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3Faculty of Administration, Accounting and Economics, Universidade Federal de Goiás,
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Understanding patterns in the frequency of extreme natural events, such as earthquakes, is important
as it helps in the prediction of their future occurrence and hence provides better civil protection. Dis-
tributions describing these events are known to be heavy tailed and positive skew making standard
distributions unsuitable for such a situation. The Birnbaum-Saunders distribution and its extreme
value version have been widely studied and applied due to their attractive properties. We derive
L-moment equations for these distributions and propose novel methods for parameter estimation,
goodness-of-fit assessment and model selection. A simulation study is conducted to evaluate the
performance of the L-moment estimators, which is compared to that of the maximum likelihood es-
timators, demonstrating the superiority of the proposed methods. To illustrate these methods in a
practical application, a data analysis of real-world earthquake magnitudes, obtained from the global
centroid moment tensor catalogue during 1962-2015, is carried out. This application identifies the
extreme value Birnbaum-Saunders distribution as a better model than classic extreme value distri-
butions for describing seismic events.

Keywords: GCMT catalogue; Generalized extreme value distributions; goodness-of-fit methods;
maximum likelihood and moment estimation; Monte-Carlo simulation; R software.

1. Introduction

Every scientific investigation can be thought of as sampling from a random variable (RV)
associated with some statistical distribution. One of the ubiquitous challenges of distri-
butional analysis is to reduce these data to a few relevant numbers without significant
loss of information. This reduction can be made by computing quantiles associated with
order statistics, or by other distributional metrics, as conventional moments (called here
C-moments and denoted as CM) [47]. In geosciences, data from the same variable are
measured at different locations to estimate their common statistical distribution.
A distribution can be characterized using CM through the mean, standard deviation

(SD), coefficients of variation (CV), skewness (CS) and kurtosis (CK). These moments
may also be used for estimation and goodness-of-fit (GOF) assessment. However, it is
well known that the CM have limitations when applied to data with high variation, heavy
tails and departures from symmetry. To avoid these limitations, an alternative to the CM
was introduced, with similar interpretations and applications, named L-moments (LM)
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[13]. In contrast to CM, LM are defined as the expected value of linear combinations
of order statistics. These can be used to obtain quantities similar to the conventional
SD, CV, CS and CK, named L-SD, L-CV, L-CS and L-CK, respectively [13]. It is also
possible to define standardized LM, known as LM ratios, analogous to the standardized
CM. As with CM, LM and LM ratios can be used for parameter estimation and GOF
assessment.
Challenges posed by extreme events are of interest in different areas. According to [50],

the LM theory can be considered one of the most significant recent advances related to
the understanding of such events. Standardized LM have been used for goodness of fit
in different extreme events [19, 21, 36].
LM have several advantages over CM. For example, LM GOF assessment is easy to

use and has powerful features for discriminating between distributions. In addition, LM
estimators are unbiased, robust and have standard errors (SE) smaller than other es-
timators [7]. These advantages are particularly important with data which have high
variability or skewness, as well as heavy tails, that is, under non-normality. Data that
frequently present these characteristics are endemic in the geosciences, and in particular
in earthquake data. Applications of LM is not limited to these sciences. There exist areas
as diverse as finance and reliability where LM have been applied [13, 48].
The Birnbaum-Saunders (BS) distribution has been extensively studied and applied

across a wide range of scientific areas because of its good properties [3], [14, pp. 651-663],
[23, 28–30, 32–34, 43, 53]. The BS distribution can be used to model many types of
unimodal data that take values greater than zero and are positive skew. [27] provided a
theoretical justification to why the BS distribution is a suitable model for describing envi-
ronmental data. For some applications of the BS distribution in earth and environmental
sciences, the interested reader is referred to, for example, [9, 12, 20, 24–26, 38, 44, 49].
The BS distribution has its origins in the theory of material fatigue. It is accepted

that fatigue is produced by cumulative damage. It starts with an imperceptible fissure
in the material provoked by stress, which is propagated through the material until a
critical threshold is reached, causing its fracture or failure. It has been shown that such
cumulative processes are well described by the BS distribution [3, 34].
Several phenomena, such as earthquakes, evolve in a similar manner to fatigue; see

[35] for an analogy in neural activity. Indeed, fatigue is created from vibrations and an
earthquake can be thought of similarly. It is accepted that earthquakes are produced
by the accumulation of energy, beginning with the deformation of rocks induced by the
movement of tectonic plates, where the geological fault is located; see [10] and references
therein for more details about the physical laws describing the generation of earthquakes.
This deformation grows due to the energy accumulated by stress, provoking the rupture
of rocks, when this energy exceeds a critical threshold, which releases the energy. The
difference between fatigue and earthquake generation is that in fatigue the failure occurs
when the threshold is reached, whereas in an earthquake the release of energy gener-
ates seismic waves that produce the event. Therefore, the BS distribution seems to be
a good candidate to model earthquake data. However, as mentioned, earthquakes corre-
spond to extreme events. Then, we need to use an extreme value (EV) version of the BS
distribution (EVBS), which was derived by [9].
Extreme value distributions have been used in seismology as it is assumed that the

distribution of earthquake magnitudes follows the Gutenberg-Richter law [41], which is
equivalent to the two-parameter exponential (EXP) distribution. The generalized Pareto
(GP) distribution extends the EXP distribution, and hence the GP distribution allows an
improved modelling of these magnitudes [45]. When modelling annual maximum earth-
quake magnitudes, the Gumbel (GU) distribution is analogous to the EXP distribution
[45], whereas the generalized extreme value (GEV) distribution extends the GU distribu-
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tion in the setting of maximum magnitudes [45]. Recent work on statistical distributions
proposed for modelling earthquake is attributed to [10]. Note that no applications of BS
distributions in seismology have yet been considered.
The main objectives of this paper for the BS and EVBS distributions are: (i) to derive

LM equations, (ii) to propose LM estimators and evaluate their performance, (iii) to pro-
vide GOF assessment using LM, and (iv) to apply these results to real-world earthquake
data. The proposed methods are evaluated using Monte Carlo (MC) simulations and
applied to annual maximum earthquake magnitude data taken from the global centroid
moment tensor (GCMT) catalogue.
The rest of the paper is organized as follows. Section 2 presents background to the BS

and EVBS distributions. Section 3 derives the LM of these distributions and proposes
estimation and GOF methods. Section 4 provides the numerical results, first by checking
properties with simulations and, second, by illustrating them with real-world earthquake
data. Finally, Section 5 presents the conclusions as well as discussing possible future
research.

2. Background

In this section, we introduce some preliminary aspects related to BS and EVBS distri-
butions.

