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ABSTRACT

Redox changes are one of the factors that influence
cell-cycle progression and that control the
processes of cellular proliferation, differentiation,
senescence and apoptosis. Proteins regulated
through redox-sensitive cysteines have been char-
acterized but specific ‘sulphydryl switches’ in
replication proteins remain to be identified. In
bovine papillomavirus type-1, DNA replication
begins when the viral transcription factor E2
recruits the viral initiator protein E1 to the origin of
DNA replication (ori). Here we show that a novel
dimerization interface in the E2 transcription activa-
tion domain is stabilized by a disulphide bond.
Oxidative cross-linking via Cys57 sequesters the
interaction surface between E1 and E2, preventing
pre-initiation and replication initiation complex for-
mation. Our data demonstrate that as well as a
mechanism for regulating DNA binding, redox
reactions can control replication by modulating
the tertiary structure of critical protein factors
using a specific redox sensor.

INTRODUCTION

The papillomaviruses (PVs) are small DNA viruses that
infect epithelial cells and cause warts, but some viruses are
linked to cancers in humans (1). PVs are also important
model organisms for gene control and replication in
mammalian cells, as their genomes are regulated
similarly. The viral transcription factor E2 is the master
regulator of the PV chromosome, controlling both

transcription and replication. Tethering E2 to DNA via
the C-terminal DNA binding and dimerization domain
(DBD) is essential for both these functions, and the N-
terminal trans-activation domain (TAD) is linked to the
DBD via a flexible hinge (2). The role of E2 in replication
is to recruit the viral initiator protein E1 to the viral origin
of replication (3; see Figure 1A). The critical E2 TAD-E1
helicase domain interaction (4,5) is conserved in bovine
papillomavirus (BPV) and human papillomaviruses
(HPV), and its molecular details have been revealed in
the crystal structure of HPV 18 E1 in complex with the
E2 TAD (6). The molecular events of the initiation of viral
replication are becoming increasingly well understood.
The first step in replication is the formation of an
E1E2–ori complex on the E1 binding site (BS) and E2
BS12 (Figure 1A). This pre-initiation complex contains a
dimer of E1 and a dimer of E2 (7). In a reaction that
requires ATP, E2 is displaced and more molecules of
E1 are recruited to ori. This initial E1–ori complex forms
the nucleus of a higher order E1 initiator complex that
melts the ori DNA. The action of the distal E2 BS11 is to
promote further recruitment of E1 molecules to the
precursor of the ori-melting complex, but E2 itself is
not required directly for ori-melting activity (8,9).
Ori templates with only a distal E2 binding site also
support plasmid replication. In vitro, the initial recruit-
ment of E1 to ori is also via an E1E2–ori-like complex,
mediated exclusively through the E2 TAD-E1
helicase domain interaction, but this complex forms less
efficient compared to templates with proximal E2 BS12
(10). Despite the emerging details of initiator
complex assembly, the underlying mechanisms of
cell-cycle regulation of BPV replication initiation remain
unclear.
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One important general question is how differential
control of processes like transcription or replication is
achieved by a limited array of regulatory proteins. This is
particularly relevant in BPV where a single protein, E2,
governs the entire genome. One mechanism is to regulate
DNA-binding site occupancy, for example by DNA
sequence affinity. However, controlling protein activity
through redox sensitive thiols in DNA-binding domains
(DBDs) has also emerged as a fundamental mechanism of
regulation. Transcription factors whose DNA-binding
domains are known to be regulated by thiols include
AP-1, NF-kB, SP-1 but also the papillomavirus E2 DBD
(11–14). In the case of E2, Cys340 has been identified as
the critical residue, sensitive to oxidizing agents and
sulphydryl modifying reagents such as N-ethylmaleimide.
However, as in most cases, the underlying mechanisms of
redox regulation, in particular the chemical species
involved, are not known in molecular detail (14). At the
same time, many cellular processes, including prolifera-
tion, differentiation, senescence and apoptosis, are redox-
regulated, and proteins other than transcription factors
have functional thiols (15–20). Here we describe the
crystal structure of the BPV E2 N-terminal TAD where we
were surprised to find a novel dimerization interface
stabilized by a disulphide bond. Our complementary
studies show that this interface forms between TADs
within a preformed E2 dimer which is itself stabilized by a
tight interaction between the C-terminal DBD domains
(21). We also demonstrate that TAD–TAD dimerization
inhibits the TAD–E1 interaction, in agreement with the
observation that the TAD–TAD dimerization interface
buries part of the surface involved in the interaction with
E1. Taken together, the data suggest that in the case of
BPV the E2 TAD interaction with E1 is redox regulated.
Furthermore, the reactive Cys57 residue of the TAD is
more sensitive to oxidation than Cys340 that regulates
DNA-binding activity, indicating that the TAD dimeriza-
tion reaction is a significant means of regulating BPV E2
activity. To our knowledge, this is the first demonstration
that the association of activation domains with their
targets can be redox regulated, and evidence supporting
the hypothesis that mammalian DNA replication may
come under redox control.

