakes in this region whose magnitudes exceed about 6 may confi-
dently be associated with faults that show displacements of 100s of meters to kilometers over
Pliocene-to-Quaternary time [e.g. Jackson, 1994; Goldsworthy and Jackson, 2000, 2001;
Goldsworthy et al., 2002; Saroglu et al., 1992]. The agreement between the style of defor-
mation shown by our calculations and the distribution of active faulting and earthquakes sug-
gests that the Pliocene-to-present phase of deformation in the Aegean is explained by the
same balance between gravitational potential energy and viscous stresses that governs the
deformation field measured by GPS.

7 Conclusions

We have analysed the deformation of Anatolia and the Aegean using a physical model
that has three free parameters: the power-law exponent n of the fluid lithosphere, ['g repre-
senting the force per unit length acting at the boundary between eastern Turkey and Arabia,
and I'y representing the force per unit length acting at the boundary between Nubia and the
Aegean. The simplicity of this model allows us to calculate velocity fields throughout the en-
tire relevant parameter space. The best-fitting combinations of parameters account for over
90% of the variance in the GPS velocities (Section 5.3). The three-parameter numerical ex-
periments are supported by approximate analytical solutions that explain the scaling relations
between tectonic velocities, gravitational potential energy of the lithosphere per unit area
(GPE), and lithospheric rheology (Section 4 and Appendix Al).

The RMS misfit between model and observations may be reduced by allowing a more
complex configuration of boundary condition (Section 5.4) and by introducing a zone of
lithospheric weakness in the region corresponding to the North Anatolian Fault and the North
Aegean Trough (Section 5.5). Although each of these complications is reasonable on geo-
logical grounds, we are mindful of von Neumann’s aphorism that with four parameters he
could fit an elephant and with a fifth he could make it wiggle its trunk [Dyson, 2004], and
base our conclusions on the three-parameter calculations (Figure 6). As illustrated in Fig-
ures 10 and 11, the principal features of the simple solutions are retained in the more com-
plex solution that we also consider.

Our analysis supports the conclusions of previous studies [e.g. Hatzfeld et al., 1997;
Le Pichon, 1982; Le Pichon and Angelier, 1979; Martinod et al., 2000; M°Kenzie, 1972; Mé-
tois et al., 2015; Ozeren and Holt, 2010] that tectonic activity in Anatolia and the Aegean
is explained by the balance between internal gradients of GPE within the continental litho-
sphere of the region and the deviatoric stresses required to deform the lithosphere. Calcula-
tions in which deformation is forced solely by boundary tractions fit the observations signifi-
cantly more poorly (RMS misfit ~ 7.5 mm/yr, Figure 5d).

The magnitudes of forces per unit length acting at the boundaries between Arabia and
eastern Turkey (I'g) and between Nubia and the Aegean (I'w) are between 1 and 2 TN m!,
and are comparable with the GPE inferred for lithospheric columns external to these bound-
aries. We rule out significant contribution to the force balance of the Aegean from processes
that are postulated under labels such as “slab pull”, “slab roll-back™ or “trench retreat”. The
influence of basal tractions on the lithosphere, due to convection in the mantle, is also likely
to be minor in comparison with the influence of lateral gradients of GPE within the litho-
sphere (Section 6.1).

The distributions of velocities and strain rates derived from GPS, of active faulting,
and of the focal mechanisms of earthquakes are explained by the deformation of a homoge-
neous sheet with a rheology whose power-law exponent, n, is 3 or higher (Sections 6.2 and 6.4).
Large regions of low strain rate, such as Anatolia and the southern Aegean, arise naturally as
a result of the inverse dependence of the effective viscosity on the magnitude of the devia-
toric stress for n > 1. These regions deform slowly because the deviatoric stresses acting
upon them are lower and their effective viscosities are correspondingly higher (Eq. (3) and
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see Section 6.3). For a homogeneous sheet with n = 3 the effective viscosity of the litho-
sphere lies between approximately 10?2 Pa s at 10 nano-strain per year and 2 x 102! Pa s at
100 nano-strain per year (Figures 10b, 12a). The effective viscosities for the sheet withn = 9
are respectively doubled and halved at the same strain-rates (Figures 10c, 12b).

Although spatial variation in rheological properties of the lithosphere is not required
in order to explain the first-order features of the deformation of the region, it is likely that
the area around the North Anatolian fault and its extension into the Aegean is somewhat
weaker than the rest of the region. The reduction in viscosity coefficient (B, Eq. (1)) that
gives the best the fit to GPS observations in this region is a factor of 50% for a lithosphere
whose power-law exponent, 7, is 3 or 20% for n = 9 (Section 5.5 and Figure 8).