2.1 The BS distribution

The BS distribution is defined in terms of the standard normal distribution by means of
the RV T = β(αZ/2 +

√
(αZ/2)2 + 1)2, where Z ∼ N(0, 1), α is a shape parameter and

β is a scale parameter, as well as the median of T . This is denoted by T ∼ BS(α, β) and
the corresponding probability density function (PDF) is

fT (t;α, β) =
1√
2π

exp

(
− 1

2α2

(
t

β
+

β

t
− 2

))
t−3/2(t+ β)

2α
√
β

, t > 0, α > 0, β > 0. (1)

Some properties of T ∼ BS(α, β) are: (A1) cT ∼ BS(α, cβ), for c > 0; (A2) 1/T ∼
BS(α, 1/β); (A3) Z = (

√
T/β−

√
β/T )/α ∼ N(0, 1), and (A4) V = (T/β+β/T−2)/α2 ∼

χ2(1), that is, V follows the χ2 distribution with one degree of freedom. Furthermore, the
mean and variance of T are E(T ) = β(1 +α2/2) and Var(T ) = α2β2(1 + 5α2/4), respec-
tively. The BS PDF, shown in equation (1), can be written as fT (t;α, β) = φ(a(t))A(t),

for t > 0, where φ is the standard normal PDF, a(t) = a(t;α, β) = (1/α)(
√

t/β−
√

β/t),

and A(t) = A(t;α, β) = da(t)/dt = t−3/2(t+ β)/(2α
√
β).

Figure 1 shows graphs of the BS PDF given in equation (1) for β = 1.0, without loss
of generality, and for values of α ∈ {0.1, 0.5, 1.0, 2.0, 4.0}. From this figure, note that the
BS distribution is continuous, unimodal and positively skewed (asymmetry to the right).
Also, note that, as α goes to zero, the BS distribution become symmetric around β (the
median of the distribution) and its variability decreases. In addition, as α increases, the
distribution tends to be more asymmetric, with a similar shape to the EXP distribution
when α = 4.0. Thus, α not only controls the shape, but also the skewness and kurtosis
of the distribution.
The BS cumulative distribution function (CDF) is FT (t;α, β) = Φ(a(t)), for t > 0,

where Φ is the standard normal CDF, whereas the BS quantile function (QF) is

t(q;α, β) = F−1
T (q) = β

(
αz(q)/2 +

√
(αz(q)/2)2 + 1

)2
, 0 < q < 1, (2)
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Figure 1. PDF Plots of the BS distribution for β = 1.0 and the indicated value of α.

where z ≡ Φ−1 is the standard normal QF, with Φ−1 being the inverse function of the
standard normal CDF.

2.2 The EVBS distribution

To define the EVBS distribution, the relationship between T ∼ BS(α, β) and Z ∼ N(0, 1),
given in equation (1), is relaxed allowing Z to follow a GEV distribution. The GEV
distribution depends on a parameter ξ ∈ R, known as the EV index, which is also a
shape parameter determining the tail behaviour of the distribution [6]. Thus, one of
the EVBS distributions proposed by [9], to deal with data of maxima, is denoted as
X ∼ EVBS(α, β, ξ), whose PDF is expressed as fX(x;α, β, ξ) = g(a(x); ξ)A(x). Here,
g(u; ξ) = dG(u; ξ)/du, with u ∈ R, where

G(u; ξ) =

{
exp(−(1 + ξy)−1/ξ), if ξ 6= 0 and 1 + ξx > 0;

exp(− exp(−y)), if ξ = 0.
(3)

Note that equation (3) is the unique non-degenerate limiting CDF of the sequence of
maxima for a deterministic number k, with k → ∞, in either independent and identi-
cally distributed or weakly dependent and stationary RV cases. From the CDF given in
equation (3), observe that the GU distribution is a particular case when ξ = 0. The CDF
of X ∼ EVBS(α, β, ξ) is

FX(x;α, β, ξ) =

{
exp(−(1 + ξa(x))−1/ξ), if ξ 6= 0 and 1 + a(x)ξ > 0;

exp(− exp(−a(x))), if ξ = 0;
(4)
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and the corresponding PDF is

fX(x;α, β, ξ) =





1
2xα exp

(
−
(

ξ
α

(√
x
β −

√
β
x

)
+ 1

)
−

1

ξ

)(
ξ
α

(√
x
β −

√
β
x

)
+ 1

)
−

ξ+1

ξ

×
(√

β
x +

√
x
β

)
, if ξ 6= 0;

1
2xα exp

(
1
α

(√
β
x −

√
x
β

)
− exp

(
1
α

(√
β
x −

√
x
β

)))(√
β
x +

√
x
β

)
,

if ξ = 0;

which is defined for x > (α2β + 2βξ2)/(2ξ2) −
√

(α4β2 + 4α2β2ξ2)/ξ4/2, if ξ > 0; for

x > 0, if ξ = 0; and for 0 < x < (α2β + 2βξ2)/(2ξ2) +
√

(α4β2 + 4α2β2ξ2)/ξ4/2, if
ξ < 0. As in the GEV case, from equation (4) we obtain a Birnbaum-Saunders-Gumbel
(BSGU) distribution when ξ = 0. Figure 2 shows graphs of the EVBS PDF given in
equation (4) for values of α ∈ {0.1, 0.5, 1.0, 1.5, 2.0, 4.0} and ξ ∈ {−1,−0.5, 0, 0.5, 1.0},
and without loss of generality β = 1.0. Note that the EVBS distribution is very flexible
with a unimodal or bimodal behavior (depending on the values of ξ) and a positive or
negative skew. When α is small, the asymmetry of the distribution depends on the values
assumed for ξ (for example, if ξ is negative, the distribution is skewed to the left). In
addition, when α increases, the distribution is skewed to the right (regardless of the value
assumed for ξ). Changes in the value of the kurtosis depend on the value assumed for ξ
[26].
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Figure 2. PDF plots of the EVBS distribution for β = 1.0 and the indicated values of (α, ξ).

The EVBS distribution for minima, proposed in [9], is denoted by X ∼ EVBS∗(δ, β, ξ).
Thus, for left tail, we write equation (4) with a limiting CDF G∗(u; ξ) = 1 − G(−u; ξ),
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where G is defined in equation (3). Then, the CDF of X ∼ EVBS∗(δ, β, ξ) is

F ∗

X(x;α, β, ξ) =

{
1− exp(−(1 + ξa(x))−1/ξ), if ξ 6= 0 and 1 + ξ > 0, x > 0;

1− exp(− exp(−a(x))), if ξ = 0, x > 0.
(5)

For the EVBS and EVBS∗ distributions, α is a shape parameter, β is a scale parame-
ter and ξ is also a shape parameter, but with ξ determining the right-tail behaviour of
the EVBS distribution or the left-tail behaviour of the EVBS∗ distribution. Properties
(A1) and (A2) of the BS distribution are also valid for the EVBS∗ and EVBS distribu-
tions, whose CM are mentioned in [26]. Also, it is possible to obtain BSGU and BSGU∗

distributions for minima and maxima, respectively. The QF of the EVBS distribution is

x(q;α, β, ξ) = F−1(q) = β
(
αz1(q)/2 +

√
(αz1(q)/2)