MATERIALS AND METHODS

Protein expression and purification

A truncated form of BPV-1 E2 comprising the N-terminal
transactivation domain (TAD; amino acids 1–209 of 410)
was expressed using pET11c in Escherichia coli BL21
(DE3). This construct includes the entire TAD, and
terminates at the beginning of the E2 hinge region.
Growth and expression was at 188C for 8 h after reaching
an OD600 �0.8. Frozen cells were lysed in 50mM
Tris–HCl pH 8.0 (48C), 0.2M NaCl, 5mM EDTA, 20%
w/v sucrose, 10mM DTT and 1mM PMSF by lysozyme
treatment (0.5 mgml�1), and sonication. The cleared
lysates were adjusted to 0.6M NaCl, nucleic acids
removed with polyethylenamine P, and protein precipi-
tated with 30% w/v (NH4)2SO4. The TAD was purified

Figure 1. Schematic of the BPV-1 initiator system and crystallographic
results. (A) E1 and E2 dimers bind cooperatively to adjacent sites in ori,
principally through an E1 helicase domain-E2 TAD interaction, but
there is also a specific requirement for a weaker interaction between the
DBDs of both proteins (7). The action of E2 BS11 is to promote
recruitment of further E1 molecules to an initial E1–ori complex that
form on displacement of E2 from E1E2–ori. A/T indicates the position
of the A/T-rich region. (B) Ribbon diagram of the E2 TAD dimer with
two monomers in different colours and the two areas of inter-subunit
interactions circled and shown in detail on the right. In N1 (top right)
an inter-subunit disulphide bond forms between the N-terminal
a-helical domains of the TAD; critical amino acids are shown with
corresponding electron density calculated at 1� level with likelihood-
weighted 2|Fo|� |Fc| coefficients. In N2 (bottom right), R172 and D175
residues form an ion pair interaction between the C-terminal b-sheet
domains. (C) Superposition of wild-type (cyan) and R172A mutant
(magenta) structures shown as Ca models in the same view as the blue
subunit in Figure 1B. C57 and R172 are coloured according to atom
type, with oxygens in red, nitrogens in blue and carbons in cyan (wild
type) or magenta (R172A).

Nucleic Acids Research, 2007, Vol. 35, No. 10 3505



by gel filtration (Sephacryl S-100, 25mM Tris–HCl pH 8.0
(48C), 0.25M NaCl, 0.1mM EDTA, 5% v/v glycerol,
2mM DTT and 0.1mM PMSF), anion exchange
[Source Q, 0–0.25M NaCl in 25mM Tris–HCl pH 8.9
(48C), 0.1mM EDTA, 2.5mM DTT, 10% v/v glycerol
and 0.1mM PMSF] and hydrophobic interaction chro-
matography [Source-phenyl, 1.25–0.25M (NH4)2SO4 in
25mM NaPhosphate pH 7.5, 0.1mM EDTA, 2mM DTT,
10% v/v glycerol and 0.1mM PMSF]. The purified E2
TAD was dialysed against 20mM Tris–HCl pH 8.0 (48C),
0.3M NaCl, 0.15mM EDTA, 10% v/v glycerol, 2mM
DTT and 0.1mM PMSF, concentrated and stored at
�808C. E2 and GCN4E2 proteins were purified as
previously described (22), except for an additional gel
filtration step with 1 or 10 mM DTT. Mutations in the
TAD were generated by overlapping primer extension.

Structure determination

Crystals were grown using hanging drop vapour diffusion
by mixing 1 ml of 15mgml�1 protein solution, containing
10mM Tris–HCl pH 8.5 and 0.3M NaCl, with 1 ml of
precipitant containing 0.1M Tris–HCl pH 8.5, 0.3M
NaCl and 18–22% tertiary butanol. For R172A the
reservoir also contained 2mM DTT. Crystals of both
wild-type and R172A mutant were transferred into a
cryoprotectant solution containing 60% tert-butanol,
0.3M NaCl and 10mM Tris pH 8.5. The X-ray data
were collected at ESRF and processed using DENZO
and SCALEPACK (23). Crystallographic calculations
were performed using the CCP4 suite of programs (24).
The initial structure (wild-type protein) was solved by
molecular replacement using the structure of HPV16 E2
TAD (25) as a search model, where there is 36% sequence
identity between BPV E2 and the HPV E2 TAD segment
used (residues 1–188). Refinement was performed using
REFMAC (26) and model rebuilding was carried out
using X-Autofit (27) implemented in Quanta (Accelrys).
Statistics of the X-ray data and final refined models are
shown in Table 1.

