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Genome-wide Association Study Identifies Multiple Risk Loci for 
Chronic Lymphocytic Leukemia

A full list of authors and affiliations appears at the end of the article.

Despite limited discovery stages (<1,125 cases), genome-wide association studies (GWAS) 

have successfully identified 13 loci associated with risk of chronic lymphocytic leukemia/

small lymphocytic lymphoma (CLL). To identify additional CLL susceptibility loci, we 

conducted the largest meta-analysis, to date, including four GWAS totaling 3,100 CLL cases 

and 7,667 controls with genotype data. In the meta-analysis, we discovered ten independent 

SNPs in nine novel loci at 10q23.31 (ACTA2/FAS; P=1.22×10−14), 18q21.33 (BCL2; 

P=7.76×10−11), 11p15.5 (C11orf21; P=2.15×10−10), 4q25 (LEF1; P=4.24×10−10), 2q33.1 

(CASP10/CASP8; P=2.50×10−9), 9p21.3 (CDKN2B-AS1; P=1.27×10−8), 18q21.32 

(PMAIP1; P=2.51×10−8), 15q15.1 (BMF; P=2.71×10−10), and 2p22.2 (QPCT; 

P=1.68×10−8) as well as an independent signal at an established locus (2q13, ACOXL, 

P=2.08×10−18). We also found evidence for two additional promising loci that reached 

marginal genome-wide significance (P<2.0×10−7) at 8q22.3 (ODF1; P=5.40×10−8) and 

5p15.33 (TERT; P=1.92×10−7). Although further studies are required, proximity of several 

of these loci to genes involved in apoptosis suggests a plausible underlying biological 

mechanism.

CLL is a B-cell malignancy with a strong familial component1 and an ~8.5-fold increased 

relative risk in first-degree relatives.2 Previous CLL GWAS have identified 13 loci that 

Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

Correspondence should be addressed to: Susan L. Slager, Ph.D., Mayo Clinic, 200 First Street SW, Rochester, MN 55905, Phone: 
507.284.5965, Fax: 507.284.9542, slager@mayo.edu.
90These authors contributed equally to this work.
91These authors jointly directed this work.

AUTHORS’ CONTRIBUTIONS

S.I.B., C.F.S., N.J.C., A.N., W.C., S.S.W., L.R.T., A.R.B.W., P.H., M.P.P., B.M.B., B.K.A., P.C., Y.Z., G.S., A.Z.J., C.L., K.E.S., 

J.M., P.V., J.J.S., A.K., S. S., H.H., J.R.C., S.J.C., N.R. and S.L.S. organized and designed the study. C.F.S., N.J.C., B.J.,L.B., J.Y., 

A.H., L.C., P.M.B., E.A.H., J.M.C., J.R.C., S.J.C. and S.L.S. conducted and supervised the genotyping of samples. S.I.B., C.F.S., V.J., 

N.J.C., Z.W., N.C., C.C.C., M.Y., K.B.J., L.L., J.S., J.P., J.R.C., L.C., S.J.C., N.R. and S.L.S. contributed to the design and execution 

of statistical analysis. S.I.B., C.F.S., V.J., N.J.C., A.N., Z.W., W.C., A.M., R.S.K., N.C., C.C.C., M.Y., C.L., H.H., J.R.C., S.J.C., N.R. 

and S.L.S. wrote the first draft of the manuscript. S.I.B., C.F.S., V.J., N.J.C., A.N., W.C., A.M., S.S.W., R.S.K., Q.L., L.R.T., 

A.R.B.W., P.H., M.P.P., B.M.B., B.K.A., P.C., Y.Z., G.S., A.Z.J., T.G.C., T.D.S., A.J.N., N.E.K., M.L., A.H.W., K.E.S., H.O.A., 

M.M., B.G., E.T.C., M.G., K.C., L.A.C.A., B.J., W.R.D., B.K.L., G.J.W., L.C., P.M.B., J.R., E.A.H., M.T.S., R.D.J., L.F.T., S.D.S., 

Y.B., N.B., P.B., P.B., L.F., M.M., J.M., A.S., K.G.R., S.J.A., C.M.V., L.R.G., S.S.S., M.C.L., L.G.S., J.F.L., J.M.C., J.B.W., V.A.M., 

N.E.C., A.N., M.S.L., A.J.D.R., L.M.M., R.K.S., E.R., P.V., R.K., D.T., G.M., E.W., M.D.C., R.C.H.V., R.C.T., G.G.G., D.A., J.V., 

S.W., J.C., T.Z., T.R.H., K.O., A.Z., R.J.K., J.J.S., K.A.B., F.L., E.G., P.K., A.K., J.T., C.M.V., M.G.E., G.M.F., L.M., L.L., J.S, S.C., 

J.F.F., K.E.N., A.C., J.S., J.W., A.C., C.L.O., S.B., I.S., D.M., E.C., H.H., J.R.C., N.R. and S.L.S. conducted the epidemiological 

studies and contributed samples to the GWAS and/or follow-up genotyping. All authors contributed to the writing of the manuscript.