2 + 1
)2

, 0 < q < 1, (6)

where z1(q) = ((− log(q))−ξ − 1)/ξ, if ξ 6= 0, or z1(q) = − log(− log(q)), if ξ = 0.
For the EVBS∗ distribution, the QF is obtained replacing z1(q) by −z1(1 − q) in equa-
tion (6). Figure 3 shows graphs of the EVBS∗ PDF given in equation (5) for values of
α ∈ {0.1, 0.5, 1.0, 1.5, 2.0, 4.0}, of ξ ∈ {−1,−0.5, 0, 0.5, 1.0} and, without loss of gener-
ality, β = 1.0. From this figure, note that the EVBS∗ distribution can be unimodal or
bimodal, depending on the values of ξ. Observe that, if α is small, the skewness of the dis-
tribution depends on the value assumed for ξ (differently to what occurs with the EVBS
distribution). As ξ increases, the distribution is heavy left tailed. When α increases, the
distribution is asymmetric to the right, regardless of the ξ value.
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Figure 3. PDF plots of the EVBS∗ distribution for β = 1.0 and the indicated values of (α, ξ).
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3. Theoretical results

In this section, we derive the LM of BS and EVBS distributions and propose estimation
and GOF methods based on these LM.

3.1 L-moments

In general, the first four LM of a continuous probability distribution are defined as

λ1 =

∫ 1

0
x(q)dq, λ2 =

∫ 1

0
x(q)(2q − 1)dq,

λ3 =

∫ 1

0
x(q)(6q2 − 6q + 1)dq, λ4 =

∫ 1

0
x(q)(20q3 − 30q2 + 12q − 1)dq, (7)

where x(q) is the corresponding 100× qth quantile. The first LM, λ1, is the mean of the
distribution, and the second LM, λ2 > 0, is a scale measure. The LM ratios defined as

τr =
λr

λ2
, r = 3, 4, (8)

are dimensionless measures of the distribution shape. Analogously to the CM, the L-CS,
τ3, is a measure of skewness, with 0 ≤ τ3 ≤ 1. The L-CK, τ4, is a measure of kurtosis, with
(5τ23 − 1)/4 ≤ τ4 ≤ 1. The LM ratio τ = λ2/λ1 is the analogue of the conventional CV
and corresponds to the L-CV, where 0 < τ < 1 for distributions with positive support.
The sample LM are computed from the order statistics X1:n ≤ · · · ≤ Xn:n as

l1 = b0 =
1

n

n∑

i=1

Xi:n, l2 = 2b1 − b0,

l3 = 6b2 − 6b1 + b0, l4 = 20b3 − 30b2 + 12b1 − b0, (9)

where

br =
1

n

n∑

i=r+1

(i− 1)(i− 2) · · · (i− r)
Xi:n

(n− 1)(n− 2) · · · (n− r)
, r = 1, 2, 3.

The calculation of sample LM is implemented in the R software by the command Lcoefs

of the Lmoments package [17, 18].
Specific LM equations of the BS, EVBS and EVBS∗ distributions can be obtained by

substituting their corresponding QF into equation (7). In particular, for the BS distri-
bution, its first four LM are

λBS
1 = β

(
1 +

α2

2

)
, λBS

2 = 2βh2,

λBS
3 =

βα2
√
3

2π
, λBS

4 = β(20h4 − 30h3 + 12h2), (10)

where

hj =

∫ 1

0
qj−1αz(q)

√
(αz(q)/2)2 + 1dq, j = 1, 2, 3, 4. (11)
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In the case of the EVBS and EVBS∗ distributions, closed forms for first four LM are

λEVBS
1 =

{
β
(
α2(1 + Γ(1− 2ξ)− 2Γ(1− ξ))/(2ξ2) + h1 + 1

)
, if ξ 6= 0;

β
(
17πα2/54 + 1 + h1

)
, if ξ = 0;

λEVBS
2 =

{
β(α2((4ξ − 1)Γ(1− 2ξ) + (2− 2ξ+1)Γ(1− ξ))/(2ξ2) + 2h2 − h1), if ξ 6= 0;
β
(
32πα2/157 + 2h2 − h1

)
, if ξ = 0;

λEVBS
3 =





β
(
α2((2(9ξ)− 3(4ξ) + 1)Γ(1− 2ξ)− 4(3ξ)Γ(1− ξ)− 3(2ξ+1) + 2)/(2ξ2)

+ 6h3 − 6h2 + h1

)
, if ξ 6= 0;

β
(√

22πα2/15 + 6h3 − 6h2 + h1

)
, if ξ = 0;

λEVBS
4 =





β
(
α2
(
Γ(1− 2ξ)

(
5(16ξ)− 10(9ξ) + 6(4ξ)− 1

)
− Γ(1− ξ)

(
5(22ξ+1)− 20(3ξ)

+6(2ξ+1)− 2
))

/(2ξ2) + 20h4 − 30h3 + 12h2 − h1

)
, if ξ 6= 0;

β
(
11π2α2/400 + 20h4 − 30h3 + 12h2 − h1

)
, if ξ = 0;

(12)

and

λEVBS
∗

1 =

{
β
(
α2(1 + Γ(1− 2ξ)− 2Γ(1− ξ))/(2ξ2) + h1(α, ξ) + 1

)
, if ξ 6= 0;

β
(
17πα2/54 + 1 + h1

)
, if ξ = 0;

λEVBS
∗

2 =

{
β(α2((1− 4ξ)Γ(1− 2ξ) + (2ξ+1 − 2)Γ(1− ξ))/(2ξ2) + 2h2 − h1), if ξ 6= 0;
β
(
32πα2/157 + 2h2 − h1

)
, if ξ = 0;

λEVBS
∗

3 =





β
(
α2((2(9ξ)− 3(4ξ) + 1)Γ(1− 2ξ)− 4(3ξ)Γ(1− ξ)− 3(2ξ+1) + 2)/(2ξ2)

+ 6h3 − 6h2 + h1

)
, if ξ 6= 0;

β
(√

30α2/π2 + 6h3 − 6h2 + h1

)
, if ξ = 0;

λEVBS
∗

4 =





β
(
α2
(
Γ(1− 2ξ)

(
10(9ξ) + 24(22ξ)− 15(22ξ+1)− 5(24ξ) + 1

)
− Γ(1− ξ)

(
5(22ξ+1)+

−20(3ξ) + 3(2ξ+2)− 2
))

/(2ξ2) + 20h4 − 30h3 + 12h2 − h1

)
, if ξ 6= 0;

β
(
5α2

√
447/(4π2) + 20h4 − 30h3 + 12h2 − h1

)
, if ξ = 0;

(13)

where, in equations (12) and (13), Γ is the gamma function and ξ < 1/2, such that 1 − 2ξ > 0
in the argument of Γ(1 − 2ξ). Note that hj defined in equation (11), for j = 1, 2, 3, 4, used to
compute the LM of the BS, EVBS and EVBS∗ distributions by equations (10), (12) and (13),
have expressions for z and z1 as given in equations (2) and (6), respectively. Also note that the
L-CV, L-CS and L-CK of the BS, EVBS and EVBS∗ distributions do not depend on their scale
parameter.