Oxidative cross-linking and protein analysis

E2 TAD proteins were incubated at 1mgml�1 (48C for
14–16 h) in 20mM Tris–HCl pH 8.0, 0.15M NaCl, 5% v/v
glycerol, 0.01% NP40, 0.1mM PMSF) with 20 or
0.05mM DTT after buffer exchange with a G25 microspin
column (Amersham Bioscience). Proteins were treated
with 30mM N-ethylmaleimide (NEM, from a 200mM
stock in ethanol) for 10min at room temperature before
heating to 958C (5min) and loading on a standard SDS–
PAGE gel (12%, 29:1 acrylamide:bis-acrylamide). Full
length E2 proteins were analysed on 8% gels (29:1 acryl-
amide:bis-acrylamide). Analytical gel filtration was per-
formed on a Superdex 75 column (Amersham Bioscience).
Gradient sedimentation of E2 (120–150 mg) was performed
on 20–40% glycerol gradients spun for 16 h at 237 000� g,
at 48C (Beckmann SW55 rotor). The buffer was as
described earlier, except 100mM NaCl. Sedimentation
profiles were analysed by SDS–PAGE, after treating
protein samples with N-ethylmaleimide as described

earlier, and densitometry (digitized images, Kodak 1D
3.5.4 software).

GST ‘pulldown’ assay

GST-E1 was purified as previously described (22). GST
was purified on glutathione-sepharose followed by gel
filtration. Ten pmol of GST-E1 or GST were bound to
10 ml of glutathione-sepharose before washing and binding
of 1 pmol of E2 in 200 ml reaction (20mM NaPhosphate
pH 7.2, 135mM NaCl, 10% glycerol, 0.1% NP40,
0.1mgml�1 BSA, 1mM PMSF and 1mM DTT) for
30min. PKA-tagged E2 proteins (MGRRASVH) were
labelled using PKA (Novagen) and [32P]gATP, and free
ATP was removed using a G25 column. Binding reactions
were washed in binding buffer, and recovered proteins
analysed by SDS–PAGE after treatment with NEM. Gels
were analysed by phosphorimaging (Fuji FLA3000, image
guage V3.3 software).

DNA-binding reactions

Probes and binding reactions with E1 and E2 have been
described before (8). Briefly, the BPV ori sequence cloned
into the pUC19 vector is TCACCGAAACCGGTAAGTA
AAGACTATGTATTTTTTCCCAGTGAATAATTGTT
GTTAACAATAATCACACCATCACCGTT, the distal
(BS11) and proximal (BS12) E2 binding sites are shown in
bold and the E1 BS underlined. The sequence of the

Table 1. Data collection and refinement statistics

Data collection
Structure Wild type R172A mutant
Space group P6122 P32
Unit cell parameters (Å) a¼ 61.5, c¼ 236.3 a¼ 60.5, c¼ 89.4
ESRF beamline ID14-1 BM14
Wavelength (Å) 0.934 0.919
Resolution range, overall (Å)a 25.0–2.8 25.0–2.35
Number of unique reflections 7171 (620) 14352 (1259)
Redundancyb 7.3 (5.8) 1.9 (1.8)
Completeness (%) 99.2 (92.1) 93.3 (90.2)
Reflections with I43�I (%) 83.6 (47.4) 83.3 (41.6)
I=�I
� �

32.0 (3.5) 10.7 (2.5)
Rmerge

c 0.058 (0.495) 0.068 (0.325)
B-factor from Wilson plot (Å2) 76.6 71.9
Refinement and model correlation
Number of atoms 1595 1702
Number of reflections used in
refinement

6594 13546

R-factord 0.233 0.210
Number of reflections used
for Rfree

500 716

Rfree
d 0.281 0.241

Average B-factors
Protein atoms (Å2) 78.0 71.8
Solvent (Å2) 75.9 77.4
Deviations from ideal geometrye:
Bond distance (Å) 0.007 (0.020) 0.010 (0.020)
Angles (8) 1.0 (1.9) 1.1 (1.9)

aValues in brackets correspond to the outer resolution shell.
bThe average number of observations of the same reflection.
cThe value of the merging R-factor between equivalent measurements
of the same reflection, Rmerge ¼ ð��jIjðhklÞ � I=ðhklÞ

� �
jÞ=ð�� I=ðhklÞ

� �
Þ:

dCrystallographic R-factor, Rfree¼�||Fo|� |Fc||/�|Fo|.
eR.m.s. deviation from the standard values are given with target values
in parentheses.

3506 Nucleic Acids Research, 2007, Vol. 35, No. 10



GCN4 binding site that replaces distal BS 11 is
ATGACTCAT. Reactions that assayed E1E2–ori forma-
tion were performed in the absence of ATP, while
reactions that assayed stimulation of E1–ori formation
by GCN4E2 from a distal binding site contained 5mM
ATP (8,9). The E2BS9 probe was made by annealing two
oligonucleotides, CCGGGAAGTACCGTTGCCGGTCG
AAC and CCGGGTTCGACCGGCAACGGTACTTC,
and labelling with [a32P]dCTP using Klenow exo�

(NEB), followed by a chase with 40 mM dCTP/dGTP.
Gels were exposed to phosphorimager screens. E2 binding
reactions were analysed on 6% (29:1 acrylamide:bis-acryl-
amide) gels and E1E2–ori-binding reactions on 5% (79:1
acrylamide:bis-acrylamide gels), both with 0.25�TBE
buffer. E1–ori complexes were resolved on agarose gels
(1% TAE running buffer), after cross-linking with
glutaraldehyde. Potassium permanganate footprinting
was performed as described (9).