COMPETING INTERESTS

The authors declare no competing financial interests

HHS Public Access
Author manuscript
Nat Genet. Author manuscript; available in PMC 2014 February 01.

Published in final edited form as:

Nat Genet. 2013 August ; 45(8): 868–876. doi:10.1038/ng.2652.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



explain a portion of the familial risk,3–6 suggesting that additional loci of modest effects can 

be found using a larger discovery sample size.7

As part of a larger initiative in non-Hodgkin lymphoma (NHL) (called the NHL-GWAS), 

we genotyped 2,343 CLL cases and 2,854 controls of European descent from 22 studies 

using the Illumina OmniExpress Beadchip (see Online Methods and Supplementary Table 

1). Of those 5,197 subjects, 94% passed rigorous quality control criteria (see Online 

Methods and Supplementary Table 2) and 549,934 SNPs successfully passed quality control 

criteria with a median call rate >98%. We also utilized genotype data previously generated 

on the Illumina Omni2.5 from an additional 3,536 controls and one case from three studies8 

giving a total of 2,179 cases and 6,221 controls for the analysis of the NHL-GWAS 

(Supplementary Table 3).

In the NHL-GWAS (Stage 1) analysis, we observed an enrichment of SNPs with small P-

values compared to the null distribution with a lambda of 1.026 in the Q-Q plot 

(Supplementary Figure 1). After exclusion of previously established loci, an excess of small 

P-values still remained suggesting additional novel loci were yet to be discovered. In our 

Stage 1 analyses, we observed SNPs from 10 unique loci (defined as separated by at least 

500kb and linkage disequilibrium (LD) r2<0.05), which reached genome-wide significance 

(P<5×10−8), including eight established loci and two novel loci (Supplementary Figure 2).

We then performed a meta-analysis of the NHL-GWAS with three other independent CLL 

GWAS5,9 that had a combined total of 921 CLL cases and 1,446 controls (Stage 2, 

Supplementary Tables 1 and 3). Because these other CLL GWAS studies were conducted on 

different commercial SNP microarrays, we imputed common SNPs from the 1000 Genomes 

Project10 using IMPUTE211 (Online Methods, Supplementary Table 4). In the meta-

analysis of stages 1 and 2 data, associations for all 13 established loci showed a consistent 

direction of effect with previously reported studies, and 10 loci achieved P<5×10−8 

(Supplementary Table 5). However, two previously established loci, 15q25.2 and 19q13.3, 

were only nominally significant in the meta-analysis (P=0.03, and P=0.008, respectively), 

and no significant association was observed in stage 1 for the 15q25.2 locus (P=0.10). A 

suggestive locus on 18q21.1 that had not met genome-wide significance in prior studies12 

was also nominally significant (P=5.06×10−4) herein. From the meta-analysis of stages 1–2, 

we identified 10 promising SNPs in the eight novel loci and one promising SNP in an 

established locus that we carried forward for a de novo replication in stage 3: this included 

an additional 392 cases and 4561 controls and in silico replication in an independent CLL 

GWAS with 396 cases and 311 controls (see Online Methods and Supplementary Tables 1, 

3, and 4).

Seven of the 10 SNPs in novel loci reached genome-wide significance in the meta-analysis 

of all three stages: 10q23.31 (ACTA2/FAS; P=1.22×10−14), 18q21.33 (BCL2; 

P=2.66×10−12), 11p15.5 (C11orf21; P=2.15×10−10), 4q25 (LEF1; P=4.24×10−10), 2q33.1 

(CASP10/CASP8; P=2.50×10−9), 9p21.3 (CDKN2B-AS1; P=1.27×10−8), and 18q21.32 

(PMAIP1; P=2.51×10−8) (Table 1, Figure 1). Further, within the 18q21.33 locus, a second 

SNP (rs4987852) in low LD (r2=0.01) with rs4987855 and located only 372 bp away, also 
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reached genome-wide significance (Table 1, P =7.76×10−11); this SNP was determined to be 

independent in conditional analyses (Pconditional =3.87×10−7, Table 2).