3.2 Goodness-of-fit assessment based on L-moments

Next, three GOF assessment methods based on LM are proposed. First, we describe a method
known as the LM ratio chart, which has been widely used to select a suitable distribution. The
LM ratio diagram allows us to represent the LM of different distributions in a single graphical
plot. This graph is constructed using the known relationship between L-CK and L-CS for each
distribution. In particular, the coordinate axes are (τ3, τ4), as defined in equation (8), with a line
or region indicating the set of values of (τ3, τ4) permitted under the model. This plot is known
as the τ3-τ4 chart and is analogous to the β1-β2 chart used in CM [25]. Distributions belonging
to the location-scale family (for example, the normal distribution) are plotted as a single point
on the diagram. Two-parameter distributions with scale and shape parameters (for example, the
BS distribution) or three-parameter distributions with location, scale and shape parameters (for
example, the GEV distribution) are plotted as a line, with different points on it corresponding
to different values of the shape parameter. Distributions with more than one shape parameter
(for example, the EVBS distribution) generally cover two-dimensional areas on the graph. Due to

8
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constrains on τ3 and τ4 shown in Section 3, the LM ratio chart is bounded, unlike the β1-β2 chart.
Once the τ3-τ4 chart is constructed, the sample L-CK and L-CS can be plotted onto the chart for
GOF assessment. Points on or near the line (or region) indicate an adequate fit, whereas those
further away indicate a poor fit. Hence, the chart provides a visualization of what distributions
are compatible with the data set. Figure 4 (left) shows the LM ratio chart for the BS distribution
as a curve on the axes (τ3, τ4). When α → 0, we have τBS

3 → 0 and τBS
4 → 0.1226. These limiting

values for τ3 and τ4 represent the L-CS and L-CK of the normal distribution, respectively. This
is due to the fact that the BS distribution tends to the normal distribution as α → 0. Note
that here the LM ratio chart is plotted only for positive values of τ3, limiting our attention to
positively skew distributions. In Figure 4 (left), a curve for the gamma distribution and points
representing the EXP and GU distributions have been added for comparison. In the case of the
EVBS and EVBS∗ distributions, the charts contain regions, as seen in Figure 4 (center, right)
for ξ < 1/2; see equations (12) and (13). Note that, although not shown here, the LM charts for
the BSGU and BSGU∗ distributions contain curves which are subsets of the EVBS and EVBS∗

regions since, as mentioned before, the former distributions are particular cases of the latter ones.

0.0 0.2 0.4 0.6 0.8 1.0

0
.2

0
.4

0
.6

0
.8

L−CS

L
−

C
K

EXPGU
BS
gamma

−1.0 −0.5 0.0 0.5 1.0

−
0

.2
0

.0
0

.2
0

.4
0

.6
0

.8
1

.0

L−CS

L
−

C
K

EVBS
BSGU

−1.0 −0.5 0.0 0.5 1.0

−
0

.2
0

.0
0

.2
0

.4
0

.6
0

.8
1

.0

L−CS

L
−

C
K

EVBS*
BSGU*

Figure 4. LM ratio charts for BS (left), EVBS (center) and EVBS∗ (right) distributions.

A second GOF assessment method based on LM is obtained by plotting L-CV versus L-CS,
with coordinate axes (τ, τ3) as defined in equation (8). This is known as the τ -τ3 chart and it is
analogous to the γ-γ3 chart based on CM [25]. The relation between L-CV (τ) and L-CS (τ3) is
given in general by τ = λ−1

1 λ2
2λ

−1
3 τ3, with λ1, λ2 and λ3 being the 1st, 2nd and 3rd LM given in

equation (7), respectively. For the BS distribution, the τ -τ3 chart is calculated using the relation

τ =
16πh2

2τ3

α2(2 + α2)
√
3
,

where h2 is defined in equation (11). In the τ -τ3 chart, distributions belonging to the location-
scale family (for example, the GU distribution) are plotted as a line on the chart. Two-parameter
distributions with scale and shape parameters (for example, the BS distribution) generally cover
two-dimensional areas on the graph. The τ -τ3 diagram is not suitable for distributions with
location, scale and shape parameters or for distributions with more than one shape parameter
(as the GEV and EVBS distributions, respectively), because the set of allowed values covers the
whole first quadrant. Figure 5 displays the τ -τ3 chart for the BS distribution. In this figure, a
region for the gamma distribution and lines representing the EXP and GU distributions have been
added for comparison. Note that the BS and EXP distributions are contained within the gamma
region. Also, observe that both the τ3-τ4 and τ -τ3 charts can be used as a GOF exploratory
tool to propose or discard distributions in a global context. However, these charts do not permit
formal statistical tests for the distribution identified as appropriate. Some effort along these lines
has been conducted using acceptance regions based on LM, but these are beyond the objective
of this paper, because goodness of fit assessment is not our main focus. Readers interested in
acceptance region for LM are referred to [37], [52] and [54].
When an appropriate distribution is identified by LM charts, we consider a formal GOF test

9
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based on an empirical version of the Kolmogorov-Smirnov (KS) statistic defined by

KS = max

{
max
1≤i≤n

{
i

n
− Ui:n

}
, max
1≤i≤n

{
Ui:n − i

n

}}
. (14)

For details about the KS statistic given in equation (14) and its theoretical properties, see [2].
Then, a third GOF method based on the KS test and the LM estimation method can be obtained
based on the idea of probability-probability (PP) plots [4]. In that case, the statistical hypotheses
are

H0: “The data are generated from a distribution with CDF FX”

versus (15)

H1: “The data are not generated from this distribution”.

If the CDF hypothesised in (15) is not completely specified in H0, then the corresponding pa-
rameters must be estimated consistently. We use the LM method to estimate these parameters
and the data are transformed to test normality of the corresponding distribution under H0. The
GOF method based on the KS test and the PP plot, with its acceptance bands, is summarized
in Algorithm 1. To select the best distribution, we use Algorithm 1 and choose the distribution
whose associated KS p-value is maximum. This is equivalent to the Anderson-Darling criterion
[22].
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Figure 5. τ -τ3 chart for the indicated distributions.