RESULTS

CrystalstructureoftheBPVE2TADrevealsredox-dependent
dimerization

We determined the crystal structure of the BPV TAD at
2.8 Å resolution. Notably, the crystals formed only in the
absence of DTT. In the structure, two L-shaped mono-
mers of the TAD are arranged in a manner resembling a
handshake to form a dimer stabilized by a disulphide bond
formed between Cys57 residues of the two monomers,
Figure 1B. The dimer has overall dimensions of
45� 60� 65 Å, and a substantial �2500 Å2 of surface
area buried per monomer. Two contact areas of roughly
equal size form, one between the N-terminal halves (N1)
where the disulphide linkage resides and another between
the C-terminal halves (N2) of two TADs. A pair of
hydrogen bonds is formed in N1, between the side chains
of Gln12 and Arg58 (not shown), and an ion pair is
formed in N2 by the side chains of Arg172 and Asp175,
circled and shown on the right of Figure 1B. The total
number of direct inter-subunit hydrogen bonds, 2.4/
1000 Å2, is significantly lower than the average value of
7/1000 Å2 of contact area observed in dimeric proteins
(28), notwithstanding the more polar interface of E2, with
44% of interface atoms polar compared to the average
value of 35% observed in stable dimers. Thus, the dimer
appears to be largely stabilized by the disulphide linkage
between the two monomers.

We also obtained crystals for R172A mutant TAD
under the same conditions but with 2mMDTT and solved
the structure to 2.35 Å resolution. The crystals belong to
the space group P32 with one molecule per asymmetric
unit, inconsistent with any oligomeric arrangement.
Comparison of the R172A structure with the structure
of the wild-type protein shows that the mutant has an
identical fold with the overall r.m.s. difference of 0.76 Å
calculated over the Ca atoms. Most significant differences
are in a few surface loops that adapt to new crystal
contacts (Figure 1C). The data indicate that the inability
of R172A to form the dimer is exclusively due to the
reducing conditions and the R172A substitution.

Redox-dependentdimerizationof theBPVE2TADinsolution

To determine if the E2 TAD dimer forms in solution
Cys57 was exploited as a natural cross-linking group.
Recombinant C57A, R172A and D175A substituted
proteins were purified from E. coli. As negative controls
we mutated residues R37 and Q80, involved in formation
of the different HPV16 E2 TAD dimerization interface
(25), to alanine. The CD spectra of all mutant proteins
tested were similar to wild-type, demonstrating that
their overall protein fold was conserved (not shown).
In SDS–PAGE, all proteins were monomeric (23.86 kDa),
under reducing conditions (20 mM DTT, Figure 2A).
However, when the wild-type protein was incubated under
non-reducing conditions (50mM DTT), and treated with
N-ethylmaleimide (NEM) to alkylate-free cysteine resi-
dues prior to electrophoresis, a dimer formed (lane 8).
C57A and R172A were almost completely impaired for
dimer formation, while D175A was significantly dimeriza-
tion defective. R37A and Q80A behaved like wild-type, as
did a double mutant R37A/Q80A (not shown).
Dimerization under native conditions was confirmed by
gel filtration. The wild-type TAD was monomeric under
reducing conditions, but a dimeric peak formed under
non-reducing conditions (Figure 2B top left and right).
C57A, R172A and D175A mutant proteins eluted as a
monomer under reducing or non-reducing conditions,
except D175A where a small proportion of dimer was
evident under non-reducing conditions, as in Figure 2A,
lane 11. The dependence of stable dimerization on C57
cross-linking is consistent with the paucity of direct
hydrogen bonds at the dimer interface (Figure 1B).
Furthermore, there are other cysteine residues on the
surface of the protein that have their side chains exposed,
such as C5 and C160. However, these two cysteines do not
result in TAD cross-linking under non-reducing condi-
tions. These data therefore support the crystallographic
data demonstrating the importance of Cys57 in domain
N1 and residues R172 and D175 in N2 for specific dimer
formation.

TADs dimerize within a pre-formed E2 dimer

To confirm redox-dependent dimerization in full length
E2, E2 and mutants were purified by ion-exchange
chromatography followed by gel filtration in 10 or 1mM
DTT and assayed for dimerization by SDS–PAGE
after NEM treatment (Figure 2C). With 10 mM DTT,
wild-type E2 was monomeric under denaturing conditions
(lane 1). However, in the presence of 1mM DTT a
significant proportion of the protein formed cross-linked
dimers (lane 2), that were dependent on Cys57 (lane 3).
E2 R172A and D175A were also defective for redox-
dependent dimerization (lanes 4 and 5), but not the double
mutant R37A/Q80A (lane 6).
E2 forms stable dimers via the C-terminal DBD. The

TAD interaction could occur either within a pre-formed
dimer or between two E2 dimers, resulting in native
molecular masses of �90.8 and 181.6 kDa, respectively, as
illustrated in Figure 2D. When glycerol gradient sedimen-
tation followed by SDS–PAGE was performed in the
presence of 1mM DTT, Figure 2E, we only observed
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protein peaks between the 67 and 158 kDa markers, and
an overall sedimentation profile that was similar to the
protein assayed in 10 mM DTT (data not shown). The
sedimentation profiles of the reduced and oxidized forms

of E2 were almost coincidental, with native masses of 84
and 94 kDa, respectively. This difference is inconsistent
with tetramer formation, demonstrating that the TAD–
TAD interaction is intra-dimeric.