A: Appendix: Solution of Thin-sheet Equations
A.1 Analytical solutions
A.1.1 Flow of a rectangular Newtonian thin sheet

The Cartesian form of the thin-sheet equation is

26?” N O0Tyy N 0Ty _ 1or
0x Ox ay L ox
0Tyy  O0Txx OTxy 10r
Jdy ay ox L dy (A-D

[Bird and Piper, 1980; England and M®Kenzie, 1983]. We treat the region of interest as a
rectangular box (0 < x < [;—w < y < w, with the x-direction being approximately eastward
and the y-direction being approximately northward: Figure 4). We neglect the y-component
of velocity, and allow the GPE of the sheet to vary only in the x-direction, with a constant
gradient AI'/I, where AT represents the difference in GPE between Eastern Anatolia and the
Southern Aegean. Eq. (A.1) then reduces to

OTxx  O0Txy AT

2 5 "I (A.2)

For a Newtonian fluid of constant viscosity n, Eq. (A.2) with u,, = 0 becomes

Puc  10%u, AT

+ = = , A3
dx? 4 9y? 4Ll (A-3)
We setu, = 0ony = +w. On x = 0 we apply a normal force per unit length arising from the
difference Al'w in GPE across the boundary (outside—inside). This condition requires that
0 AT
uc| _ _Alw (Ad)
0x |- 4nL
Similarly, we set
6ux AFE
7 = A5
0x |, 4nL (A-5)

where Alg is the contrast in GPE across the boundary x = [ (again, outside—inside). With
these boundary conditions, the solution to Eq. (A.3) is

ATw? [ y?
Uy = - -1
2nLl \w?
4w o (=D" cos(2¢,y)
ATy cosh (cn(l — x)) — ATg cosh A6
’ nan;)(2n+l)2 sinh (¢, 1) ATweosh (eal =) = Al cosh (cax)) - (A.6)
where @n+ D)
anu (A7)
4w
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Figure A.1. Components of the analytical solution for flow of a Newtonian viscous sheet in a box. The
thick line shows the full solution (Eq. (A.6)), with/ = 1800 km, w = 300 km, L = 100 km. AI’, Al'w, and
AT'g were obtained by fitting Eq. (A.6) to the observed velocities in Anatolia and the Aegean, as described in
Section 4 and Figure 4. The thin horizontal line (labeled “AI" term”) corresponds to the first term in Eq. (A.6).
The thin line labeled “Sum of AI" and AI'g terms” adds the terms in the summation arising from the force AI'g

on the eastern (x = /) boundary.

The maximum magnitude of (westward) velocity is at x = 0, y = 0; the scaling of
this velocity, when GPE increases eastward and Al'w and AIl'g are positive, is given approxi-
mately by the retaining only the first term in the summation:

u AT w? . 4w I'w I'g (AS)
Hlmax = 0Ll " 72yL \tanh (xl/(4w))  sinh (xl/(@w)) ) :
With [ ~ 1800 km and w ~ 300 km, tanh (r//(4w)) ~ 1 and sinh (x//(4w)) ~ 50
Al'w? 4T
id wW (A.9)

o~ ———.
U] max 2Ll 7'[2]7L

A.1.2 Approximate solution for a thin sheet with power-law rheology

The first term in Eq. (A.6), in which u, is independent of x, describes flow in the thin
sheet in response to the gradient in GPE along it, AT'/I. This expression is equivalent to that
for fluid confined between two parallel planes and subjected to a constant pressure gradient
(Poiseuille flow) [e.g. Turcotte and Schubert, 2014, p. 357, and see Eq. (A.12)]. The terms in
the summation of Eq. (A.6) represent the response of the sheet to the boundary conditions on
x = 0and x = [. The magnitude of each of these terms decays approximately exponentially
with distance from the relevant boundary as may be seen, for example, by considering the
first term arising from the boundary condition on x = 0 when x < w:
4ATww ) cosh (n(l — x)/4w)  4ATww

rinL cos (y/2w) sinh (7l /4w) - 2yl
with an equivalent relation for velocities associated with the boundary condition at x = [.
The length scale for the decay is 4w/m, which is close to the length scale given by the anal-
ysis of England et al. [1985] for the case of a Newtonian fluid (see Section 3.2). In the con-
figuration we consider here, w ~ 300 km and, as we show in Figure A.1, the influence of the

cos (my/2w) exp (—mx/4w), (A.10)
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terms corresponding to the conditions on x = 0 and x = [ decreases by a factor of e within
about 400 km of those boundaries. For a power-law fluid, this length scale would be reduced
by a factor of 4/n; recall that the length of the region we consider is / ~ 1800 km.