3.3 Parameter estimation based on L-moments

To estimate parameters with the LM method, we use an objective function proposed by [1, 7]
given by

g(θ) = log


1 +

m+1∑

j=2

(lj − λj)
2


 , (16)

where again θ is an m × 1 vector of parameters depending of each distribution and λj , lj are
defined in equations (7), (9), respectively. Estimation of θ then involves the minimization of
g(θ). The objective function given in equation (16) was chosen by [7] as the standard least
squares (LS) solution surface, which can become quite flat far away from the minimum. For the
BS distribution, the objective function given in equation (16) is

g(θ) = g(α, β) = log
(
1 + (l2 − λBS

2 )2 + (l3 − λBS
3 )2

)
. (17)

10
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Algorithm 1 GOF test based on KS and LM for BS and EVBS distributions
1: Collect and order data x1, x2, . . . , xn as x1:n, . . . , xn:n.

2: Estimate the parameter θ of FX(x;θ) by θ̂ using LM (see Section 3.3), with x1, . . . , xn. Note
that θ is an m×1 vector of parameters depending of each (BS, EVBS or EVBS∗) distribution.

3: Obtain v̂i:n = FX(xi:n; θ̂), for i = 1, . . . , n.
4: Compute ŷi = Φ−1(v̂i:n), where Φ−1 is the N(0, 1) inverse CDF, for i = 1, . . . , n.
5: Calculate ûi:n = Φ(ẑi), with

ẑi =
ŷi − y

sy
, i = 1, . . . , n,

where

y =
1

n

n∑

i=1

ŷi, sy =
1

n− 1

n∑

i=1

(ŷi − y)2.

6: Sketch the PP plot for wi:n versus ûi:n, that is, for the pairs
(
i− 0.5

n
,Φ

(
ŷi − y

sy

))
, i = 1, . . . , n.

7: Fix a significance level ζ and construct acceptance bands according to
(
max

{
w − d1−ζ +

1

2n
, 0

}
,min

{
w + d1−ζ −

1

2n
, 1

})
,

where w is a continuous version of wi:n = (i− 0.5)/n defined in Step 6, and d1−ζ is the
100 × (1 − ζ)th quantile of the distribution of the KS statistic defined in (14), with the RV
U approximately following a U(0, 1) distribution.

8: Determine the p-value of the KS statistic defined in (14), evaluated it at Ui:n = ûi:n, and
reject H0 specified in (15) for the significance level fixed in Step 7 based on this p-value.

9: Check agreement between steps 7 and 8, that is, if no points in the PP plot lie outside the
acceptance bands, then the p-value must be smaller than or equal to the fixed significance
level; otherwise, if at least one point lies outside, the p-value must be greater than the fixed
significance level.

Optimization of g(θ) given in equation (17) needs a numeric procedure to attain a solution. We
use a quasi-Newton method (implemented by the optim command of the R software) with a

starting value α0 =
√

2(l1/Me− 1) for the shape parameter of the BS distribution, where Me is
the sample median, and β0 = Me for its scale parameter. For the EVBS and EVBS∗ distributions,
the objective function given in equation (16) becomes

g(θ) = g(α, β, ξ) = log(1 +

4∑

r=2

(lr − λS
r )), (18)

where S ∈ {EVBS,EVBS∗}. Estimation of parameters for the EVBS and EVBS∗ distributions
with the LM method is a complex problem. Such as in the BS case, optimization of g(θ) given
in equation (18) needs a numeric procedure to attain a solution. However, due to the form
of the parameter space of the EVBS and EVBS∗ distributions, an iterative procedure for a
constrained non-linear optimization is required. Hence, a variant of a quasi-Newton method,
named the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, which handles constraints and
it is denoted by L-BFGS-B, is used to minimise g(α, β, ξ) given in equation (18), with ξ < 1/2.
The command optim of the R software, with the option method = L-BFGS-B, allows us to obtain
the solution of this non-linear constrained optimization problem. To find starting values for the
numerical procedure needed for obtaining the LM estimates of the EVBS (or EVBS∗) model
parameters α and β, one can consider different methods. We use a graphical approach analogous
to the probability plot [26]. This approach transforms the data and forms pairs following a
line, if these data have the EVBS (or EVBS∗) distribution. Then, by means of regression, the
slope and intercept of this line are obtained and, through them, starting values for α and β
are reached. Algorithm 2 details this graphical approach for the EVBS distribution, with an
analogous algorithm for the EVBS∗ distribution.

11
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Algorithm 2 Approach for initial values in LM estimation of EVBS parameters.
1: Obtain an initial value for ξ by the LM method using the GEV distribution, with the expres-

sion

ξ =
1

7.8590c+ 2.9554c2
,

where c = 2/(7.859c+ 2.9554c2)− log(2)/ log(3), which can be seen in [13].
2: Consider the EVBS CDF given in equation (4) and write

x = β + α
√

β
√
xG−1(FX(x;α, β, ξ)),

where G−1 is the inverse CDF of the associated EV distribution and FX is the EVBS CDF.
3: Express

p =
√
xG−1(FX(x)),

obtaining the line v ≈ a+ bu, where v = x, a = β is the intercept, u = p and b = α
√
β is the

slope of the line.
4: Collect n data x1, . . . , xn and order them as x1:n ≤ · · · ≤ xn:n.
5: Approximate FX(xi:n;α, β, ξ) using

wi:n =
i− 0.5

n
, i = 1, . . . , n.

6: Regress xi:n on p̄i, where p̄i =
√
xi:nG

−1(wi:n), which will result in an approximate line if
the data follow an EVBS distribution.

7: Estimate the α parameter of the EVBS distribution with the LS method for the regression
of xi:n on p̄i, obtaining ᾱ = b̄/

√
ā, where ā and b̄ are the estimated slope and intercept of the

corresponding regression, respectively. The parameter β is estimated by β̄ = ā.

From the asymptotic distribution of the LM estimator, θ̂ say, of the m×1 vector of parameters
θ mentioned in [13], as n → ∞, we have that

√
n(θ̂ − θ)

D→ Nm(0m×1,Σ(θ)), (19)

where
D→ denotes convergence in distribution, 0m×1 is an m× 1 vector of zeros, and Σ(θ) is the

asymptotic variance-covariance matrix of θ̂, which exists, is non-singular and can be obtained
using the bootstrap method [8, 51]. Thus, based on the asymptotic distribution defined in (19),
an approximate 100× (1− ζ)% confidence region for θ is

(θ̂ − θ)⊤(Σ̂B(θ))
−1(θ̂ − θ) ≤ χ2

1−ζ(m), θ ∈ Rm, 0 < ζ < 1,

where χ2
1−ζ(m) is the 100× (1− ζ)th quantile of the χ2 distribution with m degrees of freedom

and Σ̂B(θ) is the bootstrap estimates of Σ(θ). Note that m = 2 for BS and BSGU distributions
and m = 3 for EVBS and EVBS∗ distributions, with ξ 6= 0.
It is of interest to compare the LM and maximum likelihood (ML) estimation methods. Results

for the asymptotic variance and bias of the LM and ML estimators based on MC simulations for
the GEV distribution are discussed in [13, pp. 41-43]. They mention that the LM estimator is
efficient in relation to the ML estimator. Similar results are obtained for asymmetric exponential
power, generalized Pareto and mixture Weibull distributions, as mentioned in [7],[13], and [16],
respectively. We conduct an MC simulation study to verify this efficiency in the cases the BS and
EVBS distributions, with results reported in Section 4.