To explore these regions in greater detail and identify additional loci that we may have 

missed using just the genotyped SNPs in Stage 1, we imputed Stage 1 of our NHL-GWAS 

using the 1000 Genomes Project10 data (February 2012 release) and performed a meta-

analysis of the results from stage 1 and stage 2. The most significant SNPs at three of our 

novel loci, 10q23.31 (rs2147420) 18q21.33 (rs4987856), and 4q25 (rs2003869), were highly 

correlated (r2 ≥0.95) with our strongest genotyped SNPs, rs4406737, rs4987885, and 

rs898518, respectively (Supplementary Table 6). Only modest correlation (r2 range: 0.18–

0.58) was observed for the most significant imputed SNPs at 11p15.5 (rs2521269), 2q33.1 

(rs11688943), and 9p21.3 (rs1359742) and our strongest genotyped SNPs in each of the 

respective regions. The most significant of the imputed SNPs at 18q21.32 (rs35748167) 

appeared to be independent of our strongest genotyped SNP (rs4368253, r2=0.003, 

Pconditional < 7.89×10−7 for both SNPs), suggesting a possible second, independent signal 

(Table 2).

Meta-analysis of our imputed scan data revealed two novel loci, 15q15.1 (BMF; 

P=2.71×10−10) and 2p22.2 (QPCT; P=1.68×10−8) (Table 1, Figure 1). In addition, although 

our genotyped SNP at 5p15.33 (TERT, rs10069690, P=1.92×10−7) (Supplementary Table 7) 

did not reach genome-wide significance, we did observe an imputed SNP in this region that 

reached genome-wide significance (rs7705526; P=3.75×10−8). Another promising locus was 

observed at 8q22.3 (ODF1; P=5.40×10−8) (Supplementary Table 7). Additional studies are 

needed to confirm these findings, particularly the signal on 5p15.33, which is already known 

to harbor risk variants for multiple cancers.13–20,

An examination of established loci revealed a new SNP in 2q13 (BCL2L11, rs13401811, 

P=6.09×10−17; Table 1, Figure 2) that was independent of the previously reported SNP. 

After conditioning on the established 2q13 SNP (rs17483466, r2=0.02), the new SNP 

rs13401811 remained strongly associated with CLL risk (Pconditional=1.60×10−12, Table 2). 

A putative second signal was observed at the established 2q37.3 locus (Supplementary Table 

5, rs7578199, P =5.39×10−7) that was in low LD (r2=0.01) and independent of the 

previously reported rs757978 SNP (Pconditional=6.10×10−6, Table 2), although rs7578199 

was not genome-wide significant. Another possible second signal was observed on 6p21.32 

(Supplementary Table 5, HLA, rs9273363, P=2.24×10−10). Rs9273363 showed some 

evidence of conditional independence with the originally reported SNPs (r2≤0.25, Pconditional 

≤3.50×10−9, Table 2); however, it may be part of a shared HLA haplotype; thus accurate 

HLA typing is needed to further clarify its level of independence. Finally, we observed a 

SNP at 15q21.3 (Supplementary Table 5, rs11636802, P=1.68×10−13) that had stronger 

statistical significance than that of the previously reported SNP, rs7169431 (P=1.72×10−05). 

Although only modestly correlated (r2=0.16), rs11636802 explained all of the risk 

associated with rs7169431 in a conditional analysis (Table 2) suggesting that this SNP may 

be a better marker for the locus.

Heritability analysis indicated that the ten independent SNPs in our novel loci together with 

the new independent SNP at 2q13 (Table 1) explain approximately 5% more of the familial 
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risk in addition to ~12% for the established loci. When we explored the contribution of all 

common variants to the genetic heritability of CLL (using a method that estimates the 

variance explained by fitting all genotyped autosomal SNPs simultaneously21,22, Online 

Methods) 21,22 21,22 we estimate that common SNPs have the potential to explain up to 

~46% of the familial risk, suggesting more common loci, likely of small effects, are still yet 

to be discovered. However, the analysis also implies that common SNPs probably do not 

explain all of the familial risk and other factors, such as uncommon SNPs with modest 

effects or rare highly penetrant variants, are likely to also play a role.