Figure 2. Redox-dependent dimerization of the E2 TAD in solution. (A) Wild-type TAD and mutant proteins (15 mg, 0.4mgml�1) were incubated
under reducing (20 mM DTT) and non-reducing (50 mM DTT) conditions before treatment with N-ethylmaleimide and analysis by SDS–PAGE. (B)
Gel-filtration analysis of the wild-type E2 TAD and mutants (100 mg, 1mgml�1) with 10 or 0.05mM DTT. The column was calibrated with the
markers indicated. (C) Redox-dependent dimerization of full length E2 and mutants purified in 10 or 1mM DTT and analysed by SDS–PAGE after
treatment with NEM (8mg each). 350mM 2-mercaptoethanol was used to completely reduce samples. (D) Schematic showing intra- or inter-TAD
dimerization. (E) Glycerol gradient sedimentation of E2 (1mM DTT). Lane 1, marker and lane 2, E2 reduced.
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Oxidative TAD dimerization abolishes the E1–E2
protein–protein interaction

Comparison of the TAD dimer with the structure of the
HPV E1–E2 complex (6), predicts that TAD dimerization
would interfere with the E1–E2 interaction for two
reasons, as illustrated in Figure 3A. First, TAD dimeriza-
tion buries more than half of the protein surface area used
in the E1–E2 interaction. Secondly, E2 TAD dimerization
would prevent its interaction with E1, as E1 occupies the
same space as residue segments 4–12 and 30–81 of the
second E2 subunit within the E2 TAD dimer, as shown on
Figure 3A. Here, the TAD subunit in blue is interacting
with E1, while the subunit in red is seen to overlap with E1
(yellow surface). To test this we purified, in the presence of
1mM DTT, E2 and E2 C57A that were tagged with a
protein kinase A (PKA) recognition sequence for
32P-labelling and used them in GST-pulldown assays.
Figure 3B lane 1 shows input wild-type protein (E2s-sE2
dimer and E2 indicated). Only the non-cross-linked form
of E2 bound GST-E1 immobilized on glutathione
Sepharose (lane 2), while the C57A mutant retained full
functionality in the E1 binding assay (lane 5). The proteins
did not bind to GST alone (lanes 3 and 6). The BPV
E1–E2 protein–protein interaction can therefore be
effectively redox regulated.

DNA binding by oxidized E2

When binding of E2 to a high-affinity site was analysed by
gel-shift assay, after equilibrating proteins in high
(10mM) or low (0.6mM) DTT (Figure 4A), �70% of
the complex that formed with wild-type E2 moved with
increased mobility in the gel (S-SE2-DNA, lanes 5–7),
compared to high DTT conditions (lanes 2–4). This form
likely represents the internally cross-linked species, as it
did not form with C57A, R172A (lanes 8–13) or D175A
(not shown). Since the difference in charge and mass
between the E2-DNA and S-SE2-DNA species is minimal,
a probable explanation for the difference in gel-mobility is
a change in molecular shape. This is consistent with the
observation that the S-SE2 protein sediments at a slightly
slower rate than the reduced species in glycerol gradient
sedimentation experiments (Figure 2E), as would be
predicted for a more compact spherical structure. Probe
binding was also reduced by 30–40%, since E2 DNA
binding is itself redox sensitive (14). We next asked if the
oxidative effects on E2 DNA binding are reversible. As
shown in Figure 4B, when E2 was pre-incubated at very
low DTT concentration (525 mM), DNA binding was
abolished (lane 3 compared to 2, 10mM DTT), but could
be restored by supplementing binding reactions with
increasing concentrations of DTT (lanes 4–7). DNA-
binding activity was first recovered in the form of the
cross-linked TAD dimer (S-SE2-DNA, not seen with
C57A, lanes 10–13), which was converted to the non-
cross-linked form at higher DTT concentrations. Together
with the results in Figure 4A, these experiments demon-
strate that Cys57 is a reversible and more reactive redox
centre than C340 in the DBD (14).

Oxidative TAD dimerization inhibits E1E2–ori pre-initiation
complex formation

E1E2–ori formation was then analysed by gel-shift using
an ori probe (Figure 1A), with the E1 binding site and E2
BS12, under reducing conditions (10mM DTT) and low

Figure 3. The E2–E2 TAD interaction interferes with the E1–E2
interaction. (A) The BPV E2 dimer is shown as a ribbon, in the same
orientation and colours as in Figure 1B. The subunit shown in blue was
overlapped with HPV18 E2 molecule of the E1–E2 complex (6). The
HPV E1 monomer in the E1–E2 complex is represented as a semi-
transparent molecular surface (yellow). A part of each of the three N-
terminal helices of the red subunit of E2 overlap directly with the E1
molecule, as is illustrated by a blurring of the helices in red.
The figure was generated using the program Chimera (40). (B) E2
and E2 C57A GST-pulldown assay. Twenty-five percent of input
protein is compared to 50% recovery.
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DTT conditions (0.6mM). E2 DNA binding is itself
redox sensitive and DNA binding is abolished at very
low DTT concentrations. At 0.6mM DTT, sufficient
DNA-binding activity is retained, while �70% of the
observed E2 binding activity is in the form of the
fast migrating S-SE2-DNA species, as described earlier
(Figure 4A and B).