4. Empirical results

In this section, we provide the numerical results of our study. First, we check some properties of
the LM and ML estimators for the BS and EVBS distribution parameters. Second, we apply the
derived GOF and estimation methods to real-world earthquake data.

12
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4.1 Simulation

An MC simulation is carried out to evaluate the performance of the LM estimators for the
BS and EVBS distributions. We consider samples of size n ∈ {10, 100}, corresponding to small
and large samples, and 1000 MC replicates. For the BS distribution, we assume, without loss
of generality, that β = 1.0 because it is a scale parameter, whereas its shape parameter is
considered as α ∈ {0.2, 1.0}, related to low and moderate asymmetry, respectively. For the EVBS
distribution, our interest is in its right-tail parameter, so we take α = 0.2, β = 1.0 and ξ ∈
{−0.2, 0.0, 0.2}, associated with a light tail (Weibull domain of attraction), an EXP tail (Gumbel
domain of attraction) and a heavy tail (Fréchet domain of attraction), respectively. We compute
the empirical mean and SE of the parameter estimators from both LM and ML methods; for
more details of ML estimators for BS and EVBS distributions, see [3, 31] and [9], respectively. In
addition, we compute the bias and root mean squared error (RMSE) –defined as the square root
of the mean squared error– of the LM estimators, as well as the coverage probability (CP) of 95%
confidence intervals for the corresponding parameter. Using these results, we study empirically the
statistical properties of the LM estimators mentioned at the end of Section 3. Tables 1 and 2, and
Figure 6 show that the already mentioned properties of the LM estimators are true, empirically
(a theoretical study is beyond the objective of the paper). In general, note that the LM estimators
are more efficient than the ML estimators. In the case of the BS distribution, the LM estimator is
slightly more efficient than the ML estimator when α is small. In addition, when α increases, the
bias increases too, whereas the difference between both estimators is again insignificant. Observe
that the CPs are very close to 95% for both of the BS and EVBS distributions, when n = 100
for LM and ML methods. To investigate convergence to normality of the LM estimator of ξ
empirically, we show PP plots with 95% acceptance bands (according to Algorithm 1) in Figure
6 for a sample size equal to n = 100. Note that this normality is supported empirically when ξ is
positive, zero and negative, that is, for all the domains of attraction.

Table 1. Empirical mean, SE, bias, RMSE and CPs (95%) for the BS distribution based on MC simulations.

n Parameter Mean
LM

(SE) Bias
LM

RMSE
LM

CP
LM

(%) Mean
ML

(SE) Bias
ML

RMSE
ML

CP
ML

(%)

10
α = 0.2 0.199 (0.030) -0.001 0.030 95.6 0.184 (0.043) -0.016 0.046 95.2
β = 1.0 0.999 (0.061) -0.001 0.061 94.9 1.003 (0.064) 0.003 0.064 94.9
α = 1.0 0.972 (0.305) -0.028 0.306 95.5 0.915 (0.217) -0.085 0.233 95.2
β = 1.0 0.978 (0.171) -0.022 0.172 94.7 1.045 (0.300) 0.045 0.303 95.3

100
α = 0.2 0.199 (0.014) -0.001 0.014 94.9 0.198 (0.015) -0.002 0.015 94.3
β = 1.0 1.000 (0.019) 0.000 0.019 95.3 1.000 (0.020) 0.000 0.020 95.4

α = 1.0 0.994 (0.096) -0.006 0.096 95.0 0.988 (0.069) -0.012 0.070 94.9
β = 1.0 0.998 (0.050) -0.002 0.050 95.2 1.005 (0.089) 0.005 0.089 95.5

Table 2. Empirical mean, SE, bias, RMSE and CPs (95%) for the EVBS distribution based on MC simulations.

n Parameter Mean
LM

(SE) Bias
LM

RMSE
LM

CP
LM

(%) Mean
ML

(SE) Bias
ML

RMSE
ML

CP
ML

(%)

α = 1.0 0.960 (0.251) -0.040 0.254 96.0 0.947 (0.328) -0.053 0.332 96.5
10 β = 1.0 1.010 (0.370) 0.010 0.370 97.2 1.243 (0.511) 0.243 0.566 95.6

ξ = −0.25 -0.237 (0.194) 0.013 0.194 96.6 -0.445 (0.370) -0.195 0.418 96.5

α = 1.0 1.002 (1.135) 0.002 1.135 99.9 0.973 (1.188) -0.027 1.199 99.7
β = 1.0 1.033 (0.412) 0.033 0.413 95.3 1.316 (1.001) 0.316 1.049 97.5

ξ = 0.0 -0.050 (0.209) -0.060 0.217 97.4 -0.101 (0.632) -1.101 0.640 96.3
α = 1.0 0.997 (0.901) -0.003 0.901 99.7 0.961 (0.942) -0.039 0.889 99.7

β = 1.0 1.121 (0.497) 0.121 0.512 98.5 1.223 (0.675) 0.223 0.719 95.2
ξ = 0.25 0.150 (0.225) 0.100 0.246 99.9 0.163 (0.672) -0.087 0.678 95.4

α = 1.0 0.993 (0.079) -0.007 0.079 95.0 0.993 (0.077) -0.007 0.077 94.2
100 β = 1.0 1.021 (0.106) 0.021 0.108 95.7 1.020 (0.107) 0.020 0.109 95.0

ξ = −0.25 -0.267 (0.073) -0.017 0.075 95.1 -0.268 (0.074) -0.018 0.076 95.0
α = 1.0 0.982 (0.081) -0.018 0.083 94.1 0.985 (0.080) -0.015 0.081 94.5
β = 1.0 0.977 (0.100) -0.023 0.103 94.5 0.982 (0.102) -0.018 0.104 94.7
ξ = 0.0 0.034 (0.070) 0.034 0.077 94.7 0.036 (0.086) 0.036 0.093 94.5
α = 1.0 0.993 (0.119) -0.007 0.119 95.2 0.989 (0.105) -0.011 0.105 94.5
β = 1.0 1.054 (0.126) 0.054 0.137 95.0 1.017 (0.116) 0.017 0.117 95.7

ξ = 0.25 0.243 (0.070) -0.007 0.070 96.0 0.237 (0.094) -0.013 0.095 95.6
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Figure 6. PP plots with 95% acceptance bands for the distribution of the EVBS right-tail index estimator with
ξ = −0.25 (left), ξ = 0 (center) and ξ = 0.25 (right).