Five of the novel loci (10q23.31, 18q21.33, 2q33.1, 18q21.32, and 15q15.1) identified in 

this study as well as the new SNP at the established 2q13 locus are located in or near genes 

involved in apoptosis. Rs4406737 is located on 10q23.31 between the first and second exons 

of FAS, a member of the tumor necrosis factor receptor superfamily that has a crucial role in 

the initiation of the signaling cascade of the caspase family in apoptosis. Mutations in FAS 

leading to defective Fas-mediated apoptosis have been documented in inherited 

lymphoproliferative disorders associated with autoimmunity,23,24 and families with 

germline FAS mutations have a substantially increased risk of other lymphoma subtypes.25

The two newly identified SNPs at 18q21.33 (rs4987855 and rs4987852) map to the 3′-UTR 

of B-cell CLL/lymphoma 2 (BCL2), which encodes an essential outer mitochondrial 

membrane protein that blocks lymphocyte apoptosis. Constitutive expression of BCL2 

through t(14:18) and other translocations is common in follicular lymphomas, but the 

translocation is also seen in CLL albeit rarely.26 Both SNPs are located within a narrow 

region of BCL2 where the majority of t(14;18) translocation breakpoints occur.27 rs4987855 

is in linkage disequilibrium with a SNP (rs4987856, r2=1.0) that is located within 200bp of a 

putative microRNA binding site for mir-19528 and was found to be nominally correlated 

with BCL2 expression (Supplementary Table 8, P=0.02)29. Forced overexpression of BCL2 

in mice leads to an increased incidence of B-cell lymphomas.30

The novel SNPs at 18q21.32 and 15q15.1 as well as the new SNP at the established 2q13 

locus are located near Bcl-2 family member genes. Rs4368253 is located approximately 

51kb downstream from phorbol-12-myristat-13-acetate-induced protein 1 (PMAIP1), which 

encodes the proapoptotic BCL2 protein, NOXA. Regulation of apoptosis through NOXA is 

critical for B-cell expansion after antigen triggering.31 Down-regulation of NOXA 

contributes to the persistence of CLL B-cells in the lymph node environment.32 Rs8024033 

is located approximately 5.4kb upstream of Bcl-2 modifying factor (BMF), which encodes 

an apoptotic activator that binds to BCL2 proteins. BMF has been implicated in the survival 

of chronic lymphocytic leukemia cells33, and loss of BMF in mice leads to B-cell 

hyperplasia and an accelerated development of radiation-induced thymic lymphomas34. The 

new SNP (rs13401811) at 2q13, a locus previously implicated in risk of CLL3,35,36 and 

more generally B-cell non-Hodgkin lymphomas,37 is located approximately 262kb upstream 

of BCL2-like 11 (BCL2L11). BCL2L11 encodes a pro-apoptotic member of the BCL2 

family, BIM, which plays a key role in the regulation of apoptosis in T- and B-cell 

homeostasis. Loss of BIM accelerates Myc-induced leukemia in mice,38 and this SNP has 

been previously reported to be nominally associated with CLL in a small candidate gene 

study.39
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The novel 2q33.1 SNP (rs3769825) resides in intron 2 of caspase-8 (CASP8) and is in LD 

with a missense SNP (rs13006529, r2=0.71) in the nearby caspase-10 (CASP10) 

(Supplementary Table 9), both of which play a central role in cell apoptosis. SNPs within 

this region have been associated with breast cancer,40 esophageal cancer,41 and melanoma42 

susceptibility. SNPs in CASP8/CASP10, including one in moderate LD with ours 

(rs11674246, r2=0.66), were previously nominally associated with CLL risk in smaller case-

control studies.43,44

The remaining four novel loci (11p15.5, 4q25, 9p21.3 and 2p22.2) map to other biologically 

interesting genes. The 4q25 SNP, rs898518, is located between the fourth and fifth exons of 

lymphoid enhancer-binding factor 1 (LEF1), which encodes a transcription factor involved 

in the Wnt signaling pathway, an essential component for the normal homeostasis of 

hematopoietic stem cells.45 Aberrant protein expression of LEF1 has been observed in CLL 

cells as well as monoclonal B-cell lymphocytosis, suggesting that LEF1 plays an early role 

in CLL leukemogenesis.46 Rs1679013 maps to an inter-genic region on 9p21.3, roughly 

200kb upstream fromCDKN2B-AS1, an antisense non-coding RNA implicated in the risk of 

acute lymphocytic leukemia.47 The 2p22.2 SNP (rs3770745) is located approximately 52kb 

upstream of protein kinase D3 (PRKD3), which interacts with transcriptional repressor, B-

cell lymphoma 6 (BCL-6). Lastly, the 11p15.5 region contains many imprinted genes and 

has been implicated in Beckwith-Wiedemann syndrome,48 a disorder characterized by 

excessive growth and a high incidence of childhood tumors.49

In conclusion, our large GWAS of CLL identified ten SNPs in nine novel loci and one new 

independent SNP in a previously discovered locus. Together with the previously established 

loci, the cumulative set of SNPs correspond to an area-under-the-curve (AUC) of 0.73. 