With 10 mM DTT wild-type E2 bound DNA
(Figure 5A, lane 2). When the concentration of E1 was
increased, the E1E2–ori complex formed and the amount
of detectable E2–DNA complex diminished (compare
lanes 2–5). The minor species migrating between the E2
and E1E2–ori band shifts most probably correspond to
intermediates in the E1–E2 assembly. With low DTT
concentrations (0.6mM), consistent with the results
described in Figure 4A, a mixture of complexes corre-
sponding to the oxidized and reduced forms of E2
formed (E2–DNA and s-sE2–DNA, lane 6), but only the
non-cross-linked form (E2–DNA) was observed with
C57A (compare lanes 6 and 10). However, in the presence
of E1 at low DTT concentrations significant differences
were observed between wild-type E2 and C57A: with
wild-type E2 formation of E1E2–ori was reduced
compared to C57A (lanes 7–9, compared to 11–13),

Figure 4. Redox-dependent E2-DNA binding. (A) Gel-shift analysis of
wild-type E2, C57A and R172A (0.5–2 nM) binding to a high-affinity
binding site, with 10 or 0.6mM DTT. Cys57 cross-linking generates a
high-mobility DNA–protein complex. (B) Reversal of DNA-binding
inhibition and C57 cross-linking by DTT. Proteins were pre-incubated
in 25 mM DTT and binding reactions (20min incubation) supplemented
with 0, 0.2, 0.4, 1 or 10mM DTT. Lanes 2 and 8, control reactions
maintained at 10mM DTT. For wild-type E2, DNA-binding activity is
first recovered in the form of the TAD cross-linked species (lanes 4–8),
not seen with the C57A mutant (lanes 10–13).

Figure 5. Oxidative TAD dimerization and E1E2–ori pre-initiation
complex formation (A) E1E2–ori formation assayed on a BPV ori
probe with the E1 BS and E2 BS12 (0.05 nM; E2, 0.25 nM and E1 from
0.1 to 0.5 nM). E1E2–ori forms efficiently with wild-type E2 at 10mM
DTT (lanes 3–5) or with the C57A mutant (lanes 11–13). The
s-sE2–DNA complex does not form an E1E2–ori complex (lanes 6–9),
and E1E2–ori complex formation is impaired with wild-type E2 at low
DTT concentrations. (B) Recovery of E1E2–ori formation after
oxidation of E2. Lanes 1–4, control reactions demonstrating
E1E2–ori formation at 10mM DTT. Lanes 5 and 6, E1 or E2
incubated alone with probe at 25 mM DTT. Lanes 7–10, 25 mM DTT
pre-incubation and binding reactions supplemented with no additional
DTT, 0.4, 1 or 10mM DTT.
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while the E2-DNA-binding activity appeared similar for
both proteins (lane 6 compared to 10). When the products
of E2-DNA binding in these reactions are also compared,
it is clear that for the wild-type protein (0.6mM DTT)
the amount of S-SE2DNA complex that forms does not
change when E1 is added (lanes 7–9 compared to 11–13),
but the amount of non-cross-linked complex (E2-DNA)
diminishes. Comparing the ratios of the E2 to E1E2–ori
band-shifts indicate that conditions that favour
s-sE2–DNA complex formation are inhibitory for
E1E2–ori formation. Furthermore, E2 C57A assayed in
0.6 mM DTT was as competent as the wild-type protein
assayed at high DTT concentration for E1E2–ori forma-
tion (lanes 3–5 compared to 11–13), suggesting that the
redox-dependent change in E2-DNA-binding affinity has a
minimal effect on E1 recruitment to ori. This is consistent
with the E2 TAD–E1 HD interaction being a major
component of cooperative E1–E2 DNA binding (6).
E1 does not bind the probe without E2 (lane 14), and
E1 ori binding alone is relatively insensitive to DTT
concentration over the range tested (10 to 0.05mM, see
later). We next asked if E1E2–ori formation could be
restored after complete oxidation of the proteins.
The results shown in Figure 5B demonstrate that pre-
incubation in 25 mM DTT abolishes E2-DNA binding
(lane 6 compared to 3, as demonstrated in Figure 4B) and
E1E2–ori complex formation (lane 7 compared to 4).
However, supplementing binding reactions with increasing
concentrations of DTT restored E1E2–ori complex
formation (lanes 8–10), indicating that the proteins are
not intrinsically susceptible to irreversible oxidative
inactivation. Our biochemical studies therefore demon-
strated that C57-dependent oxidative dimerization of the
E2 TAD, within a stable E2 dimer otherwise dimerized
by the tight DBD interaction (21), can regulate E1
recruitment to ori, the first event in replication initiation.