4.2 Analysis of annual maximum data

A statistical analysis of annual maximum earthquake magnitudes using LM methods is performed
with data of these magnitudes within a one year period. We implement the theoretical results
obtained in this paper in the R software and the corresponding codes, as well as data, are available
from the authors upon request. The measurements of magnitude are on the moment magnitude
scale (Mw), abbreviated sometimes also as MMS, MW or simply M [15, 46]. The Mw scale is
used by seismologists to quantify the size of an earthquake through the energy released. The
magnitude corresponds to the seismic moment of the earthquake and it is equal to the rigidity of
the Earth multiplied by the mean quantity of slip on the fault and the size of the slipped area.
This scale is often confused with the Richter magnitude scale, even though their formulas are
different. The Mw scale is used to establish magnitudes for all modern large earthquakes by the
United States Geological Survey. The data set used in this work is obtained from the Incorporate
Research Institute for Seismology (http://ds.iris.edu), which collects earthquakes magnitude
data from the GCMT server (http://www.globalcmt.org). In particular, we consider data from
07-March-1962 to 25-February-2015 assigned to 50 seismic zones as proposed by [11]; referred to
as Flinn-Engdalh (FE) seismic zones. The annual maximum earthquake magnitudes are displayed
as a map in Figure 7.
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Figure 7. Planisphere plot based on earthquake catalogue data of annual maximum magnitudes and FE seismic
zones.
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An exploratory data analysis is performed, and then the LM-based methods are used for GOF
assessment and parameter estimation. Table 3 provides a summary of the annual maximum Mw

for each FE zone. This table includes the zone name and number (ID from 1 to 48) and sample
values of the minimum (x1:n), Me, mean (x̄), SD, CS, CK, L-CV, L-CS, L-CK and maximum
(xn:n). Figure 8 shows the adjusted box plots for asymmetric data of annual maximummagnitudes
for each FE zone, which can be constructed by the command adjbox of the robustbase package
in the R software [42]. We only consider zones with more than 10 events. Note that the magnitudes
follow a positively skewed distribution (CS > 0, L-CS > 0) and L-CV close to zero in most zones,
with a few outliers in some zones and a high kurtosis in several zones.

Table 3. Descriptive summary of annual maximum earthquake magnitude data.

Zone ID n x1:n Me x CV CS CK L-CV L-CS L-CK xn:n

Alaska, Aleutian Arc 1 39 5.70 6.80 6.86 0.080 0.37 2.68 0.045 0.10 0.15 7.90

Southeastern Alaska to Washington 2 33 5.20 6.00 6.16 0.106 0.69 2.80 0.060 0.16 0.08 7.80

Oregon, California and Nevada 3 39 5.50 6.20 6.24 0.091 0.43 1.88 0.053 0.14 -0.01 7.30

Baja California and Gulf of California 4 32 5.00 5.85 5.94 0.082 0.48 2.42 0.047 0.15 0.08 7.00

Mexico and Guatemala 5 40 5.80 6.70 6.77 0.083 0.41 2.31 0.048 0.11 0.05 8.00

Central America 6 40 5.90 6.50 6.63 0.077 0.60 2.30 0.044 0.16 0.08 7.70

Caribbean Loop 7 39 5.50 6.10 6.23 0.079 0.61 2.69 0.045 0.14 0.11 7.40

Andean South America 8 50 6.30 7.10 7.16 0.082 0.70 2.88 0.046 0.16 0.11 8.80

Extreme South America 9 31 5.00 5.90 5.89 0.071 -0.18 2.20 0.041 -0.05 0.04 6.70

Southern Antilles 10 39 5.90 6.40 6.53 0.072 0.78 2.99 0.041 0.18 0.08 7.80

New Zealand 11 39 5.30 6.70 6.56 0.113 0.11 2.21 0.066 0.02 0.06 8.10

Kermadec, Tonga, Samoa Basin 12 46 6.40 7.05 7.10 0.065 0.41 2.30 0.038 0.10 0.08 8.10

Fiji Islands 13 44 5.90 6.60 6.71 0.066 0.55 2.49 0.037 0.15 0.11 7.70

Vanuatu Islands 14 43 6.30 7.10 7.07 0.052 0.25 2.59 0.030 0.06 0.12 7.90

Bismarck and Solomon Islands 15 40 6.20 7.10 7.08 0.062 0.23 2.42 0.036 0.05 0.06 8.10

New Guinea 16 40 5.90 6.80 6.81 0.070 0.57 3.28 0.040 0.11 0.11 8.20

Caroline Islands 17 39 5.10 5.90 5.95 0.077 0.66 2.68 0.044 0.18 0.11 7.00

Guamto Japan 18 43 5.90 6.60 6.72 0.070 0.17 2.31 0.040 0.05 0.08 7.70

Japan, Kuril Islands, Kamchatka Peninsula 19 42 6.20 7.10 7.15 0.092 0.75 3.23 0.052 0.15 0.10 9.10

Southwestern Japan and Ryukyu Islands 20 39 5.20 6.10 6.24 0.074 -0.01 2.39 0.043 0.02 0.09 7.10

Taiwan 21 38 5.70 6.40 6.46 0.071 0.54 2.68 0.041 0.12 0.12 7.60

Philippine Islands 22 41 5.90 6.90 6.92 0.066 0.03 2.77 0.038 0.01 0.12 8.00

Bornea, Sulawesi 23 41 5.90 6.90 6.84 0.076 0.17 2.10 0.044 0.04 0.05 7.90

Sunda Arc 24 48 6.20 7.00 7.00 0.079 0.67 2.89 0.044 0.14 0.08 8.50

Myanmar and Southeast Asia 25 39 5.20 5.90 5.99 0.083 0.60 2.39 0.047 0.17 0.05 7.20

India, Xizand, Sichuan, Yunnan 26 37 5.20 6.20 6.25 0.091 0.94 4.04 0.050 0.17 0.21 7.90

Southern Xinjiang to Gansu 27 34 5.40 6.10 6.10 0.089 1.07 4.32 0.048 0.18 0.17 7.80

LakeIssyk-Kulto Lake Baykal 28 31 5.10 5.60 5.78 0.095 0.94 2.88 0.053 0.27 0.09 7.20

Western Asia 29 39 5.10 6.50 6.39 0.097 -0.11 2.40 0.056 -0.03 0.11 7.70

Middle East, Crimea, Eastern Balkans 30 39 5.30 6.40 6.42 0.081 0.10 2.62 0.047 0.00 0.10 7.60

Western Mediterranean Zone 31 37 5.00 5.80 5.84 0.084 0.63 3.12 0.047 0.12 0.17 7.10

