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Abstract 

We assess the potential improvement in the performance of 

MFCC-based automatic speaker recognition (ASR) systems 

with the inclusion of linguistic-phonetic information. 

Likelihood ratios were computed using MFCCs and the 

formant trajectories and durations of the hesitation marker um, 

extracted from recordings of male standard southern British 

English speakers. Testing was run over 20 replications using 

randomised sets of speakers. System validity (EER and Cllr) 

was found to improve with the inclusion of um relative to the 

baseline ASR across all 20 replications. These results offer 

support for the growing integration of automatic and 

linguistic-phonetic methods in forensic voice comparison. 

Index Terms: forensic voice comparison, automatic speaker 

recognition, hesitation markers, formant dynamics  

1. Introduction 

Forensic voice comparison (FVC) accounts for the majority of 

casework conducted by forensic speech scientists. FVC 

typically involves the comparative analysis of speech samples 

of a known suspect (e.g. police interview) and an unknown 

offender (e.g. covert drug deal). In such cases, it is the role of 

the expert to evaluate the strength of the speech evidence 

under the competing propositions of the prosecution (i.e. the 

suspect and the offender are the same person) and the defence 

(i.e. the suspect and the offender are different people).  

Two sets of methods are commonly used in FVC: 

auditory-acoustic (linguistic-phonetic) analysis and automatic 

speaker recognition (ASR). These methods have largely 

developed independently. However, a growing body of 

research focuses on the integration of the methods to improve 

the performance of FVC systems. [1] and [2] investigated the 

performance of a generic Mel frequency cepstral coefficient 

(MFCC)-based ASR system when fused with formant and 

tone (f0) trajectories of vowels in standard Chinese. The 

results show that the fusion of linguistic-phonetic and ASR 

systems improves performance above the baseline ASR. 

However, smaller improvements in validity were obtained 

with mobile phone recordings. The authors therefore conclude 

that labour-intensive linguistic-phonetic analysis may be 

unwarrented in FVC casework. [3] present promising results 

resolving the false acceptances produced by an i-vector-based 

ASR using voice quality analysis. The move towards an 

integrated approach is also highlighted by the inclusion of a 

human-assisted ASR (HASR) element within the NIST 

evaluations in 2010 [4]. Further, the use and acceptance of 

ASRs in conjunction with linguistic-phonetic analysis in 

casework is increasing, with labs in Germany and Sweden 

providing conclusions based on combinations of analyses.  

In [5] we presented the results of likelihood ratio (LR)-

based testing using combinations of different spectral and 

temporal features extracted from the hesitation markers uh and 

um. Hesitation markers are thought to be good speaker 

discriminants since they occur frequently, are less susceptible 

to coarticulation than lexical vowels, and display less within-

speaker variability since speakers have little conscious control 

over their production [6,7]. In [5], testing was conducted using 

single recordings from a set of 60 young male speakers of 

standard southern British English (SSBE) [8]. Different 

combinations of input variables for each hesitation type were 

analysed and compared in terms of strength of evidence and 

system performance. The best performing system used the F1, 

F2, and F3 trajectories of the vocalic portion of um fitted with 

quadratic polynomials, together with vowel and nasal 

durations. This system achieved an equal error rate (EER) of 

4.08% and a Log LR cost (Cllr) [9] of 0.12. A number of 

general findings also emerged from these tests. First, um 

consistently performed better than uh. Second, the inclusion of 

information from the first three formants outperformed any 

individual formant or combination of two formants. Third, 

modelling the formant trajectories of um dynamically (i.e. 

with multiple measurements across the duration of the vowel) 

outperformed static midpoint analyses. However, for uh, 

midpoint input outperformed dynamics. Finally, the inclusion 

of durations consistently improved system performance. 

The present study expands on the promising results of [5] 

to assess the potential additional value of combining MFCC-

based ASR systems with the best performing hesitation 

system, i.e. the formant dynamics and durations of um. As in 

[1] and [2], the ASR acts as a baseline system against which 

the individual and fused systems are compared. Performance 

is evaluated in terms of both EER and Cllr. This study builds 

on [5] in a number of ways. The same corpus is used, but two 

recordings of each speaker in separate forensically relevant 

tasks are analysed. This provides a more realistic estimation of 

the within-speaker variability in FVC casework, and therefore 

a more realistic representation of the performance of the 

systems under casework conditions. The analysis includes 

more data per speaker than in [5]. Finally, multiple 

replications of the same experiment are conducted using 

randomised sets of speaker. 