Although further studies are required to fine-map the regions, the proximity of several of 

these loci to genes involved in apoptosis suggests a possible underlying mechanism of 

biological relevance. Our results further support a substantial contribution of common gene 

variants in the pathogenesis of CLL.

ONLINE METHODS

Stage 1: NHL-GWAS

As part of a larger initiative, we conducted a genome-wide association study (GWAS) of 

CLL using cases and controls of European descent from 22 studies of non-Hodgkin 

lymphoma (NHL) (Supplementary Table 1), including nine prospective cohort studies, eight 

population-based case-control studies, and five clinic or hospital-based case-control studies. 

All studies obtained informed consent from their participants and approval from their 

respective Institutional Review Boards for this study. As described in Supplementary Table 

1, cases were ascertained from cancer registries, clinics or hospitals, or through self-report 

verified by medical and pathology reports. The phenotype information for all NHL cases 

was reviewed centrally at the International Lymphoma Epidemiology Consortium 

(InterLymph) Data Coordinating Center and harmonized according to the hierarchical 

classification proposed by the InterLymph Pathology Working Group based on the World 

Health Organization (WHO) classification (2008).50,51
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All CLL cases with sufficient DNA (n=2,343) and a subset of available controls frequency-

matched by age and sex to cases (n=2,854) including 4% quality control duplicates were 

genotyped on the Illumina OmniExpress at the NCI Cancer Genomic Research Laboratory 

(CGR). Genotypes were called using Illumina GenomeStudio software, and quality control 

duplicates showed >99% concordance. Extensive quality control metrics were applied to the 

data. Monomorphic SNPs and SNPs with a call rate <93% were excluded. Samples with a 

call rate ≤93%, mean heterozygosity <0.25 or >0.33 based on the autosomal SNPs, or 

gender discordance (>5% heterozygosity on X chromosome for males and <20% 

heterozygosity on the X chromosome for females) were excluded. Unexpected duplicates 

(>99.9% concordance) and first-degree relatives based on identity by descent (IBD) sharing 

with Pi-hat>0.40 were removed. Ancestry was assessed using the GLU struct.admix module 

based on the method proposed by Pritchard et al,52 and participants with <80% European 

ancestry were excluded (Supplementary Figure 3). After exclusions, 2,178 (93%) cases and 

2,685 (94%) controls remained (Supplementary Table 2). Genotype data previously 

generated on the Illumina Omni2.5 from additional 3,536 controls and 1 case from three of 

the studies (ATBC, CPSII, and PLCO) were also included,8 resulting in a total of 2,179 

cases and 6,221 controls for the stage 1 analysis. Of these additional controls, 703 (~235 

from each study) were selected to be representative of their cohort and cancer-free8. The 

remaining 2,823 controls were cancer-free controls from an unpublished study of prostate 

cancer in PLCO. SNPs with call rate <99%, with Hardy-Weinberg equilibrium P-

value<1×10−6 or minor allele frequency <1% were excluded from analysis, leaving 549,934 

SNPs for analysis. To evaluate population substructure, a principal components analysis 

(PCA) was performed using the Genotyping Library and Utilities (GLU), version 1.0, 

struct.pca module, which is similar to EIGENSTRAT.53 Plots of the first ten principal 

components are shown in Supplementary Figure 4. Association testing was conducted 

assuming a log-additive genetic model, adjusting for age, sex, and significant principal 

components. All data analysis and management was conducted using GLU.

Stage 2: Three Independent CLL GWAS

Three independent CLL GWAS provided genotype data for a meta-analysis (Supplementary 

Table 1). In all three studies, subjects with a genotyping call rate <95%, duplicates, related 

individuals, and SNPs with a call rate <95% were removed prior to imputation 

(Supplementary Table 4). Imputation was conducted separately for each study using 

IMPUTE211 and a hybrid of the 1000 Genomes Project version 2 (February 2012 release) 

and Division of Cancer Epidemiology and Genetics (DCEG) European reference panels.8,10 

SNPs were imputed for a total of 921 cases and 1446 controls. Association testing was 

conducted for each study using SNPTEST version 2, adjusting for age, sex, and significant 

principal components for GEC and UCSF2. No principal components were significant for 

the Utah study.