Oxidative TAD dimerization suppresses E2-dependent
formation of an E1 replication initiation complex

In BPV a second high-affinity E2 binding site (E2 BS11) is
positioned 33 bp upstream of the E1–E2 BS12 binding site
arrangement, as depicted in Figure 1A. A distal E2 site
alone can drive replication in transient assays (3), from an
E1E2–ori-like complex (10). However, its most likely role
in viral replication is to promote formation of a replica-
tion active ori-melting complex from the primary E1–ori
complex derived from E1E2–ori (9). In the experiments
described earlier in Figure 5A, a direct assessment of the
effects of TAD cross-linking on E1E2–ori pre-initiator
complex formation is complicated by the redox-sensitive
DNA-binding component of E2. However, it has been
demonstrated that when E2 functions from a distal
position, there is no requirement for the E2 DBD, in
marked contrast to initiator complex assembly from
proximal BS12 where there is an obligatory requirement
for a specific E1 DBD–E2 DBD interaction (29). In the
former case, targeting of the E2 TAD to DNA can be
achieved with a heterologous DBD, and a chimaeric E2
protein where the E2 DBD is replaced with that of the
yeast transcription factor GCN4 (GCN4E2) is active in

transient replication assays (29). Since DNA binding of
GCN4 is not redox-sensitive, we were able to test directly
the effect of oxidative TAD dimerization on formation of
an active E1–ori initiator complex. Accordingly, reactions
were assembled with purified recombinant E1, E2GCN4
and a template with a distal GCN4 binding site, with the
ATP (5mM) required for formation of an E1–ori DNA
melting complex. Stimulation of E1–ori complex forma-
tion by GCN4E2 proteins was measured by gel-shift
analysis, and ori-DNA melting with the potassium
permanganate footprinting assay.
In Figure 6A, purified GCN4E2 (GE2) and the C57A

mutant (GE2C57A) were assayed in parallel for E1–ori
complex formation and DNA melting under reducing
conditions (2 mM DTT). The results of the gel-shift assay
are shown above the results of the potassium permanga-
nate assay; the lane numbers in each case correspond to
the same reaction. In the gel-shift shown earlier
(Figure 6A), GCN4E2 and the C57A mutant demon-
strated little difference in their ability to promote E1–ori
complex formation at low E1 concentration (lanes 5–8 and
10–13 compared to lane 4 with E1 alone). Likewise, in
the potassium permanganate assay shown below, both
proteins promoted ori-melting to similar extents, over the
A/T-rich region and in the proximal E2 BS (lanes 5–8 and
10–13 compared to lane 4). However, we note that high
concentrations of the chimaeric proteins appeared inhibi-
tory for melting, which is not normally observed with
wild-type E2 (8,9). At low DTT concentrations (0.05mM),
Figure 6B, wild-type GCN4E2 was significantly impaired
in its ability to stimulate E1 complex formation (lanes 5–8
and 10–13 compared to 4), while the C57A mutant
functioned like the proteins assayed at 2 mM DTT. The
impaired ability of wild-type to stimulate E1–ori complex
formation was reflected in the potassium permanganate
melting assay, shown below. Here, the extent of ori-melting
promoted by the highest concentrations of GCN4E2 was
comparable to those observed at the lowest concentrations
of the C57A mutant (lanes 8 and 10). Oxidative TAD
dimerization therefore impinges on all levels of E2-
dependent replication initiation complex assembly.

DISCUSSION

We have characterized structurally and functionally a
dimeric form of the BPV E2 transactivation domain.
A remarkable feature of this novel BPV E2 TAD dimer is
that it is stabilized by only a few direct inter-subunit
hydrogen-bonding interactions and a salt bridge resulting
in a relatively loose contact. However, under non-reducing
conditions the two subunits covalently cross-link by a
reversible disulphide bond, thus stabilizing the dimer
interface. In a pre-formed E2 dimer stabilized via the tight
interaction of the DBDs, two TAD domains linked via
flexible hinges are always in close proximity. The flexible
or ‘open’ nature of the TAD interface would allow the
interaction with regulatory partners, but upon disulphide
bond formation a ‘closed’ dimeric form with
reduced surface area for contact would result. This type
of post-translational modification is reminiscent of the
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Figure 6. Replication initiation complex formation and ori-melting under reducing and non-reducing conditions. (A) Stimulation of an
E1–ori-melting complex formation by wild-type GCN4E2 (E2 amino acids 1–319 fused to GCN4 amino acids 218–282) and C57A mutant under
reducing conditions (2mM DTT). Binding reactions were assembled and a proportion of the reaction mix analysed for site occupancy by gel-shift
(above) and for ori-melting by KMnO4 footprinting (below). The probe contained a GCN4 binding site at a distal position, replacing E2 BS11. Lane
1, free probe. Lanes 2–4, E1 alone, 50, 25 and 10 nM. Lanes 5–8, 10 nM E1 and 0.375, 0.75, 1.5 and 3 nM wild-type GCN4E2 (GE2). Lane 9, 3 nM
GCN4E2. Lanes 10–14, as 5–9 but containing the C57A TAD mutant (GE2C57A). (B) Proteins assayed under non-reducing conditions, 0.05mM
DTT. All reactions were otherwise as described in (A).
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modes of regulation of the redox sensors Yap1 (30) and
OxyR (31) that function in micro-organisms to regulate
the response to environmental redox changes. This
structure therefore has the hallmarks of a regulatory
sulphydryl switch.