2. Methodology 

2.1. Recordings 

Data were drawn from the Dynamic Variability in Speech 

(DyViS) corpus [8]. DyViS contains male speakers of SSBE 

aged 18-25. Recordings of Tasks 1 and 2 were used. Task 1 

involves a mock police interview in which the participant is 

questioned about a crime. Task 2 involves an information 



exchange task conducted over the telephone between the 

participant and an accomplice. For this study the high quality, 

near-end studio recordings of both tasks were used. Both tasks 

are around 15 minutes in duration. In their design, DyViS 

tasks 1 and 2 capture the situational differences across 

recordings (e.g. interlocutor, topic, Lombard speech due to 

telephone transmission) typical in real FVC casework. The 

tasks were recorded in separate sessions on the same day. 

There was thus some time between the two sessions. 

2.2. Feature extraction 

2.2.1. Linguistic-phonetic system 

The linguistic-phonetic system consisted of quadratic 

polynomial coefficients derived from the F1 to F3 trajectories 

of the vocalic portion of um, as well as vowel and nasal 

durations. PRAAT TextGrids containing manually segmented 

tokens of um were already available for 88 of the 100 speakers 

for Task 1. um tokens from the Task 2 recordings were also 

segmented for the same 88 speakers. For both tasks, F1 to F3 

values were extracted at +10% steps across each vowel, 

tracking between five and six formants within a range of 0 to 

5kHz. Vowel and nasal durations were also extracted. 

The raw data were inspected visually and obvious 

measurement errors removed. Missing values were replaced 

with the mean of the values for the adjacent steps. A series of 

heuristics were then applied to remove less obvious errors. 

Data points outside specific ranges were removed: 250-900Hz 

for F1, 900-1900Hz for F2, and 1900-3200Hz for F3. 

Univariate outliers were calculated based on the group mean at 

each +10% step. Values of greater than ±3.29 standard 

deviations from the mean were removed. Where possible, 

missing values were again replaced with the mean of adjacent 

values. Finally, formant trajectories were fitted with quadratic 

polynomials, generating three coefficients per formant.  

Speakers with fewer than 20 tokens per sample were 

removed, leaving a data set of 63 speakers with between 20 

and 49 tokens per sample (mean=38). Although the number of 

tokens per speaker may appear unrealistically large relative to 

real case data, the availability of large amounts of data is 

increasingly common in FVC casework, especially in high 

profile cases conducted over many months or years. 

2.2.2. Automatic system 

A generic MFCC-based Gaussian Mixture Model-Universal 

Background Model (GMM-UBM) system [10] was used as a 

baseline against which to assess the performance of the um 

and fused systems. Pre-processing was conducted to isolate 

the speech-active portion of each sample. Recordings were 

edited manually to remove overlapping speech, interlocutor 

speech, clicks and background noise. Automatic clipping 

detection was then run, and clipped sections removed. Finally, 

voice activity detection was performed using the voicebox 

toolkit in MATLAB to remove silences greater than 100ms. 

Utterances were then concatenated into a single sample. 

The audio were resampled at 10kHz (frequency range = 0-

5000Hz) and MFCCs were extracted using the rastamat 

toolkit in MATLAB. A pre-emphasis filter (coefficient value = 

0.97) was applied to each sample. Samples were then divided 

into a series of frames using a 20ms hamming window shifted 

at 10ms across the duration of the sample, i.e. with 50% 

overlap between adjacent frames. A Mel filterbank consisting 

of triangular filters was applied to the power spectrum of the 

signal for each frame. The energy in each filter was summed 

and logged, and the log filterbank fitted with a discrete cosine 

transform (DCT). The coefficients from the DCT are MFCCs. 

From each frame, 16 MFCCs were extracted. 16 delta and 16 

delta-delta coefficients were also appended to the feature 

vector for each frame. Following [11], data from three frames 

before and after utterance boundaries were removed. 

2.3. Likelihood ratio (LR)-based system testing 

Likelihood ratios (LRs) was used to evaluate the performance 

of the individual and fused systems. The LR is expressed as: 

 LR =
p(E |H

p
)

p(E |H
d
)

, (1) 

where p is probability, E is evidence, Hp is the prosecution 

proposition and Hd is the defence proposition. The numerator 

of the LR is equivalent to the similarity between the suspect 

and offender samples, while the denominator is equivalent to 

the typicality (or distinctiveness) of the offender sample 

relative to patterns in the relevant population [12]. 