Stage 3: Replication studies and technical validation

In stage 3, 10 SNPs in the most promising loci and one SNP from an established locus were 

taken forward for de novo replication in an additional 392 cases and 4561 controls from the 

NCI replication study (NCI Rep) and from the Utah/Sheffield Chronic Lymphocytic 

Leukemia study (Utah-Sheffield) (Supplementary Table 1). Additionally, these 10 SNPs 
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were also taken forward in an in silico replication in 396 CLL cases and 311 controls from 

the International Cancer Genome Consortium (ICGC) (Supplementary Table 1). Genotyping 

for the NCI Rep study was conducted using custom TaqMan genotyping assays (Applied 

Biosystems) at the NCI Core Genotyping Resource and genotyping for the Utah-Sheffield 

study was conducted at the Core Research Facilities at the University of Utah. Blind 

duplicates (~5%) yielded 100% concordance. The ICGC study provided results for eight 

SNPs (or proxies) that were genotyped on the Affymetrix 6.0 SNP microarray 

(Supplementary Table 4). Association results for the NCI Rep and Utah-Sheffield studies 

were adjusted for age and sex, and results from the ICGC were adjusted for age, sex, and 

significant principal components. A comparison of the genotyping calls from the 

OmniExpress microarray and confirmatory TaqMan assays (n=384) yielded 99.9% 

concordance.

Meta analysis

Meta-analyses were performed using the fixed effects inverse variance method based on the 

beta estimates and standard errors from each study. For all SNPs in Tables 1 and 2, no 

substantial heterogeneity was observed among studies in stage 1 or among studies in stages 

1–3 combined after Bonferroni correction (Pheterogeneity ≥ 0.02 for all SNPs).

Further follow-up analyses

Using 1000 Genomes data, we identified SNPs with r2>0.7 with our lead SNP that were 

reported to be non-synonymous or nonsense variants. We utilized HaploReg54 which is a 

tool for exploring non-coding functional annotation using ENCODE data, to evaluate the 

genome surrounding our SNPs (Supplementary Table 9). In addition, we evaluated cis 

associations between all novel and promising SNPs discovered in this study and the 

expression of nearby genes in lymphoblastoid cell lines from subjects of European descent 

from three publically available datasets29,55,56 (Supplementary Table 8).

Heritability analyses

To evaluate the familial risk explained by the novel loci identified in this study, we 

estimated the contribution of each SNP to the heritability using the equation7, 

h2
SNP=β22f(1−f), where β is the log-odds ratio per copy of the risk allele and f is the allele 

frequency, and then summed the contributions of all novel SNPs. Using the equation derived 

by Pharoah et al57 to estimate the total heritability from the sibling relative risk (RR=8.5 

from Goldin et al2), we then calculated the proportion of familial risk explained by dividing 

the summed contributions of the novel SNPs by the total heritability.

To estimate the contribution of all common SNPs to familial risk, we used the method 

proposed by Yang et al21, (which was extended to dichotomous traits22 and implemented in 

the Genome-wide Complex Trait Analysis (GCTA) software.58 The genetic similarity 

matrix was estimated from our discovery scan using all genotyped autosomal SNPs with a 

minor allele frequency >0.01. We used restricted maximum likelihood (REML), the default 

option for GCTA, to fit the appropriate variance components model that included the top 10 

eigenvectors as covariates. The final estimate of heritability on the underlying liability scale 

assumed that the lifetime risk of CLL was 0.005. From this estimate, we calculated the 
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proportion of familial risk explained based on a familial relative risk of 8.5. Details of fitting 

the variance components model and transforming from the observed to liability scale have 

been previously documented.22

Estimate of recombination hotspots

To identify recombination hotspots in the region we used SequenceLDhot59, a program that 

uses the approximate marginal likelihood method60 and calculates likelihood ratio statistics 

at a set of possible hotspots. We tested five unique sets of 100 control samples. PHASE v2.1 

program was used to calculate background recombination rates61,62 and LD heatmap was 

visualized in r2 using snp.plotter program.63

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Association results, recombination hot-spots, and linkage disequilibrium (LD) plots for 
the regions newly associated with CLL

Top, association results of GWAS data from Stage 1 NHL-GWAS (grey diamonds), Stage 2 

combined data (blue diamond), Stage 3 combined data (purple diamond), and Stages 1–3 

combined data (red diamond) are shown in the top panel with −log10(P) values (left y axis). 