These considerations suggest an approximate solution for a power-law fluid in which
velocities close to the boundaries x = 0,/ are influenced by forces at those boundaries, but
velocities distant from either boundary are described by Poiseuille flow forced by a constant
internal gradient of GPE, AI'/IL, in the x-direction. The equation for Poiseuille flow of a
power-law fluid described by Eq. (1) is

a?xy (l/nfl) (9 . 1/1’!*1 . AF
B_y = B\/E a (|€xy) gxy) = E, (Al])

where the quantity AI'/IL is equivalent to the pressure gradient acting in the x-direction in
the conventional description of Poiseuille flow and

. 1 |0u
E=V2sy]= —=|Z=
| x)‘ V2| dy
The solution to this equation, using the symmetry condition that du,. /0y = 0on y =0, is
\/§(n+1) wo\n y (n+1)
= AT |AT|"! (—) 1- (—) : A12
h AT s s " v (A.12)

This result generalises the solution of [Turcotte and Schubert, 2014, p. 357] to values of n
other than even integers.

The maximum speed in this flow is on the center line, y = 0:

(n+1) n
V2o (Arw) Ww. (A.13)

ilmax = 75 \ 2B

A.2 Numerical solutions

The thin-sheet approximation assumes that vertical tractions on vertical planes may
be neglected, so that density variations within the lithosphere are in local isostatic balance.
Under this condition, the stress balance equation for creeping flow in spherical coordinates
is:

20 7Tgg 18?¢¢ 1 (9?5'(;5 +C0t9 (_ _ ) 10T
z - _7 - 2
F 96 5 96  rsinf ¢ 100 " Too "L 36
1 07 2 0T 10T 2cotd 1 or
T, = T T O, = ——— S (Al4)
rsing 0 ¢ rsinf 0d¢ r a0 r rsin@L 3 ¢

where 6 and ¢ are respectively the co-latitude and the longitude (in radians) and r is the ra-
dial distance from the center of the earth, L is the thickness of the lithosphere, and I is the
gravitational potential energy per unit area of lithosphere (GPE) [Bird and Piper, 1980; Eng-
land and M€Kenzie, 1983; Gordon and Houseman, 2015; Houseman and England, 1986].

The relevant components of the strain-rate tensor are

. 10u
o = ;a—; (AIS)
1 6u¢ Ug
> = — + —cotf A.16
99 rsinf d¢ " r <0 ( )
1 1 Oug 10uy uy
: = = — +——F— — —coté A.17
cog 2 (r sinf d¢ r 06 r < ( )
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We non-dimensionalize these equations using the lithospheric thickness, L, as a scale
length and using a scale velocity, Uy, whence:

o . L
8ij = Sijio (AIS)
o (e o\ M=l
T LN
gpcL(1 = pc/pm) Ar
r
I = 5 (A.20)
gch (1 - pc/pm)
where Ar is the Argand number [England and M°Kenzie, 1982]
Ar = gch(l _pc/pm) (AZI)

B (Up/L)""

and all variables are identified in Table 1.

The equations (A.14), in their discretised non-dimensional form, are solved for ug, uy
subject to a prescribed set of velocities and forces on the external boundary to the sheet,
using a finite-element method that was adapted from the method of Houseman and Eng-
land [1986]; Houseman et al. [2008] by projecting the spherical problem onto the Carte-
sian plane using the sinusoidal equal area projection and neglecting the small variation in
r. A finite-element mesh of approximately equidimensional triangles is generated using the
triangle program of Shewchuck [2002], with the size of the elements being reduced un-
til well-resolved solutions are obtained. This mesh include nodes at the locations of all GPS
measurements used to constrain the calculations (Section 2).

With this non-dimensionalisation, model velocities scale as Ar". Because U, the scale
factor that relates model velocities to observed velocities, is unknown a priori, we choose
an arbitrary value of Ar (that results in dimensionless velocities of order 1) and then deter-
mine the scale factor Uy using Eq. (8). B is then obtained from Eq. (9). Because Uy scales
as Ar™", the resulting value of B is independent of our choice of Ar. The Argand number is,
therefore, indeterminate in these calculations. This indeterminacy arises because the bound-
ary conditions contain no velocity scale (Section 3.2). Had we chosen to specify a non-zero
velocity on any part of our solution domain, that choice would have set a velocity scale —
hence B — and the Argand number would have become an additional parameter.
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