2.3.1. Feature-to-score stage 

From the 63 available speakers, 60 were identified and 

randomly divided into sets of 20 training speakers, 20 test 

speakers, and 20 reference speakers. Same- (SS; 20) and 

different-speaker (DS; 190) comparisons were conducted 

using the training and test sets separately, with the reference 

set used to calculate typicality. Each comparison generates a 

LR-like score. Scores for the um system were computed using 

a MATLAB implementation [13] of Aitken and Lucy’s 

multivariate kernel density (MVKD) formula [14]. MVKD 

models the suspect data with a normal distribution and the 

reference data with kernel density made up of equally 

weighted Gaussians for each reference speaker 

GMM-UBM scores for the MFCC system were computed 

using the MSR Identity Toolbox [15]. A 512 Gaussian UBM 

was trained on data from the 20 reference speakers. Suspect 

samples for each development and test speaker were created 

using maximum a posteriori (MAP) adaptation. The suspect 

data were first modelled as a 512 Gaussian GMM. The GMM 

is parameterised using the means, variances and weights of the 

Gaussians. For each suspect, a copy of the UBM is made and 

then adapted towards the means, variances and weights from 

the suspect data. This is then used as the suspect model. The 

score (s) for each suspect-offender comparison is then: 
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where 𝑇 is the number of observations in the offender data, 𝑥$ 

is the offender value, 𝜆&'& is the suspect model and 𝜆()* is the 

background (reference) model. 

2.3.2. Score-to-LR stage 

The um and MFCC systems were initially analysed separately. 

For each system, calibration coefficients were calculated from 

the scores for the training data using logistic regression. The 

calibration coefficients were then applied to the scores for the 

test data to produce sets of calibrated log LRs (LLRs). The 

systems were also combined using logistic-regression fusion. 

In all cases, calibration and fusion coefficients were calculated 

using a robust MATLAB implementation [16] of scripts from 

Brümmer’s FOCAL toolkit [17]. 



2.3.3. System evaluation and replication 

The validity of the systems was evaluated using EER and Cllr 

[9]. EER represents the threshold-independent point at which 

the percentage of false hits (DS providing SS evidence) and 

misses (SS providing DS evidence) is equal. In this way EER 

is based on categorical, accept-reject decisions. Cllr is a cost 

function which penalises the system for the magnitude of 

contrary-to-fact LLRs, such that high magnitude contrary-to-

fact LLRs are penalised more heavily than contrary-to-fact 

LLRs around threshold. The closer the Cllr to zero, the better 

the validity of the system. Testing was repeated using quasi 

Monte Carlo simulations. 20 different randomised sets of 

training, test, and reference data were created, and patterns 

compared across replications. 

3. Results 

3.1.1. Individual systems 

Table 1 displays the mean and range of validity values for the 

MFCC and um systems across the 20 replications. In 17 of the 

20 replications the ASR system outperformed the linguistic-

phonetic system. The ASR systems produced a mean EER of 

2.57% compared with 4.83% for the um systems, and a mean 

Cllr of 0.144 compared with 0.261 for the um systems.  

 

Table 1. Mean and range (max-min) of Cllr and EER (%) 

values for the um and MFCC systems across 20 replications. 

 

System Cllr 

Mean 

Cllr 

Range 

EER 

Mean 

EER 

Range 

um 0.261 0.751 4.83 8.68 

MFCC 0.144 0.526 2.57 5.13 

 

Nonetheless, the results for um are extremely promising. First, 

um outperformed the ASR system in three replications, despite 

the ASR system using information from the entire speech-

active portion of the sample. Second, two of the um systems 

outperformed the system in [5] (where EER=4.08% and 

Cllr=0.12) despite the use of separate suspect and offender 

samples. The remaining 18 replications produced validity very 

close to that produced in [5]. This suggests that um is 

relatively robust against the type of stylistic variation 

commonly found across in FVC casework. 

For both the linguistic-phonetic and ASR systems, the 

variability in validity as a function of the configuration of 

speakers in the training, test, and reference sets is relatively 

large. At least for Cllr, this is, in part, due to two replications 

which provided atypically poor validity relative to the other 

replications. However, even excluding these replications the 

range of validity values is large. The implications of this are 

discussed in 4. 

3.1.2. Fused systems 

Figures 1 (Cllr) and 2 (EER) display the validity of each of the 

baseline ASR and fused systems, indicating the direction and 

magnitude of the change in performance with the addition of 

the um system. The Cllr of the fused systems was found to be 

consistently lower across the 20 replications. The absolute 

improvement in Cllr ranged from 0.003 to 0.43, with mean 

improvement of 0.09. In terms of percentage improvement, the 

addition of um reduced Cllr by between 8.7% and 89.9% 

relative to the baseline ASR systems. The largest improvement 

in performance was found for the ASR systems with 

inherently high Cllr. For replication 15, the fusion with the um 

system reduced Cllr from 0.55 to 0.12. For the ASR systems 

with inherently better Cllr (i.e. closer to 0), the magnitude of 

the improvement in the fused system was predictably smaller. 