Overlaid are the likelihood ratio statistics (right y axis) to estimate putative recombination 

hotspots across the region on the basis of 5 unique sets of 100 randomly selected control 

samples. Bottom, LD heatmap based on r2 values from total control populations for all SNPs 

included in the GWAS. (a) 10q23.31 region; (b) 18q21.33 region; (c) 11p15.5 region; (d) 

4q25 region; (e) 2q33.1 region; (f) 9p21.3 region; (g) 18q21.32 region; (h) 15q15.1 region; 

(i) 2p22.2 region.
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Figure 2. Association results, recombination hot-spots, and linkage disequilibrium (LD) plot for 
the new independent CLL susceptibility SNP in the 2q13 established locus

Top, association results of GWAS data from Stage 1 NHL-GWAS (grey diamonds), Stage 2 

combined data (blue diamond), Stage 3 combined data (purple diamond), and Stages 1–3 

combined data (red diamond) are shown in the top panel with −log10(P) values (left y axis). 

Overlaid are the likelihood ratio statistics (right y axis) to estimate putative recombination 

hotspots across the region on the basis of 5 unique sets of 100 randomly selected control 

samples. Bottom, LD heatmap based on r2 values from total control populations for all SNPs 

included in the GWAS.
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Table 1

Association results for novel loci and new independent SNPs

Chr Nearest gene(s) SNP

Risk Other

pPosition allelea allele RAF Stage OR (95% CI)

Novel loci

10q23.31 ACTA2, FAS rs 4406737 90,749,704 G A 0.57 Stage 1 1.30 (1.21–1.40) 3.30 × 10−12

Stage 2 1.17 (1.03–1.32) 0.01

Stage 3 1.27 (1.06–1.52) 0.007

Combinedb 1.27 (1.19–1.33) 1.22 × 10−14

18q21.33 BCL2 rs4987855* 58,944,529 G A 0.91 Stage 1 1.47 (1.28–1.69) 5.51 × 10−8

Stage 2 1.47 (1.18–1.85) 0.0007

Stage 3 1.43 (1.12–1.82) 0.004

Combinedb 1.47 (1.32–1.61) 2.66 × 10−12

rs 4987852 58,944,901 G A 0.06 Stage 1 1.43 (1.26–1.63) 2.67×10−8

Stage 2 1.24 (0.98–1.56) 0.07

Stage 3 1.52 (1.17–1.97) 0.002

Combinedb 1.41 (1.27–1.56) 7.76 × 10−11

11p15.5 C11orf21, TSPAN32 rs 7944004 2,267,728 T G 0.49 Stage 1 1.19 (1.11–1.28) 7.20×10−7

Stage 2 1.15 (1.02–1.32) 0.03

Stage 3 1.27 (1.11–1.45) 0.0006

Combinedb 1.20 (1.13–1.27) 2.15 × 10−10

4q25 LEF1 rs898518* 109,236,273 A C 0.59 Stage 1 1.16 (1.08–1.24) 8.47×10−5

Stage 2 1.26 (1.11–1.43) 0.0004

Stage 3 1.30 (1.14–1.49) 0.0002

Combinedb 1.20 (1.14–1.27) 4.24 × 10−10

2q33.1 CASP10, CASP8 rs 3769825 201,819,625 T C 0.45 Stage 1 1.18 (1.10–1.27) 3.43×10−6

Stage 2 1.16 (1.03–1.32) 0.01

Stage 3 1.22 (1.07–1.40) 0.004
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Chr Nearest gene(s) SNP

Risk Other

pPosition allelea allele RAF Stage OR (95% CI)

Combinedb 1.19 (1.12–1.25) 2.50 × 10−9

9p21.3 CDKN2B-AS1 rs 1679013 22,196,987 C T 0.52 Stage 1 1.18 (1.10–1.27) 4.47×10−6

Stage 2 1.32 (1.12–1.52) 0.0004

Stage 3 1.11 (0.93–1.32) 0.25

Combinedb 1.19 (1.12–1.27) 1.27 × 10−8

18q21.32 PMAIP1 rs 4368253 55,773,267 C T 0.69 Stage 1 1.18 (1.09–1.27) 3.65×10−5