Atlantic Ocean 32 39 5.80 6.50 6.51 0.055 -0.14 1.97 0.032 -0.04 0.02 7.10

Indian Ocean 33 40 5.90 6.40 6.52 0.066 1.40 5.13 0.035 0.25 0.26 7.90

Eastern North America 34 16 5.20 5.65 5.83 0.103 1.15 2.97 0.055 0.34 0.17 7.10

Northwestern Europe 36 7 5.10 5.30 5.55 0.094 0.99 2.35 0.052 0.46 0.19 6.50

Africa 37 36 5.10 5.95 6.00 0.087 0.45 2.74 0.050 0.09 0.12 7.20

Australia 38 8 4.90 5.50 5.61 0.094 0.66 2.65 0.055 0.22 0.26 6.60

Pacific Basin 39 21 5.10 5.50 5.72 0.094 0.77 2.32 0.054 0.23 0.08 6.80

Arctic Zone 40 38 5.20 5.65 5.77 0.071 0.88 2.65 0.039 0.25 0.10 6.70

Eastern Asia 41 40 5.60 6.55 6.57 0.107 0.43 2.29 0.061 0.11 0.03 8.30

Northeastern Asia 42 23 5.10 5.40 5.76 0.113 1.13 3.69 0.061 0.30 0.09 7.60

Southeastern and Antarctic Pacific Ocean 43 39 5.80 6.30 6.31 0.043 0.79 3.71 0.024 0.15 0.21 7.10

Galapagos Islands 44 37 5.30 5.90 5.86 0.036 -0.17 3.22 0.021 -0.04 0.13 6.40

Macquarie Loop 45 40 5.70 6.05 6.17 0.068 2.49 11.9 0.033 0.29 0.24 8.10

Andaman Islands to Sumatra 46 39 5.50 6.20 6.48 0.130 1.49 4.59 0.067 0.36 0.20 9.00

Baluchistan 47 24 5.10 5.60 5.86 0.123 1.45 4.33 0.064 0.35 0.20 7.80

Hindu Kushand Pamir 48 40 4.90 6.25 6.29 0.083 0.13 3.50 0.046 0.05 0.19 7.40

Annual maximum series for all zones - 54 7.00 7.80 7.85 0.061 0.43 2.94 0.034 0.08 0.14 9.10
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Figure 8. The adjusted box plots for annual maximum magnitudes of the indicated FE seismic zones.

Figure 9 displays LM charts, where each plotted point is the sample LM pair from Table 3
corresponding to an FE zone indicated by its ID in this table. Figure 9 (left) provides the LM
ratio chart. From this figure note that 71% of the points are below the GEV curve and inside
the EVBS region. Therefore, the GEV and EVBS distributions (and their GU and BSGU special
cases) seem to be good candidates for modelling the data. Figure 9 (center, right) presents the
LM ratio and τ -τ3 charts, respectively, for the BS, EXP, gamma and GU distributions. Observe
that the non-EV distributions (BS, EXP, gamma) are unsuitable in most of the zones, and even
the GU distribution (which is an EV model) is also inadequate as a candidate to describe most of
the zones. As illustration, we compute the LM estimates to identify a suitable distribution in the
Andean South America (Zone 8), which has the highest frequency of earthquakes. Table 4 provides
the estimated parameters for the annual maximum magnitudes. We use the p-value of the KS test
and the PP plot with 95% acceptance bands to test the fit of each distribution to the data; see
Figure 10. Note that four distributions have been identified as candidates and they are confirmed
as suitable by this figure because all points are inside the bands. From Table 4, observe that the
best fit corresponds to the BSGU distribution, indicating that it is the most appropriate model
to describe annual maximum earthquakes in the Andean South America zone, to which Chile
belongs, one of the countries around the world that is more exposed to earthquakes. In statistics,
Akaike (AIC) and Bayesian (BIC) information criteria are often used, which allows us to compare
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and select models. These criteria are given by AIC = 2m − 2ℓ(θ̂) and BIC = m log(n) − 2ℓ(θ̂),

where ℓ(θ̂) is the log-likelihood of the model with parameter θ evaluated at θ̂, n is the sample
size and m is the parameter number. For more details about AIC and BIC, see [26] and references
therein. Table 4 also provides AIC and BIC for the data under analysis, whose criteria indicate
again that the BSGU distribution is the best model to describe annual maximum earthquakes in
the Andean South America zone.
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Figure 9. LM ratio chart for BS, EXP, gamma and GU distributions (left), LM ratio chart for BSGU, EVBS,
GEV and GU distributions (center), and τ -τ3 chart for BS, EXP, gamma and GU distributions (right) with data
of annual maximum magnitudes in the Andean South America zone.

Table 4. Estimated parameters, KS p-value, AIC and BIC for data of annual maximum magnitudes in the Andean
South America zone.

Distribution
Parameter estimates

KS p-value AIC BIC
Location Shape Scale Right tail index

EVBS(α, β, ξ) - 0.069 6.885 −0.065 0.457 87.9 93.6

GEV(µ, σ, ξ) 6.888 - 0.486 −0.013 0.405 88.3 94.1

BSGU(α, β) ≡ EVBS(α, β, 0) - 0.066 6.872 - 0.572 83.4 87.2

GU(µ, σ) ≡ GEV(α, σ, 0) 6.886 - 0.480 - 0.458 85.9 89.6

5. Conclusions and future work

In this work, L-moment methods based on the Birnbaum-Saunders distribution and its extreme
value version have been derived, implemented and applied. These L-moments were used to obtain
estimators of the model parameters and to provide goodness-of-fit methods allowing the selection
of an appropriate distribution for a given data set. In addition, Monte Carlo simulations were
used to show that the L-moment estimators have a good performance and are, in general, more
efficient than the corresponding maximum likelihood estimators. Furthermore, the asymptotic
normality of the L-moment estimators was demonstrated empirically. The proposed methods
were applied to a seismic data set taken from the global centroid moment tensor catalogue,
for the period between 07-March-1962 and 25-February-2015. With these data, an analysis of
earthquake annual maximum magnitudes was performed. It allowed us to conclude that some
extreme value Birnbaum-Saunders models, known as the Birnbaum-Saunders-Gumbel model, are
appropriate distributions for describing the behaviour of maximum seismic events and have a
better performance than the classic extreme value distributions. Thus, extreme value Birnbaum-
Saunders models could be useful alternatives to the more commonly used distributions, such as
the exponential, generalized extreme value and gamma models. We think that the Birnbaum-
Saunders distributions can also be considered in the modelling of earthquake data in highly
seismic zones, such as California, Chile and Japan, which may allow the authorities to produce
more reliable earthquake hazard maps.
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Figure 10. PP plots with 95% acceptance bands for EVBS (top-left), GEV (top-right), BSGU (bottom-left) and
GU (bottom-right) distributions with data of annual maximum magnitudes in the Andean South America zone.

Certain return periods (for example, 10-year and 100-year) are usually considered in similar
studies to that presented in the present paper [5, p. 62]. Furthermore, acceptance regions for
goodness of fit based on L-moments are also an important issue to be considered [52]. Incorpora-
tion of censored data, multivariate versions of value extreme Birnbaum-Saunders distributions,
and their modeling and diagnostics are also of interest [39, 40] in the context of L-moments. As
future research, all of these issues are being explored by the authors.
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