 

 
Figure 1: Cllr values for the MFCC-only and fused systems 

across all 20 replication. 

 

Similar patterns were found for EER. With the exception of 

the three ASR systems which produced 0% EER, the 

remaining 17 fused systems produced lower EER than the 

baseline system. The absolute improvement in EER ranged 

from 0.26% to 5.13% (in this replication bringing EER for the 

fused system down to 0%), with mean improvement of 2.58%.  

 

 
Figure 2: EER (%) values for the MFCC-only and fused 

systems across all 20 replication. 

4. Discussion 

4.1.1. ASR vs. linguistic-phonetic systems 

The individual ASR and linguistic-phonetic systems 

performed extremely well across the tests conducted in this 

study, producing mean EER values of less than 5% and mean 

Cllr values of less than 0.27. In 17 of the 20 replications, the 

ASR system outperformed the linguistic-phonetic system, with 

the ASR systems optimally achieving an EER of 0% and a Cllr 

of 0.02. The performance of the um systems was also very 

good, optimally achieving an EER of 0.26% and a Cllr of 0.08. 

The extent to which the ASR systems outperformed the 
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linguistic-phonetic systems is not as great as may be expected, 

given the considerably larger portion of the recording analysed 

using the ASR. The results for um in 3.1.1. compare very well 

with previous studies which have considered the performance 

of formant trajectory-based linguistic-phonetic systems 

[18,19]. Together with [5], the results offer further support for 

the value of filled pauses as features in FVC cases. However, 

somewhat poorer validity for all systems is expected when 

using more forensically realistic materials, incorporating a 

greater degree of non-contemporaneity and channel mismatch.  

As shown in Table 1, however, for both forms of input the 

range of variability in system validity across replications is 

relatively large. This is purely random variation as a function 

of the particular speakers that make up the training, test, and 

reference data sets. The speakers themselves all performed the 

same tasks in the same way and are demographically well 

matched. The variability across replications is an important 

issue for FVC evidence, as it may have a considerable effect 

on the validity of the system presented to the court and the 

resulting strength of evidence. In the interests of transparency 

and objectivity, it may be necessary to perform similar 

replications to assess the sensitivity of system output in real 

FVC casework. It may then be possible for the expert to 

present a range of potential system validity values to the court 

(in the form of a credible interval). 

4.1.2. Individual vs. fused systems 

Despite um producing poorer system validity than the baseline 

ASRs, very promising improvement was found when the two 

systems were fused. Improvements in Cllr were found across 

all 20 replications. The mean absolute improvement in Cllr was 

0.09, equivalent to a mean decrease in Cllr of 58.1% relative to 

the baseline system. Maximally, the fusion of the two systems 

reduced Cllr by 89.9%. Such improvement is considerably 

greater than that reported in [1]. Improvements in EER were 

found for 17 of the 20 replications. The three exceptions were 

the baseline ASR systems which were already performing at 

ceiling for EER (i.e. they produced 0% EER individually and 

0% EER when fused with um).  

This suggests that the speaker-discriminatory information 

encoded within the formant dynamics and durations of um 

may be orthogonal to that encoded within the MFCCs and 

derivatives. Further, the combined systems benefit from the 

fact that, as well as the input data being potentially 

independent, the speaker-discriminatory power of both 

systems independently was very good. This leads to almost 

complete separation of SS and DS pairs when fused. These 

results highlight the potential value of informed linguistic-

phonetic analysis in FVC, and the importance of considering 

multiple variables (of different types) in any analysis. 

However, based on [2], the magnitude of the improvement in 

such fused systems over baseline ASRs may be less when 

using more forensically realistic data. 

5. Conclusions 

This study has shown that the performance of an MFCC-

based FVC system can be improved, in some cases 

considerably, by incorporating the formant trajectories and 

durations of the vocalic portion of the hesitation marker um. 

These results highlight the value of informed linguistic-

phonetic analysis in FVC, and support the move towards 

integrating the best elements of different methods in order to 

improve the validity and reliability of FVC evidence presented 

to courts. Future work will consider the additional benefit of 

linguistic-phonetic analysis to more state-of-the-art, i-vector 

ASR systems. 
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