It is noteworthy that the BPV TAD dimer is distinctly
different in its contacts from those seen in the HPV 16 E2
TAD (25), and that in HPV 11 the species is apparently
monomeric (32). However, at the amino-acid level TAD
sequences exhibit a great degree of variability (2), with
only 32, 33 and 36% sequence identity between BPV E2
TAD and the corresponding domains in HPV18, HPV16
and HPV 11, respectively (Figure 7). Examination of the
amino-acid sequences of E2 proteins from various PVs
does show that a cysteine at position 57 is found in BPV
type 1 and 2 that cause skin warts in cattle. Other
papillomaviruses with known sequence do not have a
cysteine in the equivalent position, indicating that the
disulphide bond observed in BPV will not form and that
replication control will not be achieved using an identical
redox sensor to the one we describe. However, it is
possible that similar dimers can form in other PVs but are
stabilized by different post-translational events. It is also
possible that the varying types of oligomerization
observed in PV E2 structures reflect the somewhat
different regulatory roles played by E2 in the various
viral sub-groups. For example, the arrangement of E1 and
E2 binding sites in a tandem array at ori (Figure 1A) is
unique to the fibropapillomaviruses, and the significance
of the E1E2–ori complex that therefore forms is not clear.
These viruses also generate distinctive lesions that have a
fibroblastic as well as epithelial component, and are large

with a high viral burden characteristic of vigorous
replication. The Cys57-induced dimerization of E2 in
BPV may thus reflect host-specific adaptation of the virus
selected by evolution against other modifications.
Our findings suggest that oxidative TAD dimerization

could have a role in controlling BPV replication initiation
by masking and unmasking a binding surface for
interaction with the initiator protein E1. E2 may act as a
redox sensor where determinants in the TAD and DBD
regulate initiator complex assembly, as modelled in
Figure 8. In Figures 3B, 5A and 6 we demonstrate that
disulphide bond formation abolishes the E1–E2 protein–
protein interaction and replication initiation complex
formation in vitro, consistent with the structural analysis
of the E1E2 complex (6). Furthermore, we demonstrate in
Figure 4 that Cys57 is a more sensitive redox centre
than Cys340, the accepted determinant of redox-
dependent E2-DNA binding (14). This therefore implies
a significant role for TAD dimerization in regulating BPV
E2 activity. The intracellular redox potential is known to
fluctuate in the cell-cycle, with a pro-oxidative state being
established at the G1/S boundary, which lasts until mitosis
(18,33,34). Furthermore, cell-cycle arrest during oxidative
stress may be through a Cdc25C redox response (35).
It has therefore been hypothesized that critical cell-cycle
events are regulated by redox switches (33), and our data
on BPV E1/E2 proteins provides experimental evidence
indicating that replication initiation reactions may be
under such control. S-phase replication of BPV occurs by
a ‘random choice’ mechanism rather than each replicon
replicating only once (36). The redox mechanism of
control is not necessarily inconsistent with the random

Figure 7. Alignment of E2 TAD sequences from BPV1, BPV2, HPV11, HPV16 and HPV18 generated by ESPript (41) with the secondary structure
of BPV 1 TAD shown above. Residues that stabilize the dimer and that were mutated in this study are indicated with the blue triangles.
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choice mode, since E1–E2 dissociation occurs on initiation
(8) and would be required before TAD cross-linking
could occur. In the pro-oxidative environment of S-phase
E2 TAD cross-linking could prevent further initiation
until E2 reduction restores the E1–E2 interaction. This
mechanism may function, with the assistance of the redox
control of E2-DNA binding (14) and cyclin-dependent
kinase activity (37), as part of the licensing system that
ensures the stable propagation of the BPV genome.
Redox control may negatively regulate initiation, while
cyclin activity provides an initiating signal confining
replication to S-phase.
Papillomavirus transcription and replication are also

both tightly coupled to epithelial differentiation. A
gradient of protein oxidation exists across the dermis,
with the stratum corneum exposed to an oxidative
environment (38). In the outer layers of the dermis BPV
switches from a Cairns-type to a rolling-circle mode of
replication that may not require E2 (39). Oxidative
inactivation of E2 could be the mechanism whereby
replication changes from an E1–E2 regulated to an
E1-only unregulated mode that drives high copy number
viral amplification. The process of characterizing redox
switches directly in cultured cells is inherently complex
and has thus far not been achieved in mammalian cells,
where the redox status of cells is difficult to measure,

control or correlate to the in vivo situation. A verification
of our proposals therefore awaits the development of
systems to achieve just this, and may reveal additional
regulatory roles for E2 redox-dependent dimerization.
However, our structure-function study with BPV should
provoke renewed interest in this area, and may lead to the
discovery of similar redox sensors that function in the
mammalian cell-cycle or epithelial differentiation.
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