Stage 2 1.24 (1.08–1.41) 0.002

Stage 3 1.18 (1.02–1.37) 0.03

Combinedb 1.19 (1.12–1.27) 2.51 × 10−8

15q15.1 BMF rs8024033† 38,190,949 C G 0.51 Stage 1 1.22 (1.14–1.32) 2.72×10−8

Stage 2 1.22 (1.08–1.39) 0.003

Stage 3 - -

Combinedb 1.22 (1.15–1.30) 2.71 × 10−10

2p22.2 QPCT, PRKD3 rs3770745† 37,449,593 T C 0.22 Stage 1 1.29 (1.18–1.40) 8.23×10−9

Stage 2 1.10 (0.95–1.28) 0.21

Stage 3 - -

Combinedb 1.24 (1.15–1.33) 1.68 × 10−8

New independent SNP in established locus

2q13 ACOXL, BCL2L11 rs13401811* 111,332,575 G A 0.81 Stage 1 1.43 (1.28–1.56) 9.76×10−13

Stage 2 1.45 (1.23–1.72) 9.39×10−6

Stage 3 1.32 (1.08–1.59) 0.007

Combinedb 1.41 (1.30–1.52) 2.08 × 10−18

a
The risk allele is the allele corresponding to the estimated odds ratio; RAF= risk allele frequency in controls; OR= per allele odds ratio adjusted for age, sex and significant principal components.

b
Number of cases and controls in the joint analysis of stage 1+stage2+stage3: rs4406737 (3,481/12,170), 20 rs4987855 (3,883/12,446), rs4987852 (3,880/12,497), rs7944004 (3,869/12,476), rs898518 

(3,879/12,441), rs3769825 (3,885/12,471), rs1679013 (3,482/12,148), rs4368253 (3,882/12,473), rs8024033 (3096/7663), rs3770745 (3097/7663), rs13401811 (3,839/12,264).

*
For the ICGC study in stage 3, results for proxy SNPs were provided (rs4987856/rs4987855, r2=1.0; rs7698317/rs898518, r2=1.0; rs1554005/rs13401811, r2=1.0).
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†
Identified from the 1000 Genomes meta-analysis of stage 1 and stage 2 with imputation information >0.9 in the NHL-GWAS.
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Table 2

Conditional analyses for select SNPs

New SNP Chr Position Nearest gene ORa Pa

Conditional Conditional Established

r2 * ORc Pc

Conditional Conditional

ORb Pb SNP ORd Pd

rs13401811 2q13 111,332,575 ACOXL, BCL2L11 1.43 6.09×10−17 1.35 1.60×10−12 rs17483466 0.02 1.37 3.53×10−17 1.31 6.70×10−13

rs7578199 2q37.3 241,841,521 HDLBP, FARP2 1.20 5.39×10−7 1.19 6.10×10−6 rs757978 0.01 1.29 1.35×10−7 1.26 2.37×10−6

rs9273363 6p21.32 32,734,250 HLA 1.24 2.24×10−10 1.24 3.50×10−9 rs674313 0.21 1.13 5.00×10−4 1.06 0.11

rs9273363 6p21.32 32,734,250 HLA 1.24 2.24×10−10 1.23 3.14×10−9 rs9272535 0.11 1.18 7.60×10−6 1.12 0.002

rs11636802 15q21.3 54,562,889 MNS1 1.41 1.68×10−13 1.38 1.54×10−9 rs7169431 0.16 1.27 1.72×10−5 1.06 0.32

rs35748167 18q21.32 56,188,413 PMAIP1, MC4R 1.32 9.31×10−9 1.25 7.89×10−7
rs4368253e 0.003 1.19 2.82×10−7 1.18 5.76×10−7

rs4987852 18q21.33 58,944,901 BCL2 1.41 7.76×10−11 1.36 1.50×10−8
rs4987855e 0.01 1.47 2.66×10−12 1.41 1.33×10−10

*
r2 linkage disequilibrium is based on 1000 Genomes Project and is between the new SNP and established SNP in the locus

a
OR per allele odds ratio and P for the new SNP from the unconditional meta-analysis based on stage 1 + 2 for all loci, except 18q21.33. Data from stages 1–3 was used for 18q21.33.

b
OR and P for the new SNP from the conditional meta-analysis

c
OR and P for the established SNP from the unconditional meta-analysis

d
OR and P for the established SNP from the conditional meta-analysis

e
SNP discovered and confirmed in the current study
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